Convex Sets and Convex Functions (part I)

Prof. Dan A. Simovici

UMB

- Convex and Affine Sets
- 2 The Convex and Affine Closures
- Operations on Convex Sets
- Cones
- **5** Extreme Points

Special Subsets in \mathbb{R}^n

Let L be a real linear space and let $x, y \in L$. The closed segment determined by x and y is the set

$$[x, y] = \{(1 - a)x + ay \mid 0 \le a \le 1\}.$$

The half-closed segments determined by x and y are the sets

$$[x,y) = \{(1-a)x + ay \mid 0 \leqslant a < 1\},$$

and

$$(x,y] = \{(1-a)x + ay \mid 0 < a \leq 1\}.$$

The open segment determined by x and y is

$$(x,y) = \{(1-a)x + ay \mid 0 < a < 1\}.$$

The line determined by x and y is the set

$$\ell_{x,y} = \{(1-a)x + ay \mid a \in \mathbb{R}\}.$$

A subset C of L is convex if we have $[x, y] \subseteq C$ for all $x, y \in C$.

Note that the empty subset and every singleton $\{x\}$ of L are convex.

Convex vs. Non-convex

The set $\mathbb{R}^n_{\geqslant 0}$ of all vectors of \mathbb{R}^n having non-negative components is a convex set called the non-negative orthant of \mathbb{R}^n .

The convex subsets of $(\mathbb{R}, +, \cdot)$ are the intervals of \mathbb{R} . Regular polygons are convex subsets of \mathbb{R}^2 .

Example

Every linear subspace T of a real linear space L is convex.

Let $(L, \|\cdot\|)$ be a normed linear space. An open sphere $B(x_0, r) \subseteq L$ is convex.

Indeed, suppose that $x, y \in B(x_0, r)$, that is, $||x - x_0|| < r$ and $||x_0 - y|| < r$.

Let $a \in [0,1]$ and let z = (1-a)x + ay. We have

$$|| x_0 - z || = || x_0 - (1 - a)x - ay ||$$

= $|| a(x_0 - y) + (1 - a)(x_0 - x) ||$
 $\leq a || x_0 - y || + (1 - a) || x_0 - x || < r.$

so $z \in B(x_0, r)$.

Similarly, a closed sphere $B[x_0, r]$ is a convex set.

Theorem

Let x, y, z be three distinct points in the real linear space L such that $z \in \ell_{x,y}$. Then, one of these points belongs to the open segment determined by the remaining two points.

Since $z \in \ell_{x,y}$, we have z = (1 - a)x + ay for some $a \in \mathbb{R}$.

We have $a \not\in \{0,1\}$ because the points x,y,z are distinct. If a>1 we have $y=\frac{a-1}{a}x+\frac{1}{a}z$, so $y\in (x,z)$ because $\frac{a-1}{a},\frac{1}{a}\in (0,1)$. If 0< a<1 we have $z\in (x,y)$. Finally, if a<0, since $x=\left(1+\frac{a}{1-a}\right)z+\frac{-a}{1-a}y$, we have $x\in (z,y)$.

Let U be a subset of a real linear space L and let $x_1, \ldots, x_k \in U$. A linear combination of U, $a_1x_1 + \cdots + a_kx_k$, where $a_1, \ldots, a_k \in \mathbb{R}$ and $k \ge 1$ is:

- an affine combination of U if $\sum_{i=1}^{k} a_i = 1$;
- a non-negative combination of U if $a_i \ge 0$ for $1 \le i \le k$;
- a positive combination of U if $a_i > 0$ for $1 \le i \le k$;
- a convex combination of U if it is both a non-negative and an affine combination of U.

Theorem

Let L be a real linear space. A subset C of L is convex if and only if any convex combination of elements of C belongs to C.

The sufficiency of this condition is immediate. To prove its necessity consider $x_1, \ldots, x_k \in C$ and the convex combination

$$y=a_1x_1+\cdots+a_kx_k.$$

We prove by induction on $k \ge 1$ that $y \in C$. The base case, m = 1 is immediate since in this case $y = a_1x_1$ and $a_1 = 1$.

