Convex Sets and Functions (part II)

Prof. Dan A. Simovici

UMB

Convex Functions - Basics and Examples

- Extrema of Convex Functions
- Convexity of One-Argument Functions
- 4 Jensen's Inequality

Definition

Let D be a subset of a real linear space L.

A function $f: D \longrightarrow \mathbb{R}$ is convex if for every $x, y \in D$ such that $(1-t)x + ty \in D$ for $t \in [0,1]$ we have $f((1-t)x + ty) \leq (1-t)f(x) + tf(y)$.

A function $g: D \longrightarrow \mathbb{R}$ is concave if -g is convex at \mathbf{x} , that is, $g((1-t)x+ty) \geqslant (1-t)g(x)+tg(y)$ for $x,y\in D$. If $\mathbf{x},\mathbf{y}\in D$ implies the strict inequality

$$f((1-t)x + ty) < (1-t)f(x) + tf(y),$$

then we say that f is strictly convex. Similarly, if

$$f((1-t)x + ty) > (1-t)f(x) + tf(y),$$

for every $x, y \in D$, then we say that f is *strictly concave*.

It is useful for the study of convex functions to extend the notion of convex function by allowing ∞ as a value. Thus, if a function f is defined on a subset S of a linear space L, $f:S\longrightarrow \mathbb{R}$, the extended-value function of f is the function $\hat{f}:L\longrightarrow \hat{\mathbb{R}}$ defined by

$$\hat{f}(x) = \begin{cases} f(x) & \text{if } x \in S, \\ \infty & \text{otherwise,} \end{cases}$$

If a function $f:S\longrightarrow \mathbb{R}$ is convex, where $S\subseteq L$ is a convex set, then its extended-value function \hat{f} satisfies the inequality that defines convexity $\hat{f}((1-t)x+ty)\leqslant (1-t)\hat{f}(x)+t\hat{f}(y)$ for every $x,y\in L$ and $t\in [0,1]$, if we adopt the convention that $0\cdot \infty=0$.

A extended-value convex function $f: S \longrightarrow \hat{\mathbb{R}}$ is properly convex if f is not the constant function defined by $f(x) = \infty$.

The effective domain of a convex function $f: S \longrightarrow \hat{\mathbb{R}}$ is the set $\mathsf{Dom}(f) = \{x \in S \mid f(\mathbf{x}) < \infty\}.$

Let $f:(0,\infty)\longrightarrow \mathbb{R}$ be defined by $f(x)=x^2$. The definition domain of f is clearly convex and we have

$$f((1-t)x_1+tx_2) = ((1-t)x_1+tx_2)^2$$

= $(1-t)^2x_1^2+t^2x_2^2+2(1-t)tx_1x_2.$

Therefore,

$$f((1-t)x_1 + tx_2) - (1-t)f(x_1) - tf(x_2)$$

$$= (1-t)^2 x_1^2 + t^2 x_2^2 + 2(1-t)tx_1x_2 - (1-t)x_1^2 - tx_2^2$$

$$= -t(1-t)(x_1 - x_2)^2 \le 0,$$

which implies that f is indeed convex.

The function $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined by f(x) = |a - xb| is convex because

$$f((1-t)x_1 + tx_2) = |a - ((1-t)x_1 + tx_2)b|$$

$$= |a(1-t) + at - ((1-t)x_1 + tx_2)b|$$

$$= |(1-t)(a - x_1b) + t(a - x_2b)$$

$$\leq |(1-t)(a - x_1b)| + |t(a - x_2b)|$$

$$= (1-t)f(x_1) + tf(x_2)$$

for $t \in [0, 1]$.

