Homework 4

Posted: November 16th, 2016
Due: November 30th, 2016

1. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be the function $f(\mathbf{x})=x_{1}$. Consider the problem: minimize $f(\mathbf{x})$;

$$
\text { subject to } x_{1}^{2}+x_{2}^{2}=1
$$

Derive the dual function and verify its concavity. Find the optimal solution for both the primal and the dual problems and compare their objective values.
2. Consider the problem:

$$
\begin{aligned}
\operatorname{minimize} & e^{-x} \\
& \text { subject to }-x \leqslant 0
\end{aligned}
$$

Find the Lagrangian, the dual function, and solve the dual problem.
3. Consider the following problem:

$$
\begin{aligned}
\operatorname{minimize}\left(x_{1}-3\right)^{2} & +\left(x_{2}-5\right)^{2} \\
\text { subject to } & x_{1}^{2}-x_{2} \leqslant 0 \\
& -x_{1} \leqslant 1 \\
& x_{1}+2 x_{2} \leqslant 10 \\
& x_{1} \geqslant 0, x_{2} \geqslant 0
\end{aligned}
$$

Find the optimal solution geometrically and verify it using the KuhnTucker conditions.
4. Suppose that there exist two positive numbers y_{1} and y_{2} such that

$$
\begin{aligned}
& a_{11} y_{1}+a_{21} y_{2}=0 \\
& a_{12} y_{1}+a_{22} y_{2}=0
\end{aligned}
$$

Prove that there exist no numbers x_{1}, x_{2} such that

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}<0 \\
& a_{21} x_{1}+a_{22} x_{2}<0
\end{aligned}
$$

