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Convex Functions - Basics and Examples

Definition

Let D be a subset of a real linear space L.

A function f : D — R is convex if for every x,y € D such that

(1—t)x+ty € D for t € [0, 1] we have

F((1—t)x+ ty) < (1 —t)f(x)+ tf(y).

A function g : D — R is concave if —g is convex at X, that is,
g((1—t)x+ty) > (1—t)g(x)+ tg(y) for x,y € D.

If x,y € D implies the strict inequality

f((1—t)x+ty) < (1—t)f(x)+ tf(y),

then we say that f is strictly convex.
Similarly, if
f((1—t)x+ty) > (1—t)f(x)+ tf(y),

for every x,y € D, then we say that f is strictly concave.
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Convex Functions - Basics and Examples

It is useful for the study of convex functions to extend the notion of
convex function by allowing co as a value. Thus, if a function f is defined
on a subset S of a linear space L, f : S — R, the extended-value function
of f is the function f : L —» R defined by

P00) {f(x) if x € S,

00 otherwise,

If a function f : S — R is convex, where S C L is a convex set, then its
extended-value function f satisfies the inequality that defines convexity
F((1 = t)x + ty) < (1 — t)F(x) + tf(y) for every x,y € L and t € [0,1], if
we adopt the convention that 0- oo = 0.



Convex Functions - Basics and Examples

A extended-value convex function f : S — R is properly convex if f is not
the constant function defined by f(x) = oo.

The effective domain of a convex function f : S — R is the set

Dom(f) ={x€ S | f(x) < oco}.



Convex Functions - Basics and Examples

Example

Let f: (0,00) — R be defined by f(x) = x2. The definition domain of f
is clearly convex and we have

f((l — t)Xl + tX2) = ((1 — t)Xl + tX2)2
= (1-1)23&+ 253 +2(1 — t)txixo.

Therefore,

f((1—t)x1+ txx) — (1= t)f(x1) — tf(x2)
= (1-t)2F 4+ 255 +2(1 — t)txaxo — (1 — t)x¥ — tx3
= —t(]. — t)(Xl — X2)2 <0,

which implies that f is indeed convex.
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Convex Functions - Basics and Examples

Example

The function f : R — R defined by f(x) = |a — xb| is convex because

f(L=t)xa+tx) = |a—((1—t)x1+ tx)b|
la(l —t) + at — ((1 — t)x1 + tx2)b|
|(1—t)(a— x1b) + t(a — x2b)
< (1 —t)(a—xb)| + |t(a — x2b)]
(1= t)f(x1) + tf(x2)

for t € [0, 1].
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Convex Functions - Basics and Examples

Example

The function g : R2 — R given by g(x) = |a — x1x2| is not convex, in
general. Consider, for example the special case g(x) = |12 — x3x2|. We

have
6 2
f<2> _f<6> _o.
Note that

(1) =2 () =2 (5) mer(3) —+>2r () =3¢ )
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Convex Functions - Basics and Examples

Example

Any norm v on a real linear space L is convex. Indeed, for t € [0, 1] we
have

v(tx + (1= t)y) < v(tx) +v((1 = t)y) = tv(x) + (1 = t)v(y)

for x,y € L.
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Convex Functions - Basics and Examples

Example

Let A € R"*" be a symmetric matrix. The function f : R” — R given by
f(x) = x’Ax is convex if and only if A is a positive semidefinite matrix.
Indeed, suppose that f is convex. For x,y € R” we have

(1= t)x + ty)A((1 — t)x + ty) < (1 — t)x'Ax + ty' Ay,
for t € (0,1), which amounts to
(t> — )X Ax + (t° — t)y Ay + (1 — t)ty'Ax + t(1 — t)x' Ay < 0.

Since A is symmetric, we have (y’Ax)’ = x’Ay and because both terms of
the last equality are scalars we have y’Ax = x’Ay. Note that t*> — t < 0
because t € [0, 1]. Consequently,

X'Ax +y Ay — y'Ax — x'Ay > 0,

which amounts to (x — y)'A(x —y) > 0, so A is positive semidefinite. The
reverse implication is an exercise!
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Extrema of Convex Functions

Local vs. Global Minima

Definition

Let f : R” — R be a function. The point xg is a global minimum for f if
f(x) = f(xo) for every x.

