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Introduction

Releasing the data and just removing the names does nothing for privacy.
If you know their name and a few records, then you can identify that
person in the other (private) database.
Vitaly Shmatikov, Professor of Computer Science, University of Texas at
Austin
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Introduction

Privacy in data analysis is treated from many perspectives:

statistics,

databases,

philosophy,

law,

cryptography,

theoretical computer science.
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Introduction

The developments in the

internet,

database technology, and

data mining

brought to forefront the issues of privacy and has imposed limitations of
the work of data analysts.
In general, data analysts do not have direct access to raw data and certain
limitations are imposed on the content and number of exploring queries
because accurate answers to too many questions will destroy privacy.
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Notorious Breaches of Privacy

exposure of medical records of governor William Weld of
Massachusetts;

identification of an user of AOL;

identification of an user of Netflix based on movie ratings;

massive data breaches at TJMaxx and other retailers.
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Notorious Breaches of Privacy

Weld’s Medical Records

A graduate MIT student, Latanya Sweeney managed to access the medical
records of William Weld, the then governor of Massachusetts using poorly
public anonymized medical records.
In his 2010 UCLA Law Review paper, ”Broken Promises of Privacy, (Ohm,
2010) University of Colorado law professor Paul Ohm describes Sweeney’s
re-identification of Weld’s hospitalization data as follows:
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Notorious Breaches of Privacy

At the time GIC released the data, William Weld, then Governor of
Massachusetts, assured the public that GIC had protected patient privacy
by deleting identifiers. In response, then graduate student Sweeney started
hunting for the Governors hospital records in the GIC data. She knew that
Governor Weld resided in Cambridge, Massachusetts, a city of 54,000
residents and seven ZIP codes. For twenty dollars, she purchased the
complete voter rolls from the city of Cambridge, a database containing,
among other things, the name, address, ZIP code, birth date, and sex of
every voter. By combining this data with the GIC records, Sweeney found
Governor Weld with ease. Only six people in Cambridge shared his birth
date, only three of them men, and of them, only he lived in his ZIP code.
In a theatrical flourish, Dr. Sweeney sent the Governors health records
(which included diagnoses and prescriptions) to his office.
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Notorious Breaches of Privacy

The Searches of Mrs. Arnold on AOL

Starting from the public anonymized AOL records of the search history of
an user it was possible to identify this user as Ms. Thelma Arnold.
Among a list of 20 million Web search queries collected by AOL and
released on the Internet is were the searches of user No. 4,417,749. The
number was assigned by the company to protect the searchers anonymity,
but it was not much of a shield.
No. 4417749 conducted hundreds of searches over a three-month period
on topics ranging from numb fingers to 60 single men to dog that urinates
on everything. Following searches for landscapers in Lilburn, Ga, several
people with the last name Arnold and homes sold in shadow lake
subdivision Gwinnett County Georgia, it became possible to identify the
user as Thelma Arnold, a 62-year-old widow who lives in Lilburn, Ga.,
frequently researches her friends medical ailments and loves her three dogs.

9 / 60



Notorious Breaches of Privacy

It might appear that Ms. Arnold fears she is suffering from a wide range of
ailments. Her search history includes hand tremors, nicotine effects on the
body, dry mouth and bipolar. But in an interview, Ms. Arnold said she
routinely researched medical conditions for her friends to assuage their
anxieties. Explaining her queries about nicotine, for example, she said: I
have a friend who needs to quit smoking and I want to help her do it.
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Notorious Breaches of Privacy

The search data was removed from the AOL site, and AOL apologized for
its release. This incident shows how much people unintentionally reveal
about themselves when they use search engines and how risky it can be
for companies like AOL, Google and Yahoo to compile such data.
AOL chief technology officer resigned after a massive dataset of 20 million
searches performed by 658,000 people was published for use in research.
The data was believed to be anonymized, but revealed sensitive details of
the searchers private lives, including Social Security numbers, credit-card
numbers, addresses, and, in one case, apparently a searcher’s intent to kill
their wife.
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Notorious Breaches of Privacy

Identification based on movie ratings

In a dramatic demonstration of the privacy dangers of databases that
collect consumer habits, two researchers from the University of Texas at
Austin have shown that a handful of movie ratings can identify a person as
easily as a Social Security number.
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Notorious Breaches of Privacy

The researchers – Arvind Narayanan and Vitaly Shmatikov, both from the
Department of Computer Sciences at the University of Texas at Austin –
claim to have identified two people out of the nearly half million
anonymized users whose movie ratings were released by online rental
company Netflix last year. The company published the large database as
part of its $1 million Netflix Prize, a challenge to the world’s researchers to
improve the rental firm’s movie-recommendation engine.
While Netflix’s dataset did not include names, instead using an anonymous
identifier for each user, the collection of movie ratings – combined with a
public database of ratings (IMDb -standing for Internet Movie Database)
was enough to identify the people.
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Notorious Breaches of Privacy

Narayanan and Shmatikov identified movie ratings of two of the users in
Netflix’s data.
Exposing movie ratings that the reviewer thought were private could
expose significant details about the person. For example, the researchers
found that one of the people had strong – ostensibly private – opinions
about some liberal and gay-themed films and also had ratings for some
religious films.
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Notorious Breaches of Privacy

Massive data breaches

In the past few years several massive data breaches that have leaked
sensitive information on millions of people.

