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Convex Functions - Basics and Examples

Definition

Let D be a subset of a real linear space L.
A function f : D −→ R is convex if for every x , y ∈ D such that
(1− t)x + ty ∈ D for t ∈ [0, 1] we have
f ((1− t)x + ty) 6 (1− t)f (x) + tf (y).
A function g : D −→ R is concave if −g is convex at x, that is,
g((1− t)x + ty) > (1− t)g(x) + tg(y) for x , y ∈ D.
If x, y ∈ D implies the strict inequality

f ((1− t)x + ty) < (1− t)f (x) + tf (y),

then we say that f is strictly convex.
Similarly, if

f ((1− t)x + ty) > (1− t)f (x) + tf (y),

for every x , y ∈ D, then we say that f is strictly concave.
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Convex Functions - Basics and Examples

It is useful for the study of convex functions to extend the notion of
convex function by allowing ∞ as a value. Thus, if a function f is defined
on a subset S of a linear space L, f : S −→ R, the extended-value function
of f is the function f̂ : L −→ R̂ defined by

f̂ (x) =

{
f (x) if x ∈ S ,

∞ otherwise,

If a function f : S −→ R is convex, where S ⊆ L is a convex set, then its
extended-value function f̂ satisfies the inequality that defines convexity
f̂ ((1− t)x + ty) 6 (1− t)f̂ (x) + tf̂ (y) for every x , y ∈ L and t ∈ [0, 1], if
we adopt the convention that 0 · ∞ = 0.
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Convex Functions - Basics and Examples

A extended-value convex function f : S −→ R̂ is properly convex if f is not
the constant function defined by f (x) =∞.
The effective domain of a convex function f : S −→ R̂ is the set
Dom(f ) = {x ∈ S | f (x) <∞}.
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Convex Functions - Basics and Examples

Example

Let f : (0,∞) −→ R be defined by f (x) = x2. The definition domain of f
is clearly convex and we have

f ((1− t)x1 + tx2) = ((1− t)x1 + tx2)2

= (1− t)2x21 + t2x22 + 2(1− t)tx1x2.

Therefore,

f ((1− t)x1 + tx2)− (1− t)f (x1)− tf (x2)

= (1− t)2x21 + t2x22 + 2(1− t)tx1x2 − (1− t)x21 − tx22

= −t(1− t)(x1 − x2)2 6 0,

which implies that f is indeed convex.
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Convex Functions - Basics and Examples

Example

The function f : R −→ R defined by f (x) = |a− xb| is convex because

f ((1− t)x1 + tx2) = |a− ((1− t)x1 + tx2)b|
= |a(1− t) + at − ((1− t)x1 + tx2)b|
= |(1− t)(a− x1b) + t(a− x2b)

6 |(1− t)(a− x1b)|+ |t(a− x2b)|
= (1− t)f (x1) + tf (x2)

for t ∈ [0, 1].
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Convex Functions - Basics and Examples

Example

The function g : R2 −→ R given by g(x) = |a− x1x2| is not convex, in
general. Consider, for example the special case g(x) = |12− x1x2|. We
have
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.
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Convex Functions - Basics and Examples

Example

Any norm ν on a real linear space L is convex. Indeed, for t ∈ [0, 1] we
have

ν(tx + (1− t)y) 6 ν(tx) + ν((1− t)y) = tν(x) + (1− t)ν(y)

for x , y ∈ L.
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Convex Functions - Basics and Examples

Example

Let A ∈ Rn×n be a symmetric matrix. The function f : Rn −→ R given by
f (x) = x′Ax is convex if and only if A is a positive semidefinite matrix.
Indeed, suppose that f is convex. For x, y ∈ Rn we have

((1− t)x + ty)′A((1− t)x + ty) 6 (1− t)x′Ax + ty′Ay,

for t ∈ (0, 1), which amounts to

(t2 − t)x′Ax + (t2 − t)y′Ay + (1− t)ty′Ax + t(1− t)x′Ay 6 0.