The function $g: \mathbb{R}^2 \longrightarrow \mathbb{R}$ given by $g(\mathbf{x}) = |a - x_1 x_2|$ is **not** convex, in general. Consider, for example the special case $g(\mathbf{x}) = |12 - x_1 x_2|$. We have

$$f\begin{pmatrix}6\\2\end{pmatrix}=f\begin{pmatrix}2\\6\end{pmatrix}=0.$$

Note that

$$\binom{4}{4} = \frac{1}{2} \binom{6}{2} + \frac{1}{2} \binom{2}{6} \text{ and } f \binom{4}{4} = 4 > \frac{1}{2} f \binom{6}{2} + \frac{1}{2} f \binom{2}{6} \,.$$

Any norm u on a real linear space L is convex. Indeed, for $t \in [0,1]$ we have

$$\nu(tx + (1-t)y) \le \nu(tx) + \nu((1-t)y) = t\nu(x) + (1-t)\nu(y)$$

for $x, y \in L$.

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. The function $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ given by $f(\mathbf{x}) = \mathbf{x}' A \mathbf{x}$ is convex if and only if A is a positive semidefinite matrix. Indeed, suppose that f is convex. For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ we have

$$((1-t)\mathbf{x}+t\mathbf{y})'A((1-t)\mathbf{x}+t\mathbf{y})\leqslant (1-t)\mathbf{x}'A\mathbf{x}+t\mathbf{y}'A\mathbf{y},$$

for $t \in (0,1)$, which amounts to

$$(t^2-t)\mathbf{x}'A\mathbf{x}+(t^2-t)\mathbf{y}'A\mathbf{y}+(1-t)t\mathbf{y}'A\mathbf{x}+t(1-t)\mathbf{x}'A\mathbf{y}\leqslant 0.$$

Since A is symmetric, we have $(\mathbf{y}'A\mathbf{x})' = \mathbf{x}'A\mathbf{y}$ and because both terms of the last equality are scalars we have $\mathbf{y}'A\mathbf{x} = \mathbf{x}'A\mathbf{y}$. Note that $t^2 - t \le 0$ because $t \in [0,1]$. Consequently,

$$\mathbf{x}'A\mathbf{x} + \mathbf{y}'A\mathbf{y} - \mathbf{y}'A\mathbf{x} - \mathbf{x}'A\mathbf{y} \geqslant 0$$

which amounts to $(\mathbf{x} - \mathbf{y})'A(\mathbf{x} - \mathbf{y}) \ge 0$, so A is positive semidefinite. The reverse implication is an exercise!

Local vs. Global Minima

Definition

Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a function. The point \mathbf{x}_0 is a global minimum for f if $f(\mathbf{x}) \geqslant f(\mathbf{x}_0)$ for every \mathbf{x} .

The point \mathbf{x}_1 is a local minimum for f if there exists $\epsilon > 0$ such that $f(\mathbf{x}) \ge f(\mathbf{x}_0)$ for every $\mathbf{x} \in B[\mathbf{x}_0, \epsilon]$.

If \mathbf{x}_1 is a local minimum for f and \mathbf{x}_0 is a global minimum, we have $f(\mathbf{x}_1) \geqslant f(\mathbf{x}_0)$.

Theorem

If \mathbf{x}_1 is a local minimum of a convex function $f : \mathbb{R}^n \longrightarrow \mathbb{R}$, then \mathbf{x}_1 is a global minimum for f.

Let \mathbf{x}_0 be a global minimum of f and let \mathbf{x}_1 be a local minimum. We have $f(\mathbf{x}_0) \leqslant f(\mathbf{x}_1)$. Since \mathbf{x}_1 is a local minimum, there exists ϵ such that if $\|\mathbf{x}_1 - \mathbf{x}\| \geqslant \epsilon$, then $f(\mathbf{x}_1) \leqslant f(\mathbf{x})$.

