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Convex and Affine Sets

Special Subsets in R"

Let L be a real linear space and let x,y € L. The closed segment
determined by x and y is the set

[x,y] ={(1l—a)x+ay | 0<a<1}.
The half-closed segments determined by x and y are the sets
[x,y)={(1—-a)x+ay | 0<a<1},

and
(vl = {(1—a)x+ay | 0<a< 1}

The open segment determined by x and y is
(x,y)={(1—a)x+ay | 0<a<1}.
The line determined by x and y is the set

ey ={(1—a)x+ay | aeR}.
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Convex and Affine Sets

Definition

A subset C of L is convex if we have [x,y] C C for all x,y € C.

Note that the empty subset and every singleton {x} of L are convex.
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Convex and Affine Sets

Convex vs. Non-convex
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Convex and Affine Sets

Example

The set RZ, of all vectors of R" having non-negative components is a
convex set called the non-negative orthant of R”.
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Convex and Affine Sets

Example

The convex subsets of (R, +,-) are the intervals of R. Regular polygons
are convex subsets of R?.

Example

Every linear subspace T of a real linear space L is convex.
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Convex and Affine Sets

Example

Let (L, || - ||) be a normed linear space. An open sphere B(xp,r) C L is
convex.

Indeed, suppose that x,y € B(xp, r), that'is, || x — xo ||< r and

[ xo—yll<r.

Let a € [0,1] and let z = (1 — a)x + ay. We have

Ixo—zl = lx0—(1—-a)x—ay|
= Jlalbo—y)+(1—a)0—x) |
allxo—y |+ —a) % —x|<r.

N

so z € B(xo, r).
Similarly, a closed sphere Blxg, r] is a convex set.
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Convex and Affine Sets

Theorem

Let x,y, z be three distinct points in the real linear space L such that
z € Ux,,. Then, one of these points belongs to the open segment
determined by the remaining two points.
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Proof

Since z € /., we have z = (1 — a)x + ay for some a € R.

a<o

We have a ¢ {0,1} because the points x, y, z are distinct. If a > 1 we
have y = 22tx + 1z s0 y € (x,z) because 21,1 € (0,1). If 0<a <1

we have z € (x,y). Finally, if a <0, since x = (1 + ﬁ) zZ+ 2y, we
have x € (z,y).
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Convex and Affine Sets

Definition
Let U be a subset of a real linear space L and let x1,...,xx € U. A linear
combination of U, aix; + -+ 4 axxk, where a;,...,ax € R and k > 1 is:

@ an affine combination of U if Zf-;l ai=1,

@ a non-negative combination of U if a; > 0 for 1 <7 < k;
@ a positive combination of U if a; > 0 for 1 < i < k;
°

a convex combination of U if it is both a non-negative and an affine
combination of U.




Convex and Affine Sets

Theorem

Let L be a real linear space. A subset C of L is convex if and only if any
convex combination of elements of C belongs to C.
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Proof

The sufficiency of this condition is immediate. To prove its necessity
consider x,...,xx € C and the convex combination

y=aixy + -+ arXxg.

We prove by induction on k > 1 that y € C. The base case, m=1is
immediate since in this case y = a;x; and a; = 1.

For the inductive step, suppose that the statement holds for k and let y be
given by y = a1xy + - - - + agXk + akr1Xkr1, Where
ap+---+ak+akr1=1a >20and x; € Cfor1 <7< k+ 1. We have

k

aj
y =(1—ak+1) E T Xi T Ak+1Xk+1-
1 1—ak

Since z = Zf( 1T ak+ X; is a convex combination of k vectors, we have
z € C by the inductive hypothesis, and the equality

y = (1 — ak41)z + akr1xk+1 implies y € C.
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Convex and Affine Sets

Definition

Let L, K be two linear spaces. A mapping f : L — K is affine when there
exists a linear mapping h: L — K and some b € K such that
f(x) = h(x)+ b for every x € L
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Convex and Affine Sets