For the inductive step, suppose that the statement holds for k and let y be given by $y = a_1x_1 + \cdots + a_kx_k + a_{k+1}x_{k+1}$, where $a_1 + \cdots + a_k + a_{k+1} = 1$, $a_i \ge 0$ and $x_i \in C$ for $1 \le i \le k+1$. We have

$$y = (1 - a_{k+1}) \sum_{i=1}^{k} \frac{a_i}{1 - a_{k+1}} x_i + a_{k+1} x_{k+1}.$$

Since $z = \sum_{i=1}^k \frac{a_i}{1 - a_{k+1}} x_i$ is a convex combination of k vectors, we have $z \in C$ by the inductive hypothesis, and the equality $y = (1 - a_{k+1})z + a_{k+1}x_{k+1}$ implies $y \in C$.

Let L, K be two linear spaces. A mapping $f: L \longrightarrow K$ is affine when there exists a linear mapping $h: L \longrightarrow K$ and some $b \in K$ such that f(x) = h(x) + b for every $x \in L$

Theorem

Let L, K be two linear spaces and let $f: L \longrightarrow K$ be an affine mapping. If C be a convex subset of L, then f(C) is a convex subset of K. If D is a convex subset of K, then $f^{-1}(D) = \{x \in L \mid f(x) \in D\}$ is a convex subset of L.

Since f is an affine mapping, we have f(x) = h(x) + b, where $h : L \longrightarrow K$ is a linear mapping and $b \in K$ for $x \in L$. Therefore, if $y_1, y_2 \in f(C)$ we can write $y_1 = h(x_1) + b$ and $y_2 = h(x_2) + b$. This, in turn, allows us to write for $a \in [0,1]$:

$$(1-a)y_1 + ay_2 = (1-a)h(x_1) + (1-a)b + ah(x_2) + ab$$

= $h((1-a)x_1 + ax_2) + b = f((1-a)x_1 + ax_2).$

The convexity of C implies $(1-a)x_1+ax_2 \in C$, so $(1-a)y_1+ay_2 \in f(C)$, which shows that f(C) is convex.

A subset C of a linear space L is affine subspace if $\ell_{x,y} \subseteq C$ for all $x,y \in C$.

In other words, C is a non-empty affine subspace if every point on the line determined by two members of C, x and y belongs to C. Note that C is a subspace of L if and only if $0_L \in C$ and C is an affine subspace.

The empty set \emptyset , every singleton $\{x\}$, and the entire space L are affine subspaces of L. Also, every hyperplane H is an affine subspace of L.

Theorem

A non-empty subset C of a linear space L is an affine subspace if and only if any affine combination of elements of C belongs to C.

It is immediate to verify that any translation of a linear space K is an affine subspace. The converse is also true as we show next.

Theorem

Let D be a non-empty affine subspace in a linear space L. There exists a translation t_u and a unique subspace K of L such that $D = t_u(K)$.

Let $K = \{x - y \mid x, y \in D\}$ and let $x_0 \in D$. We have $0_L = x_0 - x_0 \in K$ and it is immediate that K is subspace of L. Let u be an element of D. We claim that $D = \mathsf{t}_u(K)$. Indeed, if $z \in D$, $z - u \in K$, so $z \in \mathsf{t}_u(K)$, which implies $D \subseteq \mathsf{t}_u(K)$. Conversely, if $x \in \mathsf{t}_u(K)$ we have x = u + v for some $v \in K$ and, therefore, x = u + s - t for some $s, t \in D$, where v = s - t. This implies $x \in D$ because u + s - t is an affine combination of D.