Let $\mathbf{z} = (1 - a)\mathbf{x}_1 + a\mathbf{x}_0$, where $a \in [0, 1]$. We have $\mathbf{x}_1 - \mathbf{z} = a(\mathbf{x}_1 - \mathbf{x}_0)$. By choosing a such that

$$a < \frac{\epsilon}{\parallel \mathbf{x}_1 - \mathbf{x}_0 \parallel}$$

we have $\|\mathbf{x}_1 - \mathbf{z}\| \le \epsilon$, which implies $\mathbf{z} \in B[\mathbf{x}_1, \epsilon]$, so $f(\mathbf{z}) \ge f(\mathbf{x}_1)$ because \mathbf{x}_1 is a local minimum. By the convexity of f we have

$$f(\mathbf{z}) = f((1-a)\mathbf{x}_1 + a\mathbf{x}_0) \leqslant (1-a)f(\mathbf{x}_1) + af(\mathbf{x}_0) \leqslant f(\mathbf{x}_1),$$

so $f(\mathbf{z}) = f(\mathbf{x}_1)$. This, in turn implies

$$f(\mathbf{x}_1) \leqslant (1-a)f(\mathbf{x}_1) + af(\mathbf{x}_0),$$

which yields $f(\mathbf{x}_1) \leq f(\mathbf{x}_0)$, hence $f(\mathbf{x}_1) = f(\mathbf{x}_0)$. Therefore, the local minimum \mathbf{x}_1 is also a global minimum.

One-argument convex function

The curve representing f(x) is located under the chord determined by (u, f(u)) and (v, f(v)).

Lemma

Let $f:[a,b] \longrightarrow \mathbb{R}$ be a convex function. If $x \in (a,b)$, then

$$\frac{f(x) - f(a)}{x - a} \leqslant \frac{f(b) - f(a)}{b - a} \leqslant \frac{f(b) - f(x)}{b - x}.$$

It is easy to see that x can be regarded as either of the following convex combinations:

$$x = \left(1 - \frac{x - a}{b - a}\right) a + \frac{x - a}{b - a}b,$$
$$= \frac{b - x}{b - a} a + \left(1 - \frac{b - x}{b - a}\right) b.$$

The existence of the first convex combination implies

$$f(x) = f\left(1 - \frac{x - a}{b - a}\right)a + \frac{x - a}{b - a}b,$$

$$\leqslant \left(1 - \frac{x - a}{b - a}\right)f(a) + \frac{x - a}{b - a}f(b),$$

which is equivalent to

$$f(x) \leqslant \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a}f(b).$$

This gives the first inequality of the lemma. The second one can be

Lemma

Let $f: I \longrightarrow \mathbb{R}$ be a function, where I is an open interval. The following statements are equivalent for a < b < c, where $a, b, c \in I$:

- **1** (c-a)f(b) ≤ (b-a)f(c) + (c-b)f(a);
- $\frac{f(b)-f(a)}{b-a} \leqslant \frac{f(c)-f(a)}{c-a};$
- $\frac{f(c)-f(a)}{c-a} \leqslant \frac{f(c)-f(b)}{c-b}.$

(i) is equivalent to (ii): Suppose that (i) holds. Then we have

$$(c-a)f(b)-(c-a)f(a) \leq (b-a)f(c)+(c-b)f(a)-(c-a)f(a),$$

which is equivalent to

$$(c-a)(f(b)-f(a)) \leqslant (b-a)(f(c)-f(a)).$$
 (1)

By dividing both sides by (b-a)(c-a) > 0 we obtain Inequality (ii). Conversely, note that (ii) implies Inequality (1). By adding (c-a)f(a) to both sides of this inequality we obtain (i).

In a similar manner it is possible to prove the equivalence between (i) and (iii).

Theorem

Let I be an open interval and let $f: I \longrightarrow \mathbb{R}$ is a function. Each of the conditions of the previous Lemma is equivalent to the convexity of f for a < b < c and $a, b, c \in I$.

Let $f:I \longrightarrow \mathbb{R}$ be a convex function and let $a,b,c \in I$ be such that a < b < c. Define $t = \frac{c-b}{c-a}$. Clearly 0 < t < 1 and by the convexity property,

$$f(b) = f(at + (1-t)c) \le tf(a) + (1-t)f(c)$$

= $\frac{c-b}{c-a}f(a) + \frac{b-a}{c-a}f(c),$

which yields the first inequality of Lemma 10.

Conversely, suppose that the first inequality of Lemma 10 is satisfied.