The point x; is a local minimum for f if there exists € > 0 such that

f(x) > f(xo) for every x € B[xo, €.

If X1 is a local minimum for f and xg is a global minimum, we have
f(Xl) 2 f(Xo).

11/49



Extrema of Convex Functions

Theorem

If x1 is a local minimum of a convex function f : R" — R, then X1 is a
global minimum for f.
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Proof

Let xg be a global minimum of f and let x; be a local minimum. We have
f(xo) < f(x1). Since x1 is a local minimum, there exists € such that if
|| x1 — x ||> €, then f(x1) < f(x).
Let z = (1 — a)x; + axg, where a € [0,1]. We have x; — z = a(x1 — Xp).
By choosing a such that
a<c &

X1 —=xo ||
we have || x; — z ||< ¢, which implies z € B[xy, €], so f(z) > f(x1) because
x1 is a local minimum. By the convexity of f we have

f(z) = f((1 — a)xy + axo) < (1 — a)f(x1) + af(xo) < f(x1),
so f(z) = f(x1). This, in turn implies
f(x1) < (1 —a)f(x1) + af(xo),

which yields f(x1) < f(xg), hence f(x1) = f(xp). Therefore, the local

minimum X; is also a global minimum.
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Convexity of One-Argument Functions

One-argument convex function

The curve representing f(x) is located under the chord determined by

(u, f(u)) and (v, f(v)).

y
f(x)
(1 —=t)f(x)+tf(y) F------ X----a
F((1— t)x + ty) ‘
f(y) -

x (1—t)x+ty y
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Convexity of One-Argument Functions

Lemma

Let f : [a, b] — R be a convex function. If x € (a, b), then

)~ F(a) _ F(b) = Fla) _ F(b)—F(x)
x—a = b—a T b-x
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Convexity of One-Argument Functions
Proof

It is easy to see that x can be regarded as either of the following convex
combinations:
X —a X —a
x = [1- a+ b
( b— a) b—a”’

b—x b—x
= b_aa+<l— b—a> b.

The existence of the first convex combination implies

X —a X —a
f@)_f(1—b_a)a+b_aa

which is equivalent to

b—x X—a
f < f
() < p—fla)+—

This gives the first inequality of the lemma. The second one can be

f(b).
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Convexity of One-Argument Functions

Lemma

Let f : | — R be a function, where | is an open interval. The following
statements are equivalent for a < b < ¢, where a,b,c € I:

Q (c—a)f(b) < (b—a)f(c)+ (c— b)f(a);

@ =1 L flc)-f(a).

b—a ~ c—a
f(c)—f(a f(c)—f(b
Q@ (z_a()g (2_b()_
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Convexity of One-Argument Functions
Proof

(i) is equivalent to (ii): Suppose that (i) holds. Then we have
(c—a)f(b) —(c—a)f(a) < (b—a)f(c)+ (c— b)f(a) — (c — a)f(a),
which is equivalent to
(c — a)(F(b) — £(a)) < (b— a)(F(c) — £(a)). (1)
By dividing both sides by (b — a)(c — a) > 0 we obtain Inequality (ii).
Conversely, note that (ii) implies Inequality (1). By adding (¢ — a)f(a) to

both sides of this inequality we obtain (i).
In a similar manner it is possible to prove the equivalence between (i) and

(ii).
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Convexity of One-Argument Functions

Theorem

Let | be an open interval and let f : | — R is a function. Each of the
conditions of the previous Lemma is equivalent to the convexity of f for
a<b<canda,b,cel.
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Convexity of One-Argument Functions
Proof

Let f : | — R be a convex function and let a, b, c € | be such that
a< b<c. Definet= i;_g. Clearly 0 < t < 1 and by the convexity
property,

f(b) = f(at+(1—t)c)<tf(a)+ (1—t)f(c)

= TPy 2%,

c—a c—a

which vyields the first inequality of Lemma 10.

Conversely, suppose that the first inequality of Lemma 10 is satisfied.
Choose a=x, c=y and b=tx+ (1 —t)y for t € (0,1). We have
(c—a)f(b)=(y — x)f(tx+ (1 — t)y) and

(b—a)f(c)+ (c—b)f(a) =(1—t)(y —x)f(y) + ty — x)f(x) Taking

into account that y > x, we obtain the inequality
f(tx + (1 —t)y) < tf(x) + (1 — t)f(y), which means that f is convex.
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Convexity of One-Argument Functions

Theorem

Let | be an open interval and let f : R — R is a convex function. The
function g(x, h) defined for x € | and h € R — {0} as

f(x+ h) —f(x)
h

is increasing with respect to each of its arguments.

g(Xv h) =
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Convexity of One-Argument Functions
Proof

We need to examine three cases: 0 < hy < hy, hy < hy <0, and

h1 <0 < hy.