Proof (cont'd)

To prove the uniqueness of the subspace K suppose that $D=\mathsf{t}_u(K_1)=\mathsf{t}_v(K_2)$, where both K_1 and K_2 are subspaces of L. Since $0_L\in K_2$, it follows that there exists $w\in K_1$ such that u+w=v. Similarly, since $0_L\in K_1$, it follows that there exists $t\in K_1$ such that u=v+t, which implies $w+t=0_L$. Thus, both w and t belong to both subspaces K_1 and K_2 .

If $s \in K_1$, it follows that u + s = v + z for some $z \in K_2$. Therefore, $s = (v - u) + z \in K_2$ because $w = v - u \in K_2$. This implies $K_1 \subseteq K_2$. The reverse inclusion can be shown similarly.

Let D be a non-empty affine subspace in a linear space L. The dimension of D (denoted by $\dim(D)$) is the dimension of the unique subspace K of L such that $D = \mathsf{t}_u(K)$ for some translation t_u of L.

The dimension of a convex set C is the dimension of the affine space $\mathbf{K}_{\mathrm{aff}}(C)$.

Since \emptyset is an affine subspace of L and there is no subspace of L that can be translated into \emptyset , the dimension of \emptyset is set through the special definition $\dim(\emptyset) = -1$.

Let D, E be two affine subspaces in a linear space L. The sets D, E are parallel if $E = \mathsf{t}_a(D)$, for some translation t_u of L. In this case we write $D \parallel E$.

It is easy to see that " $\|$ " is an equivalence relation on the set of affine subspaces of a linear space L. Furthermore, each equivalence class contains exactly one subspace of L.

Affine Subspaces and Linear Systems

with solving linear systems.

Theorem

Let $A \in \mathbb{R}^{m \times n}$ and let $\mathbf{b} \in \mathbb{R}^m$. The set $S = \{\mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{b}\}$ is an affine subset of \mathbb{R}^n . Conversely, every affine subset of \mathbb{R}^n is the set of solutions of a system of the form $A\mathbf{x} = \mathbf{b}$.

It is immediate that the set of solutions of a linear system is affine. Conversely, let S be an affine subset of \mathbb{R}^n and let L be the linear subspace such that $S = \mathbf{u} + L$. Let $\{\mathbf{a}_1, \dots, \mathbf{a}_m\}$ be a basis of L^{\perp} . We have

$$L = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}_i' \mathbf{x} = 0 \text{ for } 1 \leqslant i \leqslant m \} = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0} \},$$

where A is a matrix whose rows are $\mathbf{a}_1',\dots,\mathbf{a}_m'$. By defining $\mathbf{b}=A\mathbf{u}$ we have

$$S = \{ \mathbf{u} + \mathbf{x} \mid A\mathbf{x} = \mathbf{0} \} = \{ \mathbf{y} \in \mathbb{R}^n \mid A\mathbf{y} = \mathbf{b} \}.$$

A subset $U = \{x_1, \ldots, x_n\}$ of a real linear space L is affinely dependent if $0_L = a_1x_1 + \cdots + a_nx_n$, at least one of the numbers a_1, \ldots, a_n is nonzero, and $\sum_{i=1}^n a_i = 1$. If no such affine combination exists, then x_1, \ldots, x_n are affinely independent.

Theorem

Let $U = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ be a finite subset of a real linear space L. The set U is affinely independent if and only if the set $V = \{x_1 - x_n, \dots, x_{n-1} - x_n\}$ is linearly independent.

Suppose that U is affinely independent but V is linearly dependent; that is, $0_L = b_1(x_1 - x_n) + \cdots + b_{n-1}(x_{n-1} - x_n)$ such that not all numbers b_i are 0. This implies $b_1x_1 + \cdots + b_{n-1}x_{n-1} - \left(\sum_{i=1}^{n-1}b_i\right)x_n = \mathbf{0}$, which contradicts the affine independence of U.