Choose
$$a=x$$
, $c=y$ and $b=tx+(1-t)y$ for $t\in(0,1)$. We have

$$(c-a)f(b) = (y-x)f(tx+(1-t)y)$$
 and

$$(b-a)f(c)+(c-b)f(a)=(1-t)(y-x)f(y)+t(y-x)f(x)$$
 Taking into account that $y>x$, we obtain the inequality

 $f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$, which means that f is convex.

Theorem

Let I be an open interval and let $f : \mathbb{R} \longrightarrow \mathbb{R}$ is a convex function. The function g(x,h) defined for $x \in I$ and $h \in \mathbb{R} - \{0\}$ as

$$g(x,h) = \frac{f(x+h) - f(x)}{h}$$

is increasing with respect to each of its arguments.

We need to examine three cases: $0 < h_1 < h_2$, $h_1 < h_2 < 0$, and $h_1 < 0 < h_2$.

In the first case choose a=x, $b=x+h_1$ and $c=x+h_2$ in the second inequality of Lemma 10, where all three numbers $x,x+h_1$ and $x+h_2$ belong to I. We obtain $\frac{f(x+h_1)-f(x)}{h_1}\leqslant \frac{f(x+h_2)-f(x)}{h_2}$, which shows that $g(x,h_1)\leqslant g(x,h_2)$.

If $h_1 < h_2 < 0$, choose $a = x + h_1$, $b = x + h_2$ and c = x in the last inequality of Lemma 10. This yields: $\frac{f(x) - f(x + h_1)}{-h_1} \leqslant \frac{f(x) - f(x + h_2)}{-h_2}$, that is $g(x, h_1) \leqslant g(x, h_2)$.

In the last case, $h_1 < 0 < h_2$, begin by noting that the last two inequalities of Lemma 10 imply

$$\frac{f(b)-f(a)}{b-a}\leqslant \frac{f(c)-f(b)}{c-b}.$$

By taking $a = x + h_1$, b = x, and $c = x + h_2$ in this inequality we obtain

$$\frac{f(x) - f(x + h_1)}{-h_1} \leqslant \frac{f(x + h_2) - f(x)}{h_2},$$

Proof (cont'd)

To prove the monotonicity in the first argument let x_1, x_2 be in I such that $x_1 < x_2$ and let h be a number such that both $x_1 + h$ and $x_2 + h$ belong to I. Since g is monotonic in its second argument we have

$$g(x_1,h) = \frac{f(x_1+h)-f(x_1)}{h} \leqslant \frac{f(x_2+h)-f(x_1)}{h+(x_2-x_1)}$$

and

$$\frac{f(x_2 + h) - f(x_1)}{h + (x_2 - x_1)} \\
= \frac{f(x_1) - f(x_2 + h)}{-h - (x_2 - x_1)} \\
= \frac{f((x_2 + h) - h - (x_2 - x_1)) - f(x_2 + h)}{-h - (x_2 - x_1)} \\
\leqslant \frac{f((x_2 + h) - h) - f(x_2 + h)}{-h} = \frac{f(x_2 + h) - f(x_2)}{h},$$

which proves the monotonicity in its first argument.

Convexity of functions of n arguments can be expressed as convexity of one-argument functions.

Theorem

Let $f: \mathbb{R}^n \longrightarrow \hat{\mathbb{R}}$ be a function. The function f is convex if and only if the function $\phi_{\mathbf{x},\mathbf{h}}: \mathbb{R} \longrightarrow \hat{\mathbb{R}}$ given by $\phi_{\mathbf{x},\mathbf{h}}(t) = f(\mathbf{x} + t\mathbf{h})$ is a convex function for every \mathbf{x} and \mathbf{h} in \mathbb{R}^n .