In the first case choose a = x, b= x+ h; and ¢ = x + hy in the second
inequality of Lemma 10, where all three numbers x, x + h; and x + hy
belong to /. We obtain f(x+h}73_f(x) < f(X+h,273_f(X), which shows that
g(x, h1) < g(x, h2).

If hiy < ho < 0, choose a = x+ h1, b= x+ hy and ¢ = x in the last
inequality of Lemma 10. This yields: f(x)__f,Serhl) < f(x)__f,(frm), that is
g(x, h) < g(x, h2).

In the last case, hy < 0 < hy, begin by noting that the last two inequalities
of Lemma 10 imply

f(b) — f(a) _ f(c) — f(b)
b—a —~ c¢c—b
By taking a = x+ h1, b= x, and ¢ = x + hy in this inequality we obtain
f(x)—f(x+ h1) o f(x+ hy) — f(x)
—h]_ = h2 ’ 22 /49




Convexity of One-Argument Functions

Proof (cont'd)

To prove the monotonicity in the first argument let x3, x> be in | such that

x1 < xp and let h be a number such that both x; + h and x + h belong to
I. Since g is monotonic in its second argument we have

g(x1, h) = Foa+h) —fla) _ fle+h) —f(x)

h = h+(X2 —Xl)
and
f(x2+ h) — f(x1)
h+ (x2 — x1)
f(Xl) — f(X2 + h)
 —h—(x—x)
(e +h)—h—(x2—x1)) — f(x2 + h)
B —h—(x2—x1)
f(e +h) —h)—f(xa+h) _ fx+h)— f(x)
< —h =

h b
which proves the monotonicity in its first argument.
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Convexity of One-Argument Functions

Convexity of functions of n arguments can be expressed as convexity of
one-argument functions.

Theorem

Let f : R" — R be a function. The function f is convex if and only if the

function ¢xp : R — R given by ¢xn(t) = f(x + th) is a convex function
for every x and h in R".
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Convexity of One-Argument Functions
Proof

Suppose that f is convex. We have

dxn(ta+ (L —t)b) = f(x+ (ta+ (1—t)b)h)

= f(t(x+ ah) + (1 — t)(x + bh))
< tf(x+ah) + (1 - t)f(x + bh)
= tdxn(a) + (1 — t)pen(b),

which shows that ¢y, is indeed convex. The converse implication follows
in a similar manner.
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Convexity of One-Argument Functions

Lemma
Let g : R" — R be a convex function such that g(0,) = 0. We have
—g(x) < g(x) for x € R".

Proof: Note that if x # 0,, 0, € [—x,x]. Since g is clearly mid-point
convex, we have

0=g(0,)=g <_x2+ x) < %g(—X) + %g(X),

which implies the desired inequality.
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Convexity of One-Argument Functions

Theorem

Let f : [a,b] — R be a convex function. The function f is continuous at
every xp € (a, b).

27 /49



Convexity of One-Argument Functions

Proof

Let g : (a — x0, b — xo) — R be defined as g(x) = f(x + x0) — f(x0). It is

clear that g is convex on (a — xp, b — xp), 0 € (a — x0, b — xp), and

g(0) = 0; also, g is continuous in 0 if and only if f is continuous at xp.

For x € (a — xp, b — xp) let

1 if x <0,
s(x)—{ if x <0

-1 ifx<0O.