Proof (cont'd)

Conversely, suppose that V is linearly independent but U is not affinely independent. In this case, $0_L = a_1x_1 + \cdots + a_nx_n$ such that at least one of the numbers a_1, \ldots, a_n is nonzero and $\sum_{i=1}^n a_i = 0$. This implies $a_n = -\sum_{i=1}^{n-1} a_i$, so $0_L = a_1(x_1 - x_n) + \cdots + a_{n-1}(x_{n-1} - x_n)$. Observe that at least one of the numbers a_1, \ldots, a_{n-1} must be distinct from 0 because otherwise we would have $a_1 = \cdots = a_{n-1} = a_n = 0$. This contradicts the linear independence of V, so U is affinely independent.

The subset $U = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ is in general position if its points are affinely independent, or equivalently, if the set $V = \{x_1 - x_n, \dots, x_{n-1} - x_n\}$ is linearly independent.

Corollary

The maximal size of an affinely independent set of vectors in \mathbb{R}^n is n+1.

Proof: Since the maximal size of a linearly independent set in \mathbb{R}^n is n, it follows that the maximal size of an affinely independent set in \mathbb{R}^n is n+1.

Let $\mathbf{x}_1, \mathbf{x}_2$ be vectors in \mathbb{R}^2 . The line that passes through \mathbf{x}_1 and \mathbf{x}_2 consists of all vectors \mathbf{x} such that $\mathbf{x} - \mathbf{x}_1$ and $\mathbf{x} - \mathbf{x}_2$ are collinear; that is, $a(\mathbf{x} - \mathbf{x}_1) + b(\mathbf{x} - \mathbf{x}_2) = 0$ for some $a, b \in \mathbb{R}$ such that $a + b \neq 0$. Thus, we have $\mathbf{x} = a_1\mathbf{x}_1 + a_2\mathbf{x}_2$, where $a_1 = \frac{a}{a+b}$, $a_2 = \frac{b}{a+b}$ and $a_1 + a_2 = 1$, so \mathbf{x} is an affine combination of \mathbf{x}_1 and \mathbf{x}_2 . On other hand, the segment of line contained between \mathbf{x}_1 and \mathbf{x}_2 is consists of convex combinations of \mathbf{x}_1 and \mathbf{x}_2 .

Theorem

The intersection of any collection of convex sets in a real linear space is a convex set.

The intersection of any collection of affine subspaces in a real linear space is an affine subspace.

```
Let \mathcal{C}=\{C_i\mid i\in I\} be a collection of convex sets and let C=\bigcap\mathcal{C}.
 Suppose that x_1,\ldots,x_k\in C, a_i\geqslant 0 for 1\leqslant i\leqslant k, and a_1+\cdots+a_k=1.
 Since x_1,\ldots,x_k\in C_i, it follows that a_1x_1+\cdots+a_kx_k\in C_i for every i\in I.
 Thus, a_1x_1+\cdots+a_kx_k\in C, which proves the convexity of C.
 The argument for the affine subspaces is similar.
```

Corollary

The families of convex sets and non-empty affine subspaces in a real linear space L are closure systems.

Proof: This statement follows immediately by observing that L itself is both a convex set and an affine subspace.

The convex hull (or the convex closure) of a subset U of L is the intersection $\mathbf{K}_{\mathrm{conv}}(U)$ of all closed sets that contain the set U. Similarly, the affine hull of U, denoted by $\mathbf{K}_{\mathrm{aff}}(U)$, is the intersection of all affine sets that contain U.

It is immediate that $\mathbf{K}_{\mathrm{conv}}(U)$ consists of all convex combinations of elements of U, $\mathbf{K}_{\mathrm{aff}}(U)$ consists of all affine combinations of the same elements, and

$$\mathsf{K}_{\mathrm{conv}}(\mathit{U}) \subseteq \mathsf{K}_{\mathrm{aff}}(\mathit{U}) \subseteq \langle \mathit{U} \rangle$$

because each convex combination is also an affine combination and each affine combination is a linear combination.

The dimension dim(D) of an affine subspace D is the dimension of the unique subspace K of L such that $D = t_u(K)$ for some translation t_u .

Theorem

For an affine subspace D of \mathbb{R}^n we have $\dim(D) = m-1$ if and only if m is the largest non-negative integer such that there exists an affinely independent set of m elements of D.