Theorem

Let L, K be two linear spaces and let f : L — K be an affine mapping.
If C be a convex subset of L, then f(C) is a convex subset of K. If D is a

convex subset of K, then f~}(D) = {x € L | f(x) € D} is a convex
subset of L.
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Proof

Since f is an affine mapping, we have f(x) = h(x) + b, where h: L — K
is a linear mapping and b € K for x € L. Therefore, if y1,y» € f(C) we
can write y; = h(x1) + b and y» = h(x2) + b. This, in turn, allows us to
write for a € [0, 1]:

(l—a)y1+ay, = (1—a)h(x1)+ (1 —a)b+ ah(x2) + ab
= h((1—a)x1 +axx)+ b=Ff((1—-a)x+ ax).

The convexity of C implies (1 — a)x; + ax2 € C, so
(1 —a)y1 + ay2 € f(C), which shows that (C) is convex.
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Convex and Affine Sets

Definition

A subset C of a linear space L is affine subspace if £, , C C for all
x,y € C.

In other words, C is a non-empty affine subspace if every point on the line
determined by two members of C, x and y belongs to C. Note that C is a
subspace of L if and only if 0, € C and C is an affine subspace.
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Convex and Affine Sets

Example

The empty set (), every singleton {x}, and the entire space L are affine
subspaces of L. Also, every hyperplane H is an affine subspace of L.

Theorem

A non-empty subset C of a linear space L is an affine subspace if and only
if any affine combination of elements of C belongs to C.

v
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Convex and Affine Sets

It is immediate to verify that any translation of a linear space K is an
affine subspace. The converse is also true as we show next.

Theorem

Let D be a non-empty affine subspace in a linear space L. There exists a
translation t, and a unique subspace K of L such that D = t,(K).
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Proof

Let K={x—y | x,y € D} and let xp € D. We have 0; = xo — xp € K
and it is immediate that K is subspace of L.

Let u be an element of D. We claim that D = t,(K). Indeed, if z € D,
z—ue€ K, so z € t,(K), which implies D C t,(K). Conversely, if

x € ty(K) we have x = u + v for some v € K and, therefore,
x=u+s—t forsomes,t € D, where v=s—t. This implies x € D
because u + s — t is an affine combination of D.
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Proof (cont'd)

To prove the uniqueness of the subspace K suppose that

D =t,(K1) = ty(K2), where both K; and K, are subspaces of L.

Since 0; € K>, it follows that there exists w € Kj such that u+ w = v.
Similarly, since 0; € Ki, it follows that there exists t € K such that

u = v+ t, which implies w +t = 0;. Thus, both w and t belong to both
subspaces K; and Kj.

If s € Ky, it follows that u + s = v + z for some z € K5. Therefore,
s=(v—u)+ze€ K, because w = v — u € Ky. This implies K; C K.
The reverse inclusion can be shown similarly.
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Convex and Affine Sets

Definition

Let D be a non-empty affine subspace in a linear space L. The dimension
of D (denoted by dim(D)) is the dimension of the unique subspace K of L
such that D = t,(K) for some translation t, of L.

The dimension of a convex set C is the dimension of the affine space

Kag(C).




Convex and Affine Sets

Since () is an affine subspace of L and there is no subspace of L that can
be translated into (), the dimension of () is set through the special
definition dim(() = —1.

Let D, E be two affine subspaces in a linear space L. The sets D, E are
parallel if E = t,(D), for some translation t, of L. In this case we write
D | E.

It is easy to see that “||” is an equivalence relation on the set of affine
subspaces of a linear space L. Furthermore, each equivalence class
contains exacly one subspace of L.
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Convex and Affine Sets

Affine Subspaces and Linear Systems

with solving linear systems.