If [x| < 0, then the convexity of g implies

) = & (%stss (1-H1)0)

< |i;’g(s(x)5) + (1 - |§’> 5(0)
_ X
5 &(s(x)9)

28 /49



Convexity of One-Argument Functions

Proof (cont'd)

Therefore, g(x) < % max{g(—4),g(0)}|x|. The convexity of g implies that
—g(—x) < g(x) by the previous lemma, so

23] < Emax{g(—5), g(6)}x|

If limp_snn xp = 0, where (x,) is a sequence in (a — xo, b — Xp), then
limp_00 &(xn) = 0 = g(0), so g is continuous in 0. This implies that f is
continuous in xg.
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Convexity of One-Argument Functions

Definition
Let f : | — R be a convex function where [ is an interval of R and let
a € |. The function f is left-differentiable if the limit

f'(a=) = lim fx) = f(a)

x—a,x<a X — a

exists. In this case, the value of the limit is known as left derivative of f in
a.
Similarly, f is right-differentiable if the limit

f'(a+) = lim f(x) ~ #(a)

Xx—a,x>a X —a

exists. In this case, the value of the limit is known as the right derivative
of fin a.
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Convexity of One-Argument Functions

Definition

A function f : | — R is differentiable in a, where a € [, if
f'(a=) = f'(a+).

In this case we write f'(a) = f'(a+) = f'(a—).

If f is convex and differentiable on / if ' is increasing.
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Convexity of One-Argument Functions

Example
Let f : R — R be the function defined by f(x) = |x|. We have:

x|

f(0-)= lim “—=-1
x—0,x<0 X
and
f’(O—{—) = lim M =1.
x—0,x>0 X

Note that if both f'(a—) and f’(a+) exist and are finite, then f is
continuous in a.
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Convexity of One-Argument Functions

Theorem

Let f : (a,b) — R be convex function on [a, b]. If x,y € (a, b) and
x <y, then
Flx=) < Fl(x+) < flly—) < Fy+).
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Convexity of One-Argument Functions

If a < x < b we have
F) ~ (a) _ F(b) — F(a) _ F(b) ~ F(x)
x—a = b—a ~  b-x

Since lim,_,x a<x Fd=f(a) liMp_sx,b>x %, it follows that

Fl(x—) < F/(x"); similarly, £'(y—) < F/(y+).
Let t € (x,y). By the same previous result we have:
F() — F() _ )~ ) _ Fly) — F(2)
t—-x = y—-x = y—t

The first inequality implies

ey =t T ) F0) = )
t—x,t>x t—Xx = Yy —X

)

y — X toyt<y y—t

so f'(x+) < f'(y—).

while the second yields
) =) _
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Convexity of One-Argument Functions

Theorem
If f: 1 — R is a function and f' is increasing, then f is convex. J
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Convexity of One-Argument Functions
Proof

For x,y € I the inequality

f((1—a)x+ay) < (1—a)f(x)+ af(y)

is immediate for a =0 and a = 1. So suppose that 0 < a < 1. By the
Mean Value theorem we have

f((1—a)x+ay) = f(&)aly —x),
fly) - f(1-a)x+ay) = f(&)1-a)y—x),

where x < & < (1 —a)x+ay < xip < y.
Since f’(xi1) < f'(xip), the last equalities yield the convexity property
(multiply first by (1 — a), second by a and subtract).

36 /49



Convexity of One-Argument Functions

Corollary

If f : | — R is twice differentiable function, then f is convex if and only if

f"(x) = 0 for every x € (a,b). If f"(x) > 0 for x € I, then f is strictly
convex.
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Convexity of One-Argument Functions

Table: Examples of convex or concave functions.

Function Second Convexity

Derivative Property
x" for r(r —1)x"=2 | concave for r < 1
r>0 convex for r > 1
In x -L concave

X

x In x % convex
ex ex convex
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Jensen’s Inequality

Theorem (Jensen's Theorem)

Let f be a function that is convex on an interval |. If ti, ..., t, € [0,1] are
n numbers such that 37 ; t; = 1, then

f i tixi | < i t,'f(X,')
i=1 i=1

for every x1,...,xp € I.
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Proof

The argument is by induction on n, where n > 2. The basis step, n = 2,
follows immediately from the definition of convex functions. Suppose that
the statement holds for n, and let vy, ..., up, up+1 be n+ 1 numbers such
that Y7 u; = 1. We have

f(uixi + -+ + Un—1Xn—1 + UnXn + Unt1Xnt1)

UpXp + Upt1X
= f<U1X1+"'-|—Un1Xn1+(un+u,,+1) nen n+l n+1>'

Up + Upt1
By the inductive hypothesis, we can write

f(uixy + -+ + Up—1Xp—1 + UnXp + Unt1Xn41)