Since A is symmetric, we have (y′Ax)′ = x′Ay and because both terms of
the last equality are scalars we have y′Ax = x′Ay. Note that t2 − t 6 0
because t ∈ [0, 1]. Consequently,

x′Ax + y′Ay− y′Ax− x′Ay > 0,

which amounts to (x− y)′A(x− y) > 0, so A is positive semidefinite. The
reverse implication is an exercise!
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Extrema of Convex Functions

Local vs. Global Minima

Definition

Let f : Rn −→ R be a function. The point x0 is a global minimum for f if
f (x) > f (x0) for every x.
The point x1 is a local minimum for f if there exists ε > 0 such that
f (x) > f (x0) for every x ∈ B[x0, ε].

If x1 is a local minimum for f and x0 is a global minimum, we have
f (x1) > f (x0).
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Extrema of Convex Functions

Theorem

If x1 is a local minimum of a convex function f : Rn −→ R, then x1 is a
global minimum for f .
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Extrema of Convex Functions

Proof

Let x0 be a global minimum of f and let x1 be a local minimum. We have
f (x0) 6 f (x1). Since x1 is a local minimum, there exists ε such that if
‖ x1 − x ‖> ε, then f (x1) 6 f (x).
Let z = (1− a)x1 + ax0, where a ∈ [0, 1]. We have x1 − z = a(x1 − x0).
By choosing a such that

a <
ε

‖ x1 − x0 ‖
we have ‖ x1 − z ‖6 ε, which implies z ∈ B[x1, ε], so f (z) > f (x1) because
x1 is a local minimum. By the convexity of f we have

f (z) = f ((1− a)x1 + ax0) 6 (1− a)f (x1) + af (x0) 6 f (x1),

so f (z) = f (x1). This, in turn implies

f (x1) 6 (1− a)f (x1) + af (x0),

which yields f (x1) 6 f (x0), hence f (x1) = f (x0). Therefore, the local
minimum x1 is also a global minimum.
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Convexity of One-Argument Functions

One-argument convex function

The curve representing f (x) is located under the chord determined by
(u, f (u)) and (v , f (v)).

x

y

x (1− t)x + ty y

f (x)

f (y)

f ((1− t)x + ty)

(1− t)f (x) + tf (y)
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Convexity of One-Argument Functions

Lemma

Let f : [a, b] −→ R be a convex function. If x ∈ (a, b), then

f (x)− f (a)

x − a
6

f (b)− f (a)

b − a
6

f (b)− f (x)

b − x
.
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Convexity of One-Argument Functions

Proof

It is easy to see that x can be regarded as either of the following convex
combinations:

x =

(
1− x − a

b − a

)
a +

x − a

b − a
b,

=
b − x

b − a
a +

(
1− b − x

b − a

)
b.

The existence of the first convex combination implies

f (x) = f

(
1− x − a

b − a

)
a +

x − a

b − a
b,

6

(
1− x − a

b − a

)
f (a) +

x − a

b − a
f (b),

which is equivalent to

f (x) 6
b − x

b − a
f (a) +

x − a

b − a
f (b).

This gives the first inequality of the lemma. The second one can be
obtained similarly starting from the second convex combination.
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Convexity of One-Argument Functions

Lemma

Let f : I −→ R be a function, where I is an open interval. The following
statements are equivalent for a < b < c, where a, b, c ∈ I :

i (c − a)f (b) 6 (b − a)f (c) + (c − b)f (a);

ii
f (b)−f (a)

b−a 6 f (c)−f (a)
c−a ;

iii
f (c)−f (a)

c−a 6 f (c)−f (b)
c−b .
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Convexity of One-Argument Functions

Proof

(i) is equivalent to (ii): Suppose that (i) holds. Then we have

(c − a)f (b)− (c − a)f (a) 6 (b − a)f (c) + (c − b)f (a)− (c − a)f (a),

which is equivalent to

(c − a)(f (b)− f (a)) 6 (b − a)(f (c)− f (a)). (1)