Theorem

Let A€ R™*" and letb € R™. Theset S ={x € R" | Ax=Db} is an
affine subset of R". Conversely, every affine subset of R" is the set of
solutions of a system of the form Ax = b.
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Proof

It is immediate that the set of solutions of a linear system is affine.
Conversely, let S be an affine subset of R” and let L be the linear subspace
such that S =u+ L. Let {a1,...,a,} be a basis of L-. We have

L={xeR" |ax=0for1<i<m}={xeR"| Ax =0},

where A is a matrix whose rows are a}, ..., a,. By defining b = Au we

have
S={u+x| Ax=0}={yeR" | Ay =b}.



Convex and Affine Sets

Definition

A subset U = {x1,...,xn} of a real linear space L is affinely dependent if
0; = a1xy + - - + apx,, at least one of the numbers ay, ..., a, is nonzero,
and Y7 ; a; = 1. If no such affine combination exists, then xi, ..., x, are

affinely independent.
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Convex and Affine Sets

Theorem
Let U= {x1,...,X,} be a finite subset of a real linear space L. The set U
is affinely independent if and only if the set V. = {x1 — Xpn, ..., Xn—1 — Xn}

is linearly independent.

27 /79



Proof

Suppose that U is affinely independent but V is linearly dependent; that
is, 0p = bi(x1 — xp) + -+ - + bp—1(xn—1 — Xxp) such that not all numbers b;
are 0. This implies bixy + -+ bp_1Xp—1 — (27;11 b,-) x, = 0, which
contradicts the affine independence of U.
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Proof (cont'd)

Conversely, suppose that V is linearly independent but U is not affinely
independent. In this case, 0; = ai1x1 + - -+ + anx, such that at least one of
the numbers ay, ..., a, is nonzero and 27:1 a; = 0. This implies

ap = — 27:—11 aj, 50 0p = a1(x1 — xn) + -+ + an—1(xn—1 — xn). Observe
that at least one of the numbers a1, ..., a,_1 must be distinct from 0
because otherwise we would have a; = --- = a,_1 = a, = 0. This
contradicts the linear independence of V, so U is affinely independent.
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Convex and Affine Sets

Definition

The subset U = {x1,...,X,} is in general position if its points are affinely
independent, or equivalently, if the set V = {x; — Xp, ..., Xp—1 — Xp} is
linearly independent.
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Convex and Affine Sets

Corollary

The maximal size of an affinely independent set of vectors in R" is n+ 1.

Proof: Since the maximal size of a linearly independent set in R” is n, it
follows that the maximal size of an affinely independent set in R” is n+ 1.
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Convex and Affine Sets

Example

Let x1,X» be vectors in R2. The line that passes through x; and x»

consists of all vectors x such that x — x; and x — x» are collinear; that is,
a(x — x1) + b(x — x2) = 0 for some a, b € R such that a+ b # 0. Thus,
we have x = a1x1 + apxp, where a; = ﬁ?b' a = be and a1 +a» =1, so x
is an affine combination of x; and x,. On other hand, the segment of line
contained between x; and X, is consists of convex combinations of x; and

X2.
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The Convex and Affine Closures

Theorem
The intersection of any collection of convex sets in a real linear space is a
convex set.

The intersection of any collection of affine subspaces in a real linear space
is an affine subspace.
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Proof

Let € = {C; | i € I} be a collection of convex sets and let C =[C.
Suppose that xq,...,x, € C, a; >20for 1 <i< k,and a; +---+ ax = 1.
Since x1,...,xx € G, it follows that a;x; + - - -+ akxx € C; for every i € [.
Thus, a;x; + - -+ 4+ akxx € C, which proves the convexity of C.

The argument for the affine subspaces is similar.
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The Convex and Affine Closures

Corollary

The families of convex sets and non-empty affine subspaces in a real linear
space L are closure systems.

Proof: This statement follows immediately by observing that L itself is
both a convex set and an affine subspace.
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The Convex and Affine Closures

The convex hull (or the convex closure) of a subset U of L is the
intersection Kcony(U) of all closed sets that contain the set U.