Suppose that $\dim(D) = m-1$ and $D = \mathbf{t_u}(K)$, where K is a subspace of \mathbb{R}^n of dimension m-1 and $\mathbf{u} \notin K$. Let $Y = \{\mathbf{y}_1, \dots, \mathbf{y}_{m-1}\}$ be a basis of K.

The set that consists of *m* vectors of *D*

$$\mathbf{x}_1 = \mathbf{u} + \mathbf{y}_1, \dots, \mathbf{x}_{m-1} = \mathbf{u} + \mathbf{y}_{m-1}, \mathbf{x}_m = \mathbf{u}$$

is affinely independent because the set $\{\mathbf{x}_1 - \mathbf{x}_m, \dots, \mathbf{x}_{m-1} - \mathbf{x}_m\}$ is linearly independent.

There is no affinely independent set in D that consists of more than m point because this would entail the existence in K of a basis that consists of more than m-1 vectors.

Let S be a non-empty subset of \mathbb{R}^n . If $\mathbf{0}_n \in \mathbf{K}_{\mathrm{aff}}(S)$, it follows that $\mathbf{K}_{\mathrm{aff}}(S)$ is a subspace of \mathbb{R}^n that coincides with the subspace $\langle S \rangle$ generated by S, and $\dim(\mathbf{K}_{\mathrm{aff}}(S)) = \dim(\langle S \rangle)$.

(Stone's Theorem) Let L be a real linear space and let A, B be two disjoint convex subsets of L. There exists a partition $\pi = \{C, D\}$ of L such that C and D are convex, $A \subseteq C$ and $B \subseteq D$.

Let $\mathcal{E} = \{E \in \mathcal{P}(L) \mid E \text{ is convex}, A \subseteq E, B \cap E = \emptyset\}$. Clearly, $\mathcal{E} \neq \emptyset$ because $A \in \mathcal{E}$. The collection \mathcal{E} is partially ordered by set inclusion, so by Zorn's Lemma, it contains a maximal element C, which is clearly convex and disjoint from B. We need to show only that D = L - C is convex. If D = B, D is convex and the argument is complete. Therefore, we assume that $B \subset D$, so the set D - B is non-empty.

If D were not convex, then we would have x, z in D such that $[x, z] \cap C \neq \emptyset$, so we would have $y \in (x, z) \cap C$, that is y = (1 - c)x + cz for some $c \in (0, 1)$.

Note that we cannot have both $x \in B$ and $z \in B$ because this would imply that $C \cap B \neq \emptyset$. Thus, at least one of x and z must not belong to B. Suppose for now that neither x nor z belong to B.

We claim that there is a point $p \in C$ such that $(p,x) \cap B \neq \emptyset$ and a point $q \in C$ such that $(q,z) \cap B \neq \emptyset$. Equivalently, if for all $p \in C$, $(p,x) \cap B = \emptyset$, or for all $q \in C$, $(q,z) \cap B = \emptyset$, then C is not a maximal convex set that contains A and is disjoint from B. Assume that for all $p \in C$, $(p,x) \cap B = \emptyset$. Then, $C \subseteq \mathbf{K}_{\operatorname{conv}}(\{x\} \cup C\}$. Since $x \notin B$, $\mathbf{K}_{\operatorname{conv}}(\{x\} \cup C)$ is disjoint from B, which contradicts the maximality of C. Therefore, there exists $p \in C$ such that $(p,x) \cap B \neq \emptyset$. Similarly, there exists $q \in C$ such that $(q,z) \cap B \neq \emptyset$.