By dividing both sides by (b − a)(c − a) > 0 we obtain Inequality (ii).
Conversely, note that (ii) implies Inequality (1). By adding (c − a)f (a) to
both sides of this inequality we obtain (i).
In a similar manner it is possible to prove the equivalence between (i) and
(iii).
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Convexity of One-Argument Functions

Theorem

Let I be an open interval and let f : I −→ R is a function. Each of the
conditions of the previous Lemma is equivalent to the convexity of f for
a < b < c and a, b, c ∈ I .
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Convexity of One-Argument Functions

Proof

Let f : I −→ R be a convex function and let a, b, c ∈ I be such that
a < b < c . Define t = c−b

c−a . Clearly 0 < t < 1 and by the convexity
property,

f (b) = f (at + (1− t)c) 6 tf (a) + (1− t)f (c)

=
c − b

c − a
f (a) +

b − a

c − a
f (c),

which yields the first inequality of Lemma 10.
Conversely, suppose that the first inequality of Lemma 10 is satisfied.
Choose a = x , c = y and b = tx + (1− t)y for t ∈ (0, 1). We have
(c − a)f (b) = (y − x)f (tx + (1− t)y) and
(b − a)f (c) + (c − b)f (a) = (1− t)(y − x)f (y) + t(y − x)f (x) Taking
into account that y > x , we obtain the inequality
f (tx + (1− t)y) 6 tf (x) + (1− t)f (y), which means that f is convex.
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Convexity of One-Argument Functions

Theorem

Let I be an open interval and let f : R −→ R is a convex function. The
function g(x , h) defined for x ∈ I and h ∈ R− {0} as

g(x , h) =
f (x + h)− f (x)

h

is increasing with respect to each of its arguments.
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Convexity of One-Argument Functions

Proof

We need to examine three cases: 0 < h1 < h2, h1 < h2 < 0, and
h1 < 0 < h2.
In the first case choose a = x , b = x + h1 and c = x + h2 in the second
inequality of Lemma 10, where all three numbers x , x + h1 and x + h2
belong to I . We obtain f (x+h1)−f (x)

h1
6 f (x+h2)−f (x)

h2
, which shows that

g(x , h1) 6 g(x , h2).
If h1 < h2 < 0, choose a = x + h1, b = x + h2 and c = x in the last
inequality of Lemma 10. This yields: f (x)−f (x+h1)

−h1 6 f (x)−f (x+h2)
−h2 , that is

g(x , h1) 6 g(x , h2).
In the last case, h1 < 0 < h2, begin by noting that the last two inequalities
of Lemma 10 imply

f (b)− f (a)

b − a
6

f (c)− f (b)

c − b
.

By taking a = x + h1, b = x , and c = x + h2 in this inequality we obtain

f (x)− f (x + h1)

−h1
6

f (x + h2)− f (x)

h2
,

which is equivalent to g(x , h1) 6 g(x , h2). This g is increasing with
respect to its second argument.
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Convexity of One-Argument Functions

Proof (cont’d)

To prove the monotonicity in the first argument let x1, x2 be in I such that
x1 < x2 and let h be a number such that both x1 + h and x2 + h belong to
I . Since g is monotonic in its second argument we have

g(x1, h) =
f (x1 + h)− f (x1)

h
6

f (x2 + h)− f (x1)

h + (x2 − x1)

and

f (x2 + h)− f (x1)

h + (x2 − x1)

=
f (x1)− f (x2 + h)

−h − (x2 − x1)

=
f ((x2 + h)− h − (x2 − x1))− f (x2 + h)

−h − (x2 − x1)

6
f ((x2 + h)− h)− f (x2 + h)

−h
=

f (x2 + h)− f (x2)

h
,

which proves the monotonicity in its first argument.
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Convexity of One-Argument Functions

Convexity of functions of n arguments can be expressed as convexity of
one-argument functions.