_|_
< wuf(xa) 4+ 4 up—1f(Xo—1) + (Un + Upt1)f <unX" unHXﬂH) :

Up + Unt1
Next, by the convexity of f, we have
£ (Uan + Un+1Xn+1> < Up F(xp) + Unt1 F(xns1)-
Up + Upt1 Up + Upt1 Up + Upt1

Combinino theace ineainalitiee oivvee decired cancliician 40/49




Jensen’s Inequality

If f is a concave function and ti,...,t, € [0,1] are n numbers such that

27:1 ti =1, then
n n
f Z tixi | = Z t,'f(X,').
i=1 i=1
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Jensen’s Inequality

Example

We saw that the function f(x) = In x is concave. Therefore, if
t1,...,ty € [0,1] are n numbers such that Y7 ; t; = 1, then

n n
In (Z t,'X,') > Zt,-lnx,-.
i=1 i=1

This inequality can be written as

n n

t,

In E tixi | = |nHXI-',
i=1 i=1

or equivalently
n

n
g tixj = HX;tf,
i=1

i=1

for x1,...,x, € (0, 00).
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Jensen’s Inequality

In the special case where t; = --- = t, = =, we have the inequality that
relates the arithmetic to the geometric average on n positive numbers:

3=

u HX’ ‘ (2)
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Weighted Means

Let w = (wq,...,w,) € R" be such that Y7 ; w; = 1. For r # 0, the
w-weighted mean of order r of a sequence of n positive numbers
X = (x1,...,Xn) € RZ is the number

1
n v
0= (Some )
i=1
Of course, u,(x) is not defined for r = 0; we will give as special definition
0, 0x) = lim 11, (x).
r—0
We have

H r H In 27:1 Win'r H 27:1 Win'r |n Xi
lim In uw(x) = |lim —==—1L = lim —~—n 5
r—0 r—0 r r—0 Zi:l WiX;

n n
= E W,-Inx,-:Ion,.W".
=1 =1

Thus, if we define u(x) = []7_; x", the weighted mean of order r 4,z



Jensen’s Inequality

For wy = --- = w, =, we have
1 nX]_ P Xn
X =
'LLW() X2"'Xn+"'+X]_"'Xn_]_
(the harmonic average of x),
1
W) = (. m)
(the geometric average of x),
1 x|+ -+ X
ph( = B
(the arithmetic average of x).
Theorem

If p < r, we have ply(x) < pb,(x).

w
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Proof
There are three cases depending on the position of 0 relative to p and r.

In the first case, suppose that r > p > 0. The function f(x) = x5 is

convex, so by Jensen's inequality applied to xf, ..., xF we have

r
n b n
5P < !
WiX; X WiX; ,
i=1 i=1

1 1
n s n 7
i=1 i=1

which is the inequality of the theorerm.
If r > 0> p, the function f(x) = x» is again convex because

which implies

f'(x) =5 (; - 1) x? 2> 0. Thus, the same argument works as in the

previous case.
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Jensen’s Inequality

Proof (cont'd)

Finally, suppose that 0 > r > p. Since 0 < 7 <1, the function f(x) = xP

is concave. Thus, by Jensen's inequality,

r
n 5 n
<E W'Xp> > E wix’
1 - 17
i=1 i=1

Since % < 0, we obtain again

1

n P n
(Z W,'X,-p> < (Z s
i=1

i=1

]
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Jensen’s Inequality

The indicator function of a subset S of a set Z is the function
Is : Z — R defined by

0 ifzesS,
Is(z) = .
oo if z¢geS.

Theorem

A set S CR" is convex if and only if its indicator function Is is convex.
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Proof

If Is is convex, we have Is(tx + (1 — t)y) < tls(x) + (1 — t)/s(y) for every
X,y € S. Therefore, if x,y € S we have Is(x) = Is(y) = 0, which implies
Is(tx+ (1 —t)y) =0, so tx+ (1 —t)y € S. Thus, S is convex.
Conversely, suppose that S is convex. We need to prove that

Is(tx + (1 — t)y) < tls(x) + (L = t)/s(y). (3)

If at least one of x or y does not belong to S, Inequality (3) is satisfied.
The remaining case occurs when we have both x € S and y € S, in which
case, tx+ (1 — t)y € S and Is(x) = Is(y) = Is(tx+ (1 — t)y) = 0, and,
again, Inequality (3) is satisfied.
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