Similarly, the affine hull of U, denoted by K,g(U), is the intersection of all
affine sets that contain U.
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The Convex and Affine Closures

It is immediate that Kcony(U) consists of all convex combinations of
elements of U, K,g(U) consists of all affine combinations of the same
elements, and

KCOIIV(U) C Kaf‘f(U) C (U>
because each convex combination is also an affine combination and each
affine combination is a linear combination.
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The Convex and Affine Closures

The dimension dim(D) of an affine subspace D is the dimension of the
unique subspace K of L such that D = t,(K) for some translation t,.

Theorem

For an affine subspace D of R" we have dim(D) = m — 1 if and only if m
is the largest non-negative integer such that there exists an affinely
independent set of m elements of D.

38/79



Proof

Suppose that dim(D) = m —1 and D = t,(K), where K is a subspace of
R" of dimension m—1and u ¢ K. Let Y ={y;,...,¥,_1} be a basis of
K.

The set that consists of m vectors of D

X1 =u+Yp,. ..., Xm—1=U+Y, 1, Xp=1U

is affinely independent because the set {x; — Xm,...,Xm—1 — Xm} is
linearly independent.

There is no affinely independent set in D that consists of more than m
point because this would entail the existence in K of a basis that consists
of more than m — 1 vectors.
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The Convex and Affine Closures

Let S be a non-empty subset of R". If 0, € K.g(S), it follows that
Ka(S) is a subspace of R” that coincides with the subspace (S)
generated by S, and dim(K,x(S)) = dim({S)).
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The Convex and Affine Closures

Theorem

(Stone’s Theorem) Let L be a real linear space and let A, B be two
disjoint convex subsets of L. There exists a partition m = {C, D} of L such
that C and D are convex, AC C and B C D.
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Proof

Let E={E € P(L) | Eis convex, AC E,BNE = (}. Clearly, &€ # ()
because A € €. The collection € is partially ordered by set inclusion, so by
Zorn's Lemma, it contains a maximal element C, which is clearly convex
and disjoint from B. We need to show only that D = L — C is convex.

If D =B, D is convex and the argument is complete. Therefore, we
assume that B C D, so the set D — B is non-empty.



Proof (cont'd)

If D were not convex, then we would have x, z in D such that

[x,z] N C # 0, so we would have y € (x,z) N C, thatisy = (1 — ¢)x + cz
for some ¢ € (0,1).

Note that we cannot have both x € B and z € B because this would imply
that CN B # (). Thus, at least one of x and z must not belong to B.
Suppose for now that neither x nor z belong to B.
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Proof (cont'd)

We claim that there is a point p € C such that (p,x) N B # () and a point
g € C such that (g,z) N B # (. Equivalently, if for all p € C,

(p,x)NB =0, or for all g € C, (q,z) N B =1, then C is not a maximal
convex set that contains A and is disjoint from B. Assume that for all
peC, (p,x)NB=10. Then, C C Keony({x} U C}. Since x & B,
Keonv({x} U C) is disjoint from B, which contradicts the maximality of C.
Therefore, there exists p € C such that (p,x) N B # (). Similarly, there
exists g € C such that (q,z) N B # 0.
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Proof (cont'd)

Let u € (p,x) N B and let v € (g,z) N B. We have
u=(l1—a)p+axandv=(1-b)g+ bz

for some a, b € (0,1). Since

1 1—a
X = —u- P,

a a

1 1-b
z = —v——

b b

we have

y= u— p+Lv—
a
or. equivalently

l_cu—l-Zv—y—l-(l_cL(l_a)p—i-C(lb_b)q. (1)

45 /79



Proof (cont'd)

Observe that

l-c ¢ (1-c)(1—a) c(1-0b)
; +B_1+ ; t— (2)

Let k be the value of either side of the equality. Since the coefficients that
occur in both sides of Equality (1) are non-negative, by dividing both sides
of this equality by k we obtain a convex combination of v and v equal to a
convex combination of y, p and g. Thi contradicts that C and B are
disjoint. Therefore, D is convex.