Let $u \in (p, x) \cap B$ and let $v \in (q, z) \cap B$. We have

$$u = (1 - a)p + ax$$
 and $v = (1 - b)q + bz$

for some $a, b \in (0, 1)$. Since

$$x = \frac{1}{a}u - \frac{1-a}{a}p,$$

$$z = \frac{1}{b}v - \frac{1-b}{b}q,$$

we have

$$y = \frac{1-c}{a}u - \frac{(1-c)(1-a)}{a}p + \frac{c}{b}v - \frac{c(1-b)}{b}q,$$

or. equivalently

$$\frac{1-c}{a}u + \frac{c}{b}v = y + \frac{(1-c)(1-a)}{a}p + \frac{c(1-b)}{b}q.$$

(1)

Observe that

$$\frac{1-c}{a} + \frac{c}{b} = 1 + \frac{(1-c)(1-a)}{a} + \frac{c(1-b)}{b}.$$
 (2)

Let k be the value of either side of the equality. Since the coefficients that occur in both sides of Equality (1) are non-negative, by dividing both sides of this equality by k we obtain a convex combination of u and v equal to a convex combination of y, p and q. Thi contradicts that C and B are disjoint. Therefore, D is convex.

Suppose now that $x \in B$ and $z \notin B$. The role played previously by u will be played by x and the previous argument is applicable with x = u.

Every affine subset S of \mathbb{R}^n is the intersection of a finite collections of hyperplanes.

Proof: S can be written as $S = \{\mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{b}\}$, where $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Therefore, $\mathbf{x} \in S$ if and only if $\mathbf{a}_i'\mathbf{x} = b_i$, where \mathbf{a}_i is the i^{th} row of A. Thus, $S = \bigcap_{i=1}^m H_{\mathbf{a}_i,b_i}$.

The class of convex set is closed with respect to scalar multiplications and translations. In other words, it is immediate that if C is a subset of a real linear space, then $h_r(C) = rC = \{rx \mid x \in C\}$ is a convex set for $r \in \mathbb{R}$; also, for $b \in L$ the set $t_b(C) = C + b = \{x + b \mid x \in C\}$ is convex. The Minkowski sum of two subsets C_1 , C_2 of \mathbb{R}^n is the set

$$C_1 + C_2 = \{ \mathbf{x}_1 + \mathbf{x}_2 \mid \mathbf{x}_1 \in C_1, \mathbf{x}_2 \in C_2 \}.$$

Theorem

If C_1 , C_2 are convex subsets of a real linear space L, their Minkowski sum $C_1 + C_2$ is a convex subset of L.

Let $x,y\in C_1+C_2$. We have $x=x_1+x_2$ and $y=y_1+y_2$, where $x_1,y_1\in C_1$ and $x_2,y_2\in C_2$. Therefore, for $c\in[0,1]$ we have

$$(1-a)x + ay = (1-a)(x_1+x_2) + a(y_1+y_2)$$

= $(1-a)x_1 + ay_1 + (1-a)x_2 + ay_2 \in C_1 + C_2$,

because $(1-a)x_1+ay_1\in C_1$ and $(1-a)x_2+ay_2\in C_2$ because of the convexity of C_1 and C_2 .

If C_1, \ldots, C_m are convex sets and r_1, \ldots, r_m then the set $r_1 C_1 + \cdots + r_m C_m$ is convex.

Theorem

Let C be a convex subset of a real linear space L. If $r_1, r_2 \in \mathbb{R}_{\geqslant 0}$, then we have

$$(r_1 + r_2)C = r_1C + r_2C.$$

If at least one of r_1 , r_2 is 0 the equality obviously holds; therefore, assume that both r_1 and r_2 are positive.

Let $z \in r_1C + r_2C$. There exists $x, y \in C$ such that $z = r_1x + r_2y$, and therefore,

$$z = (r_1 + r_2) \left(\frac{r_1}{r_1 + r_2} x + \frac{r_1}{r_1 + r_2} y \right).$$

Since C is convex, $\frac{r_1}{r_1+r_2}x+\frac{r_1}{r_1+r_2}y\in C$, which implies $z\in (r_1+r_2)C$, so $r_1C+r_2C\subseteq (r_1+r_2)C$. The reverse inclusion is immediate and makes no use of the convexity of C.