Suppose that f is convex. We have

$$\begin{array}{lcl} \phi_{\mathbf{x},\mathbf{h}}(ta+(1-t)b) & = & f(\mathbf{x}+(ta+(1-t)b)\mathbf{h}) \\ & = & f(t(\mathbf{x}+a\mathbf{h})+(1-t)(\mathbf{x}+b\mathbf{h})) \\ & \leqslant & tf(\mathbf{x}+a\mathbf{h})+(1-t)f(\mathbf{x}+b\mathbf{h}) \\ & = & t\phi_{\mathbf{x},\mathbf{h}}(a)+(1-t)\phi_{\mathbf{x},\mathbf{h}}(b), \end{array}$$

which shows that $\phi_{\mathbf{x},\mathbf{h}}$ is indeed convex. The converse implication follows in a similar manner.

Lemma

Let $g: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a convex function such that $g(\mathbf{0}_n) = 0$. We have $-g(\mathbf{x}) \leqslant g(\mathbf{x})$ for $\mathbf{x} \in \mathbb{R}^n$.

Proof: Note that if $\mathbf{x} \neq \mathbf{0}_n$, $\mathbf{0}_n \in [-\mathbf{x}, \mathbf{x}]$. Since g is clearly mid-point convex, we have

$$0 = g(\mathbf{0}_n) = g\left(\frac{-\mathbf{x} + \mathbf{x}}{2}\right) \leqslant \frac{1}{2}g(-\mathbf{x}) + \frac{1}{2}g(\mathbf{x}),$$

which implies the desired inequality.

Theorem

Let $f:[a,b] \longrightarrow \mathbb{R}$ be a convex function. The function f is continuous at every $x_0 \in (a,b)$.

Let $g:(a-x_0,b-x_0)\longrightarrow \mathbb{R}$ be defined as $g(x)=f(x+x_0)-f(x_0)$. It is clear that g is convex on $(a-x_0,b-x_0)$, $0\in (a-x_0,b-x_0)$, and g(0)=0; also, g is continuous in 0 if and only if f is continuous at x_0 . For $x\in (a-x_0,b-x_0)$ let

$$s(x) = \begin{cases} 1 & \text{if } x \leq 0, \\ -1 & \text{if } x < 0. \end{cases}$$

If $|x| < \delta$, then the convexity of g implies

$$g(x) = g\left(\frac{|x|}{\delta}s(x)\delta + \left(1 - \frac{|x|}{\delta}\right)0\right)$$

$$\leq \frac{|x|}{\delta}g(s(x)\delta) + \left(1 - \frac{|x|}{\delta}\right)g(0)$$

$$= \frac{|x|}{\delta}g(s(x)\delta).$$

Proof (cont'd)

Therefore, $g(x) \leqslant \frac{1}{\delta} \max\{g(-\delta), g(\delta)\}|x|$. The convexity of g implies that $-g(-x) \leqslant g(x)$ by the previous lemma, so $|g(x)| \leqslant \frac{1}{\delta} \max\{g(-\delta), g(\delta)\}|x|$. If $\lim_{n \to snn} x_n = 0$, where (x_n) is a sequence in $(a - x_0, b - x_0)$, then $\lim_{n \to \infty} g(x_n) = 0 = g(0)$, so g is continuous in 0. This implies that f is continuous in x_0 .

Definition

Let $f: I \longrightarrow \mathbb{R}$ be a convex function where I is an interval of \mathbb{R} and let $a \in I$. The function f is left-differentiable if the limit

$$f'(a-) = \lim_{x \to a, x < a} \frac{f(x) - f(a)}{x - a}$$

exists. In this case, the value of the limit is known as left derivative of f in a.

Similarly, f is right-differentiable if the limit

$$f'(a+) = \lim_{x \to a, x > a} \frac{f(x) - f(a)}{x - a}$$

exists. In this case, the value of the limit is known as the right derivative of f in a.

Definition

A function $f: I \longrightarrow \mathbb{R}$ is differentiable in a, where $a \in I$, if f'(a-) = f'(a+).

In this case we write f'(a) = f'(a+) = f'(a-).

If f is convex and differentiable on I if f' is increasing.

Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by f(x) = |x|. We have:

$$f'(0-) = \lim_{x \to 0, x < 0} \frac{|x|}{x} = -1$$

and

$$f'(0+) = \lim_{x \to 0, x > 0} \frac{|x|}{x} = 1.$$

Note that if both f'(a-) and f'(a+) exist and are finite, then f is continuous in a.