Suppose now that x € B and z ¢ B. The role played previously by u will
be played by x and the previous argument is applicable with x = u.
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The Convex and Affine Closures

Theorem

Every affine subset S of R" is the intersection of a finite collections of
hyperplanes.

Proof: S can be written as S = {x € R” | Ax = b}, where A € R™*" and
b € R™. Therefore, x € S if and only if a'x = b;, where a; is the i row
of A. Thus, S =(\_; Ha, b,
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Operations on Convex Sets

The class of convex set is closed with respect to scalar multiplications and
translations. In other words, it is immediate that if C is a subset of a real
linear space, then h,(C) = rC = {rx | x € C} is a convex set for r € R;
also, for b€ Ltheset tp(C) =C+b={x+b | x € C} is convex.

The Minkowski sum of two subsets C;, G of R” is the set

G+G= {X1+X2 ’ x1 € C1,xp € Cz}

Theorem

If C1, G5 are convex subsets of a real linear space L, their Minkowski sum
(1 + G is a convex subset of L.
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Proof

Let x,y € C; + Go. We have x = x1 + xo and y = y1 + y», where
x1,y1 € C1 and xo, y» € Co. Therefore, for ¢ € [0, 1] we have

(I-a)x+ay = (1-2a)0a+x)+aly+y2)
= l-axt+an+(l—ax+anec G+ G,

because (1 — a)x; + ay1 € C; and (1 — a)xx + ay» € C, because of the
convexity of C; and G,.
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Operations on Convex Sets

If Cq,...,C,, are convex sets and rq, ..., Iy, then the set
rnCi+---+ rmCn is convex.

Theorem

Let C be a convex subset of a real linear space L. If rj, ro € R0, then we
have
(I’l + r2)C =nC+nC.
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Proof

If at least one of r1, r» is 0 the equality obviously holds; therefore, assume

that both r; and ry are positive.
Let z€ nC+ rnC. There exists x,y € C such that z= nx+ rny, and
therefore,

. rn r
z=(n+n) (r1+r2X+ r1+r2y>'

. . " " L
Since C is convex, L Xt+ Ty € C, which implies z € (r1 + ) C, so

rnC+ rnC C(rn+ rn)C. The reverse inclusion is immediate and makes no
use of the convexity of C.
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Cones

Definition

Let L be a real linear space. A cone in L is a non-empty set C C L such
that x € C and a € Ry imply ax € C.




Cones

Example

Let L be a real linear space and let S be a non-empty subset of L. The set
Cs={ax | a>0and x € S}

is cone contained by every other cone that contains S.

Example

The set (R>0)"” is a pointed cone.
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Cones

Theorem

Let L be a real linear space and let C € L be a cone. C is convex if and
only ifx+y e C forx,y € R.
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Proof

Let C be a convex cone. If x,y € C and a € (0,1), then 1x € C and
l%ay € C. Therefore, by convexity we have

1 1
x—i—y:agx—i-(l—a)1 yeC.

—a

Conversely, let C be a cone such that x,y € C imply x+ y € C. For
u,v € Candac|0,1] let z = au+ (1 — a)v. Since C is a cone, au € C
and (1 —a)v € C, hence z, = au + (1 — a)v € C. Therefore, C is convex.
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Cones

Example

Let U be a non-empty subset of a real linear space L. The set of all
non-negative combinations of U is a convex cone that is included in every
convex cone that contains U.
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Cones

Theorem

The intersection of any collection of cones (convex cones) in a real liner
space L is a cone (a convex cone).




Cones

Corollary

The families of cones (convex cones) in a real linear space L is a closure
system.

Proof: This statement follows immediately by observing that R” itself is
cone (a convex cone).
We denote the closure operator corresponding to the family of cones by

Kcone .
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Cones

Theorem

Let S be a non-empty subset of a real linear space L. We have
Keone(S) ={ax | a >0 and x € S}.