Definition

Let L be a real linear space. A cone in L is a non-empty set $C \subseteq L$ such that $x \in C$ and $a \in \mathbb{R}_{\geq 0}$ imply $ax \in C$.

Let L be a real linear space and let S be a non-empty subset of L. The set

$$C_S = \{ax \mid a \geqslant 0 \text{ and } x \in S\}$$

is cone contained by every other cone that contains S.

Example

The set $(\mathbb{R}_{\geqslant 0})^n$ is a pointed cone.

Let L be a real linear space and let $C \in L$ be a cone. C is convex if and only if $x + y \in C$ for $x, y \in \mathbb{R}$.

Let C be a convex cone. If $x,y\in C$ and $a\in (0,1)$, then $\frac{1}{a}x\in C$ and $\frac{1}{1-a}y\in C$. Therefore, by convexity we have

$$x + y = a \frac{1}{a} x + (1 - a) \frac{1}{1 - a} y \in C.$$

Conversely, let C be a cone such that $x,y\in C$ imply $x+y\in C$. For $u,v\in C$ and $a\in [0,1]$ let $z_a=au+(1-a)v$. Since C is a cone, $au\in C$ and $(1-a)v\in C$, hence $z_a=au+(1-a)v\in C$. Therefore, C is convex.

Let U be a non-empty subset of a real linear space L. The set of all non-negative combinations of U is a convex cone that is included in every convex cone that contains U.

The intersection of any collection of cones (convex cones) in a real liner space L is a cone (a convex cone).

Corollary

The families of cones (convex cones) in a real linear space L is a closure system.

Proof: This statement follows immediately by observing that \mathbb{R}^n itself is cone (a convex cone).

We denote the closure operator corresponding to the family of cones by $\textbf{K}_{\rm cone}.$

Let S be a non-empty subset of a real linear space L. We have $\mathbf{K}_{cone}(S) = \{ax \mid a \geqslant 0 \text{ and } x \in S\}.$

Proof: Since $\{ax \mid a \ge 0 \text{ and } x \in S\}$ is a cone that contains S, $\mathbf{K}_{\text{cone}}(S) \subseteq \{ax \mid a \ge 0 \text{ and } x \in S\}.$

Conversely, since $S \subseteq \mathbf{K}_{\operatorname{cone}}(S)$, if $x \in S$ it follows that $ax \in \mathbf{K}_{\operatorname{cone}}(S)$ for every $a \geqslant 0$, so $\{ax \mid a \geqslant 0 \text{ and } x \in S\} \subseteq \mathbf{K}_{\operatorname{cone}}(S)$.

Definition

Let C be a non-empty convex subset of a real linear space L. An extreme point of C is a point $x \in C$ such that if $x \in [u, v]$ and $u, v \in C$, then u = v = x.

Let C be a non-empty convex subset of a real linear space L. A point $x \in C$ is an extreme point of C if the set $C - \{x\}$ is convex.

Suppose that $C - \{x\}$ is a convex set for $x \in C$ and that $x \in [u, v]$, where $u, v \in C$.

If x is distinct from both u and v, then u, v belong to the convex set $C - \{x\}$, which yields the contradiction $x \in C - \{x\}$. Thus, x is an extreme point of C.

Conversely, suppose that x is an extreme point of C. Let $u, v \in C - \{x\}$, so $u \neq x$ and $y \neq x$. If $x \in [u, v]$, we obtain a contradiction since this implies u = v = x. Therefore $[u, v] \subseteq C - \{x\}$, so $C - \{x\}$ is convex. The set of extreme points of a convex set C is denoted by extr(C).

Let $B[\mathbf{x}_0,r]$ be a closed sphere of radius r in \mathbb{R}^n . Each point \mathbf{x} located on the circumference of this sphere, that is, each point \mathbf{x} such that $\parallel \mathbf{x}_0 - \mathbf{x} \parallel = r$ is an extreme point of $B[\mathbf{x}_0,r]$. Indeed, suppose that $a\mathbf{u} + (1-a)\mathbf{v} = \mathbf{x}$ for some $a \in (0,1)$ and $\parallel \mathbf{x}_0 - \mathbf{u} \parallel = \parallel \mathbf{x}_0 - \mathbf{v} \parallel = r$. Then, by Supplement $\ref{eq:supplement}$, we have $\mathbf{u} = \mathbf{v} = \mathbf{x}$.