Theorem

Let $f:(a,b) \longrightarrow \mathbb{R}$ be convex function on [a,b]. If $x,y \in (a,b)$ and x < y, then $f'(x-) \leqslant f'(x+) \leqslant f'(y-) \leqslant f'(y+).$

If a < x < b we have

$$\frac{f(x)-f(a)}{x-a}\leqslant \frac{f(b)-f(a)}{b-a}\leqslant \frac{f(b)-f(x)}{b-x}.$$

Since $\lim_{a\to x, a< x} \frac{f(x)-f(a)}{x-a} \leqslant \lim_{b\to x, b> x} \frac{f(b)-f(x)}{b-x}$, it follows that $f'(x-) \leqslant f'(x^+)$; similarly, $f'(y-) \leqslant f'(y+)$.

Let $t \in (x, y)$. By the same previous result we have:

$$\frac{f(t)-f(x)}{t-x}\leqslant \frac{f(y)-f(x)}{y-x}\leqslant \frac{f(y)-f(t)}{y-t}.$$

The first inequality implies

$$f'(x+) = \lim_{t \to x, t > x} \frac{f(t) - f(x)}{t - x} \leqslant \frac{f(y) - f(x)}{y - x},$$

while the second yields

$$\frac{f(y)-f(x)}{y-x}\leqslant \lim_{t\to y,t< y}\frac{f(y)-f(t)}{y-t}=f'(y-),$$

so
$$f'(x+) \leqslant f'(y-)$$
.

Theorem

If $f: I \longrightarrow \mathbb{R}$ is a function and f' is increasing, then f is convex.

For $x, y \in I$ the inequality

$$f((1-a)x + ay) \leqslant (1-a)f(x) + af(y)$$

is immediate for a=0 and a=1. So suppose that 0 < a < 1. By the Mean Value theorem we have

$$f((1-a)x + ay) = f'(\xi_1)a(y-x),$$

$$f(y) - f((1-a)x + ay) = f'(\xi_2)(1-a)(y-x),$$

where $x < \xi_1 < (1-a)x + ay < xi_2 < y$. Since $f'(xi_1) \le f'(xi_2)$, the last equalities yield the convexity property (multiply first by (1-a), second by a and subtract).

Corollary

If $f:I \longrightarrow \mathbb{R}$ is twice differentiable function, then f is convex if and only if $f''(x) \geqslant 0$ for every $x \in (a,b)$. If f''(x) > 0 for $x \in I$, then f is strictly convex.

Table: Examples of convex or concave functions.

Function	Second	Convexity
	Derivative	Property
x^r for	$r(r-1)x^{r-2}$	concave for $r < 1$
r > 0		convex for $r \geqslant 1$
ln x	$-\frac{1}{x^2}$	concave
<i>x</i> ln <i>x</i>	$\frac{1}{x}$	convex
e ^x	e ^x	convex

Theorem (Jensen's Theorem)

Let f be a function that is convex on an interval I. If $t_1, \ldots, t_n \in [0,1]$ are n numbers such that $\sum_{i=1}^n t_i = 1$, then

$$f\left(\sum_{i=1}^n t_i x_i\right) \leqslant \sum_{i=1}^n t_i f(x_i)$$

for every $x_1, \ldots, x_n \in I$.

Proof

The argument is by induction on n, where $n \ge 2$. The basis step, n = 2, follows immediately from the definition of convex functions. Suppose that the statement holds for n, and let $u_1, \ldots, u_n, u_{n+1}$ be n+1 numbers such that $\sum_{i=1}^{n+1} u_i = 1$. We have

$$f(u_1x_1 + \dots + u_{n-1}x_{n-1} + u_nx_n + u_{n+1}x_{n+1})$$

$$= f\left(u_1x_1 + \dots + u_{n-1}x_{n-1} + (u_n + u_{n+1})\frac{u_nx_n + u_{n+1}x_{n+1}}{u_n + u_{n+1}}\right).$$