Proof: Since {ax | a > 0 and x € S} is a cone that contains S,
Keone(S) € {ax | a>0and x € 5}.

Conversely, since S C Keone(S), if x € S it follows that ax € Keone(S) for
every a>0,s0 {ax | a>0and x € S} C Keone(S).
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Extreme Points

Definition

Let C be a non-empty convex subset of a real linear space L. An extreme
point of C is a point x € C such that if x € [u,v] and u,v € C, then
u=v=x.
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Extreme Points

Theorem

Let C be a non-empty convex subset of a real linear space L. A point
x € C is an extreme point of C if the set C — {x} is convex.

61/79



Proof

Suppose that C — {x} is a convex set for x € C and that x € [u, v], where
u,v e C.

If x is distinct from both v and v, then u, v belong to the convex set

C — {x}, which yields the contradiction x € C — {x}. Thus, x is an
extreme point of C.

Conversely, suppose that x is an extreme point of C. Let u,v € C — {x},
so u# x and y # x. If x € [u, v], we obtain a contradiction since this
implies u = v = x. Therefore [u,v] C C — {x}, so C — {x} is convex.
The set of extreme points of a convex set C is denoted by extr(C).



Extreme Points

Example

Let B[xo, r] be a closed sphere of radius r in R". Each point x located on
the circumference of this sphere, that is, each point x such that

|| xo — x ||= r is an extreme point of B[xo, r].

Indeed, suppose that au + (1 — a)v = x for some a € (0,1) and

|| xo —u ||=|| xo — v ||= r. Then, by Supplement ??, we have u = v = x.

63 /79



Extreme Points

Example

An open sphere B(xg, r) in R" has no extreme points for if x € B(xo, r).

Indeed, let u be a vector such that u # 0, and let x; = x + au and
r—|x—xol|

X> = X — au, where a > 0. Observe that if a < v We have
| X1 —xo [[=[[ x +au—xo [[<[[x —xo [[+a | u<r
and
[ %2 —x0 [|=[| x —au—xo [[<[| x—xo || +a [|u [|<r,

and we have both x; € B(xo, r) and xo € B(xg, r). Since x = 1x1 + 1x,, x
is not an extreme point.
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Extreme Points

Example

The extreme points of the cube [0,1]” are all its 2" “corners”
(a1,...,an) € {0,1}".
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Extreme Points

Definition

Let C be a convex set in a real linear space L. A convex subset F of C is a
face of C if for every open segment (u,v) C C such that at least one of
u,v is not in F we have (u,v)NF ={.

If F# C, we say that F is a proper face of C.

A k-face of C is a face F of C such that dim(F) = k.
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Extreme Points

A convex subset F is a face of C if u,v € C and (u,v) N F # () implies

u € F and v € F, which is equivalent to [u,v] C F.

Note that if F = {x} is a face of C if and only if x € extr(C). An convex
subset C is a face of itself.

Theorem

If F is a face of a convex set C, then F = Kqg(F) N C.
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Extreme Points

Theorem

If F is a face of a convex set C, then F = K g(F) N C.
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Extreme Points

Proof

If z € Kag(F) N C, we have x = aiy; + - - - + axyk, where Zf-(:l aj=1and
Y1,-.-,¥k € F. If all a; are non-negative, then it is immediate that x € F.

Otherwise, let b= —>"{a; | aj < 0} and let
- 1 Z{ i | ai >0}
u = 1+ b ajyi | ai =2

1
v = _E {a,-y,- | aj <0}.

We have x € C,v € C, and

1 b
U—mX‘f‘mE[X,V]ﬂF

Since F is a face, we have u € F. Thus, K,g(F) N C C F. The reverse

inclusion is immediate.
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Extreme Points
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Extreme Points
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Extreme Points



Extreme Points
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Extreme Points
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Extreme Points
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Extreme Points

76

79



Extreme Points

~

~



Extreme Points

78/79



Extreme Points
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