An open sphere $B(\mathbf{x}_0,r)$ in \mathbb{R}^n has no extreme points for if $\mathbf{x} \in B(\mathbf{x}_0,r)$. Indeed, let \mathbf{u} be a vector such that $\mathbf{u} \neq \mathbf{0}_n$ and let $\mathbf{x}_1 = \mathbf{x} + a\mathbf{u}$ and $\mathbf{x}_2 = \mathbf{x} - a\mathbf{u}$, where a > 0. Observe that if $a < \frac{r - \|\mathbf{x} - \mathbf{x}_0\|}{\|\mathbf{u}\|}$, we have

$$\parallel \mathbf{x}_1 - \mathbf{x}_0 \parallel = \parallel \mathbf{x} + a\mathbf{u} - \mathbf{x}_0 \parallel \leq \parallel \mathbf{x} - \mathbf{x}_0 \parallel + a \parallel \mathbf{u} \parallel < r$$

and

$$\parallel \mathbf{x}_2 - \mathbf{x}_0 \parallel = \parallel \mathbf{x} - a\mathbf{u} - \mathbf{x}_0 \parallel \leq \parallel \mathbf{x} - \mathbf{x}_0 \parallel + a \parallel \mathbf{u} \parallel < r$$

and we have both $\mathbf{x}_1 \in B(\mathbf{x}_0, r)$ and $\mathbf{x}_2 \in B(\mathbf{x}_0, r)$. Since $\mathbf{x} = \frac{1}{2}\mathbf{x}_1 + \frac{1}{2}\mathbf{x}_2$, \mathbf{x} is not an extreme point.

The extreme points of the cube $[0,1]^n$ are all its 2^n "corners" $(a_1,\ldots,a_n)\in\{0,1\}^n$.

Definition

Let C be a convex set in a real linear space L. A convex subset F of C is a face of C if for every open segment $(u,v)\subseteq C$ such that at least one of u,v is not in F we have $(u,v)\cap F=\emptyset$.

If $F \neq C$, we say that F is a proper face of C.

A k-face of C is a face F of C such that dim(F) = k.

A convex subset F is a face of C if $u, v \in C$ and $(u, v) \cap F \neq \emptyset$ implies $u \in F$ and $v \in F$, which is equivalent to $[u, v] \subseteq F$. Note that if $F = \{x\}$ is a face of C if and only if $x \in \text{extr}(C)$. An convex subset C is a face of itself.

Theorem

If F is a face of a convex set C, then $F = \mathbf{K}_{aff}(F) \cap C$.

If F is a face of a convex set C, then $F = \mathbf{K}_{aff}(F) \cap C$.

If $z \in \mathbf{K}_{\mathrm{aff}}(F) \cap C$, we have $x = a_1 y_1 + \cdots + a_k y_k$, where $\sum_{i=1}^k a_i = 1$ and $y_1, \ldots, y_k \in F$. If all a_i are non-negative, then it is immediate that $x \in F$. Otherwise, let $b = -\sum \{a_i \mid a_i < 0\}$ and let

$$u = \frac{1}{1+b} \sum \{a_i y_i \mid a_i \ge 0\}$$

$$v = -\frac{1}{b} \sum \{a_i y_i \mid a_i < 0\}.$$

We have $x \in C$, $v \in C$, and

$$u = \frac{1}{1+b}x + \frac{b}{1+b} \in [x, v] \cap F.$$

Since F is a face, we have $u \in F$. Thus, $\mathbf{K}_{\mathrm{aff}}(F) \cap C \subseteq F$. The reverse inclusion is immediate.