By the inductive hypothesis, we can write

$$f(u_1x_1 + \cdots + u_{n-1}x_{n-1} + u_nx_n + u_{n+1}x_{n+1})$$

$$\leq u_1f(x_1) + \cdots + u_{n-1}f(x_{n-1}) + (u_n + u_{n+1})f\left(\frac{u_nx_n + u_{n+1}x_{n+1}}{u_n + u_{n+1}}\right).$$

Next, by the convexity of f, we have

$$f\left(\frac{u_nx_n+u_{n+1}x_{n+1}}{u_n+u_{n+1}}\right)\leqslant \frac{u_n}{u_n+u_{n+1}}f(x_n)+\frac{u_{n+1}}{u_n+u_{n+1}}f(x_{n+1}).$$

Combining these inequalities gives desired conclusion

If f is a concave function and $t_1, \ldots, t_n \in [0, 1]$ are n numbers such that $\sum_{i=1}^n t_i = 1$, then

$$f\left(\sum_{i=1}^n t_i x_i\right) \geqslant \sum_{i=1}^n t_i f(x_i).$$

Example

We saw that the function $f(x) = \ln x$ is concave. Therefore, if $t_1, \ldots, t_n \in [0, 1]$ are n numbers such that $\sum_{i=1}^n t_i = 1$, then

$$\ln\left(\sum_{i=1}^n t_i x_i\right) \geqslant \sum_{i=1}^n t_i \ln x_i.$$

This inequality can be written as

$$\ln\left(\sum_{i=1}^n t_i x_i\right) \geqslant \ln \prod_{i=1}^n x_i^{t_i},$$

or equivalently

$$\sum_{i=1}^n t_i x_i \geqslant \prod_{i=1}^n x_i^{t_i},$$

for $x_1,\ldots,x_n\in(0,\infty)$.

In the special case where $t_1 = \cdots = t_n = \frac{1}{n}$, we have the inequality that relates the arithmetic to the geometric average on n positive numbers:

$$\frac{x_1 + \dots + x_n}{n} \geqslant \left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}}.$$
 (2)

Weighted Means

Let $\mathbf{w} = (w_1, \dots, w_n) \in \mathbb{R}^n$ be such that $\sum_{i=1}^n w_i = 1$. For $r \neq 0$, the **w**-weighted mean of order r of a sequence of n positive numbers $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n_{>0}$ is the number

$$\mu_{\mathbf{w}}^{r}(\mathbf{x}) = \left(\sum_{i=1}^{n} w_{i} x_{i}^{r}\right)^{\frac{1}{r}}.$$

Of course, $\mu_{\mathbf{w}}^{r}(\mathbf{x})$ is not defined for r=0; we will give as special definition

$$\mu_{\mathbf{w}}^{0}(\mathbf{x}) = \lim_{r \to 0} \mu_{\mathbf{w}}^{r}(\mathbf{x}).$$

We have

$$\lim_{r \to 0} \ln \mu_{\mathbf{w}}^{r}(\mathbf{x}) = \lim_{r \to 0} \frac{\ln \sum_{i=1}^{n} w_{i} x_{i}^{r}}{r} = \lim_{r \to 0} \frac{\sum_{i=1}^{n} w_{i} x_{i}^{r} \ln x_{i}}{\sum_{i=1}^{n} w_{i} x_{i}^{r}}$$
$$= \sum_{i=1}^{n} w_{i} \ln x_{i} = \ln \prod_{i=1}^{n} x_{i}^{w_{i}}.$$

Thus, if we define $\mu_{\mathbf{w}}^{0}(\mathbf{x}) = \prod_{i=1}^{n} x_{i}^{w_{i}}$, the weighted mean of order r

For
$$w_1 = \cdots = w_n = \frac{1}{n}$$
, we have

$$\mu_{\mathbf{w}}^{-1}(\mathbf{x}) = \frac{n x_1 \cdots x_n}{x_2 \cdots x_n + \cdots + x_1 \cdots x_{n-1}}$$
(the harmonic average of \mathbf{x}),
$$\mu_{\mathbf{w}}^{0}(\mathbf{x}) = (x_1 \dots x_n)^{\frac{1}{n}}$$
(the geometric average of \mathbf{x}),
$$\mu_{\mathbf{w}}^{1}(\mathbf{x}) = \frac{x_1 + \cdots + x_n}{n}$$
(the arithmetic average of \mathbf{x}).