Theorem

Let f : Rn −→ R̂ be a function. The function f is convex if and only if the
function φx,h : R −→ R̂ given by φx,h(t) = f (x + th) is a convex function
for every x and h in Rn.
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Convexity of One-Argument Functions

Proof

Suppose that f is convex. We have

φx,h(ta + (1− t)b) = f (x + (ta + (1− t)b)h)

= f (t(x + ah) + (1− t)(x + bh))

6 tf (x + ah) + (1− t)f (x + bh)

= tφx,h(a) + (1− t)φx,h(b),

which shows that φx,h is indeed convex. The converse implication follows
in a similar manner.
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Convexity of One-Argument Functions

Lemma

Let g : Rn −→ R be a convex function such that g(0n) = 0. We have
−g(x) 6 g(x) for x ∈ Rn.

Proof: Note that if x 6= 0n, 0n ∈ [−x, x]. Since g is clearly mid-point
convex, we have

0 = g(0n) = g

(
−x + x

2

)
6

1

2
g(−x) +

1

2
g(x),

which implies the desired inequality.
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Convexity of One-Argument Functions

Theorem

Let f : [a, b] −→ R be a convex function. The function f is continuous at
every x0 ∈ (a, b).
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Convexity of One-Argument Functions

Proof

Let g : (a− x0, b− x0) −→ R be defined as g(x) = f (x + x0)− f (x0). It is
clear that g is convex on (a− x0, b − x0), 0 ∈ (a− x0, b − x0), and
g(0) = 0; also, g is continuous in 0 if and only if f is continuous at x0.
For x ∈ (a− x0, b − x0) let

s(x) =

{
1 if x 6 0,

−1 if x < 0.

If |x | < δ, then the convexity of g implies

g(x) = g

(
|x |
δ
s(x)δ +

(
1− |x |

δ

)
0

)
6
|x |
δ
g(s(x)δ) +

(
1− |x |

δ

)
g(0)

=
|x |
δ
g(s(x)δ).
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Convexity of One-Argument Functions

Proof (cont’d)

Therefore, g(x) 6 1
δ max{g(−δ), g(δ)}|x |. The convexity of g implies that

−g(−x) 6 g(x) by the previous lemma, so
|g(x)| 6 1

δ max{g(−δ), g(δ)}|x |.
If limn→snn xn = 0, where (xn) is a sequence in (a− x0, b − x0), then
limn→∞ g(xn) = 0 = g(0), so g is continuous in 0. This implies that f is
continuous in x0.
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Convexity of One-Argument Functions

Definition

Let f : I −→ R be a convex function where I is an interval of R and let
a ∈ I . The function f is left-differentiable if the limit

f ′(a−) = lim
x→a,x<a

f (x)− f (a)

x − a

exists. In this case, the value of the limit is known as left derivative of f in
a.
Similarly, f is right-differentiable if the limit

f ′(a+) = lim
x→a,x>a

f (x)− f (a)

x − a

exists. In this case, the value of the limit is known as the right derivative
of f in a.
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Convexity of One-Argument Functions

Definition

A function f : I −→ R is differentiable in a, where a ∈ I , if
f ′(a−) = f ′(a+).
In this case we write f ′(a) = f ′(a+) = f ′(a−).

If f is convex and differentiable on I if f ′ is increasing.
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Convexity of One-Argument Functions

Example

Let f : R −→ R be the function defined by f (x) = |x |. We have:

f ′(0−) = lim
x→0,x<0

|x |
x

= −1

and

f ′(0+) = lim
x→0,x>0

|x |
x

= 1.

Note that if both f ′(a−) and f ′(a+) exist and are finite, then f is
continuous in a.
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Convexity of One-Argument Functions

Theorem

Let f : (a, b) −→ R be convex function on [a, b]. If x , y ∈ (a, b) and
x < y, then

f ′(x−) 6 f ′(x+) 6 f ′(y−) 6 f ′(y+).
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Convexity of One-Argument Functions

If a < x < b we have

f (x)− f (a)

x − a
6

f (b)− f (a)

b − a
6

f (b)− f (x)

b − x
.

Since lima→x ,a<x
f (x)−f (a)

x−a 6 limb→x ,b>x
f (b)−f (x)

b−x , it follows that
f ′(x−) 6 f ′(x+); similarly, f ′(y−) 6 f ′(y+).
Let t ∈ (x , y). By the same previous result we have:

f (t)− f (x)

t − x
6

f (y)− f (x)

y − x
6

f (y)− f (t)

y − t
.