Theorem

If p < r, we have $\mu_{\mathbf{w}}^{p}(\mathbf{x}) \leqslant \mu_{\mathbf{w}}^{r}(\mathbf{x})$.

Proof

There are three cases depending on the position of 0 relative to p and r. In the first case, suppose that r>p>0. The function $f(x)=x^{\frac{r}{p}}$ is convex, so by Jensen's inequality applied to x_1^p,\ldots,x_n^p , we have

$$\left(\sum_{i=1}^n w_i x_i^p\right)^{\frac{r}{p}} \leqslant \sum_{i=1}^n w_i x_i^r,$$

which implies

$$\left(\sum_{i=1}^n w_i x_i^p\right)^{\frac{1}{p}} \leqslant \left(\sum_{i=1}^n w_i x_i^r\right)^{\frac{1}{r}},$$

which is the inequality of the theorem.

If r>0>p, the function $f(x)=x^{\frac{r}{p}}$ is again convex because $f''(x)=\frac{r}{p}\left(\frac{r}{p}-1\right)x^{\frac{r}{p}-2}\geq 0$. Thus, the same argument works as in the previous case.

Proof (cont'd)

Finally, suppose that 0 > r > p. Since $0 < \frac{r}{p} < 1$, the function $f(x) = x^{\frac{r}{p}}$ is concave. Thus, by Jensen's inequality,

$$\left(\sum_{i=1}^n w_i x_i^p\right)^{\frac{r}{p}} \geq \sum_{i=1}^n w_i x_i^r.$$

Since $\frac{1}{r}$ < 0, we obtain again

$$\left(\sum_{i=1}^n w_i x_i^p\right)^{\frac{1}{p}} \leqslant \left(\sum_{i=1}^n w_i x_i^r\right)^{\frac{1}{r}}.$$

The indicator function of a subset S of a set Z is the function $I_S:Z\longrightarrow \hat{\mathbb{R}}$ defined by

$$I_S(z) = \begin{cases} 0 & \text{if } z \in S, \\ \infty & \text{if } z \notin S. \end{cases}$$

Theorem

A set $S \subseteq \mathbb{R}^n$ is convex if and only if its indicator function I_S is convex.

Proof

If I_S is convex, we have $I_S(t\mathbf{x}+(1-t)\mathbf{y})\leqslant tI_S(\mathbf{x})+(1-t)I_S(\mathbf{y})$ for every $\mathbf{x},\mathbf{y}\in S$. Therefore, if $\mathbf{x},\mathbf{y}\in S$ we have $I_S(\mathbf{x})=I_S(\mathbf{y})=0$, which implies $I_S(t\mathbf{x}+(1-t)\mathbf{y})=0$, so $t\mathbf{x}+(1-t)\mathbf{y}\in S$. Thus, S is convex. Conversely, suppose that S is convex. We need to prove that

$$I_{\mathcal{S}}(t\mathbf{x} + (1-t)\mathbf{y}) \leqslant tI_{\mathcal{S}}(\mathbf{x}) + (1-t)I_{\mathcal{S}}(\mathbf{y}). \tag{3}$$

If at least one of \mathbf{x} or \mathbf{y} does not belong to S, Inequality (3) is satisfied. The remaining case occurs when we have both $\mathbf{x} \in S$ and $\mathbf{y} \in S$, in which case, $t\mathbf{x} + (1-t)\mathbf{y} \in S$ and $I_S(\mathbf{x}) = I_S(\mathbf{y}) = I_S(t\mathbf{x} + (1-t)\mathbf{y}) = 0$, and, again, Inequality (3) is satisfied.