The first inequality implies

f ′(x+) = lim
t→x ,t>x

f (t)− f (x)

t − x
6

f (y)− f (x)

y − x
,

while the second yields

f (y)− f (x)

y − x
6 lim

t→y ,t<y

f (y)− f (t)

y − t
= f ′(y−),

so f ′(x+) 6 f ′(y−).
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Convexity of One-Argument Functions

Theorem

If f : I −→ R is a function and f ′ is increasing, then f is convex.
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Convexity of One-Argument Functions

Proof

For x , y ∈ I the inequality

f ((1− a)x + ay) 6 (1− a)f (x) + af (y)

is immediate for a = 0 and a = 1. So suppose that 0 < a < 1. By the
Mean Value theorem we have

f ((1− a)x + ay) = f ′(ξ1)a(y − x),

f (y)− f ((1− a)x + ay) = f ′(ξ2)(1− a)(y − x),

where x < ξ1 < (1− a)x + ay < xi2 < y .
Since f ′(xi1) 6 f ′(xi2), the last equalities yield the convexity property
(multiply first by (1− a), second by a and subtract).
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Convexity of One-Argument Functions

Corollary

If f : I −→ R is twice differentiable function, then f is convex if and only if
f ′′(x) > 0 for every x ∈ (a, b). If f ′′(x) > 0 for x ∈ I , then f is strictly
convex.
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Convexity of One-Argument Functions

Table: Examples of convex or concave functions.

Function Second Convexity
Derivative Property

x r for r(r − 1)x r−2 concave for r < 1
r > 0 convex for r > 1

ln x − 1
x2

concave

x ln x 1
x convex

ex ex convex
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Jensen’s Inequality

Theorem (Jensen’s Theorem)

Let f be a function that is convex on an interval I . If t1, . . . , tn ∈ [0, 1] are
n numbers such that

∑n
i=1 ti = 1, then

f

(
n∑

i=1

tixi

)
6

n∑
i=1

ti f (xi )

for every x1, . . . , xn ∈ I .
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Jensen’s Inequality

Proof

The argument is by induction on n, where n > 2. The basis step, n = 2,
follows immediately from the definition of convex functions. Suppose that
the statement holds for n, and let u1, . . . , un, un+1 be n + 1 numbers such
that

∑n+1
i=1 ui = 1. We have

f (u1x1 + · · ·+ un−1xn−1 + unxn + un+1xn+1)

= f

(
u1x1 + · · ·+ un−1xn−1 + (un + un+1)

unxn + un+1xn+1

un + un+1

)
.

By the inductive hypothesis, we can write

f (u1x1 + · · ·+ un−1xn−1 + unxn + un+1xn+1)

6 u1f (x1) + · · ·+ un−1f (xn−1) + (un + un+1)f

(
unxn + un+1xn+1

un + un+1

)
.

Next, by the convexity of f , we have

f

(
unxn + un+1xn+1

un + un+1

)
6

un
un + un+1

f (xn) +
un+1

un + un+1
f (xn+1).

Combining these inequalities gives desired conclusion. 40 / 49



Jensen’s Inequality

If f is a concave function and t1, . . . , tn ∈ [0, 1] are n numbers such that∑n
i=1 ti = 1, then

f

(
n∑

i=1

tixi

)
>

n∑
i=1

ti f (xi ).
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Jensen’s Inequality

Example

We saw that the function f (x) = ln x is concave. Therefore, if
t1, . . . , tn ∈ [0, 1] are n numbers such that

∑n
i=1 ti = 1, then

ln

(
n∑

i=1

tixi

)
>

n∑
i=1

ti ln xi .

This inequality can be written as

ln

(
n∑

i=1

tixi

)
> ln

n∏
i=1

x tii ,

or equivalently
n∑

i=1

tixi >
n∏

i=1

x tii ,

for x1, . . . , xn ∈ (0,∞).

42 / 49



Jensen’s Inequality

In the special case where t1 = · · · = tn = 1
n , we have the inequality that

relates the arithmetic to the geometric average on n positive numbers:

x1 + · · ·+ xn
n

>

(
n∏

i=1

xi

) 1
n

. (2)
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Jensen’s Inequality

Weighted Means

Let w = (w1, . . . ,wn) ∈ Rn be such that
∑n

i=1 wi = 1. For r 6= 0, the
w-weighted mean of order r of a sequence of n positive numbers
x = (x1, . . . , xn) ∈ Rn

>0 is the number

µrw(x) =

(
n∑

i=1

wix
r
i

) 1
r

.

Of course, µrw(x) is not defined for r = 0; we will give as special definition

µ0w(x) = lim
r→0

µrw(x).

We have

lim
r→0

lnµrw(x) = lim
r→0

ln
∑n

i=1 wix
r
i

r
= lim

r→0

∑n
i=1 wix

r
i ln xi∑n

i=1 wix ri

=
n∑

i=1

wi ln xi = ln
n∏

i=1

xwi
i .

Thus, if we define µ0w(x) =
∏n

i=1 x
wi
i , the weighted mean of order r

becomes a function continuous everywhere with respect to r .
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Jensen’s Inequality

For w1 = · · · = wn = 1
n , we have

µ−1w (x) =
nx1 · · · xn

x2 · · · xn + · · ·+ x1 · · · xn−1
(the harmonic average of x),

µ0w(x) = (x1 . . . xn)
1
n

(the geometric average of x),

µ1w(x) =
x1 + · · ·+ xn

n
(the arithmetic average of x).

Theorem

If p < r , we have µpw(x) 6 µrw(x).
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Jensen’s Inequality

Proof

There are three cases depending on the position of 0 relative to p and r .
In the first case, suppose that r > p > 0. The function f (x) = x

r
p is

convex, so by Jensen’s inequality applied to xp1 , . . . , x
p
n , we have(

n∑
i=1

wix
p
i

) r
p

6
n∑

i=1

wix
r
i ,

which implies (
n∑

i=1

wix
p
i

) 1
p

6

(
n∑

i=1

wix
r
i

) 1
r

,

which is the inequality of the theorem.
If r > 0 > p, the function f (x) = x

r
p is again convex because

f ′′(x) = r
p

(
r
p − 1

)
x

r
p
−2 ≥ 0. Thus, the same argument works as in the

previous case.
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Jensen’s Inequality

Proof (cont’d)

Finally, suppose that 0 > r > p. Since 0 < r
p < 1, the function f (x) = x

r
p

is concave. Thus, by Jensen’s inequality,(
n∑

i=1

wix
p
i

) r
p

≥
n∑

i=1

wix
r
i .

Since 1
r < 0, we obtain again(

n∑
i=1

wix
p
i

) 1
p

6

(
n∑

i=1

wix
r
i

) 1
r

.
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Jensen’s Inequality

The indicator function of a subset S of a set Z is the function
IS : Z −→ R̂ defined by

IS(z) =

{
0 if z ∈ S ,

∞ if z 6∈∈ S .

Theorem

A set S ⊆ Rn is convex if and only if its indicator function IS is convex.
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Jensen’s Inequality

Proof

If IS is convex, we have IS(tx + (1− t)y) 6 tIS(x) + (1− t)IS(y) for every
x, y ∈ S . Therefore, if x, y ∈ S we have IS(x) = IS(y) = 0, which implies
IS(tx + (1− t)y) = 0, so tx + (1− t)y ∈ S . Thus, S is convex.
Conversely, suppose that S is convex. We need to prove that

IS(tx + (1− t)y) 6 tIS(x) + (1− t)IS(y). (3)

If at least one of x or y does not belong to S , Inequality (3) is satisfied.
The remaining case occurs when we have both x ∈ S and y ∈ S , in which
case, tx + (1− t)y ∈ S and IS(x) = IS(y) = IS(tx + (1− t)y) = 0, and,
again, Inequality (3) is satisfied.
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