Recently the head of HM Revenue & Customs, the United Kingdom’s
tax agency, resigned after two data discs containing sensitive, yet
unencrypted, personal details of 25 million U.K. citizens were lost in
the mail.

Retail giant TJX Companies announced that data thieves had stolen
the credit- and debit-card details on, what currently is estimated to
be, more than 94 million consumers.
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Notorious Breaches of Privacy

Conclusions

Privacy research demonstrated that information that a person believes
to be benign could be used to identify them in other private
databases, a risk understood in privacy and intelligence circles.

Even as early as decades as go, the U.S. government would classify
aggregates of information, (because) you can take unclassified data
and put them together to get something that is not unclassified.
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Notorious Breaches of Privacy

Those risks have long pitted privacy advocates against online
marketers and other Internet companies seeking to profit from the
Internets unique ability to track the comings and goings of users,
allowing for more focused and therefore more lucrative advertising.

The unintended consequences of all that data being compiled, stored
and cross-linked is a ticking privacy time bomb.
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Differential Privacy

Differential privacy (DP) is an approach to privacy that guarantees
that the distribution of outcomes of a computation that involves a
database does not change significantly when an individual record is
added or removed from a database.

DP allows an investigator to learn information about a database
without learning anything about an individual.

DP database mechanisms can make confidential data widely available
for accurate data analysis, without resorting to data clean rooms,
institutional review boards, data usage agreements, restricted views,
or data protection plans.
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Differential Privacy

DP ensures that the ability of an adversary to inflict harm is the
same, independent of whether any individual opts in to, or opts out
of, the dataset.

DP focuses on the probability of any given output of a privacy
mechanism and how this probability can change with the addition or
deletion of any row. Thus, we concentrate on pairs of databases
differing only in one row, meaning one is a subset of the other and
the larger database contains just one additional row.
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Differential Privacy

Probability Simplex

The probability simplex in Rm is the set Sm ⊆ Rm defined by

Sm = {x ∈ Rm | xi > 0 for 1 6 i 6 m and
m∑
i=1

xi = 1}.
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Differential Privacy

Randomized Algorithm

A randomized algorithm with domain A and range B is a triplet
M = (A,B,M), where M : A −→ Sm (for m = |B|) is a function such that
on input a ∈ A, M produces an output b = M(a) ∈ B with the probability
M(a)b.
In other words, for every a ∈ A a randomized algorithm defines a random
variable:

ξMa :

(
b1 · · · bm

Ma(b1) · · · Ma(bm)

)
,

where m = |B|.
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Differential Privacy

A universe is a pair (X, I ), where X is a set of records and I is a set of
types such that each record of X is associated with exactly one type in I .
Thus, there exists a partition τ of X whose blocks Xi (also known as bins)
consist of records of type i .
The number of records of type i in X is denoted by s(i), where the
mapping s : I −→ N is a histogram.
A database is a set of records D drawn from a universe X.
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Differential Privacy

The blocks of the trace of τ on D, τD consist of records that have the
same type i . This, in turn, defines a database histogram sD : I −→ N,
where sD(i) is the number of records of type i contained by D.
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Differential Privacy

The histogram of D is a mapping s : I −→ N, where each entry
s(i) = sD(i) represents the number of records of type i in D. Thus, the
set of histograms of databases of the universe X is NI .

The norm of a histogram s ∈ NI of a database D is ‖ s ‖1=
∑|I |

i=1 s(i).

Under this definition ‖ s ‖1 is a measure of the size of the database D.

If D1,D2 are two databases of the universe X, then ‖ sD1 − sD2 ‖1

measures how many records are different in the two database
histograms sD1 and sD2 .
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Differential Privacy

A randomized algorithm M = (DB(X),X,M) transforms the members of a
database D of a universe X into members of X and, therefore into a new
database D ′. This is a random transformation in general, and the number
of records of type i in the new database is a random variable.
Two databases D1,D2 ∈ Xn differ in one record if their symmetric
difference consists of two records x1 ∈ D1 and x2 ∈ D2, that is,
D1 ⊕ D2 = {x1, x2}.
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Differential Privacy

Definition

Let M be a randomized algorithm M : Xn −→ B. M is ε-differentially
private if for every two databases D1 and D2 in Xn such that
|D1 ⊕ D2| = 2 we have:

P(M(D1) ∈ S) 6 eεP(M(D2) ∈ S)

for all S in the range of M.
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Differential Privacy

If the roles of the databases are inverted we have
P[M(D2) ∈ S ] 6 eεP[M(D1) ∈ S ]. Thus, M is ε-differentially private if
and only if for every two databases D1,D2 on Xn such that |D1 ⊕ D2| 6 2
we have

e−ε 6
P[M(D1) ∈ S ]

P[M(D2) ∈ S ]
6 eε. (1)

Note that, taking into account that for small values of ε we have
eε ≈ 1 + ε and e−ε ≈ 1− ε, Inequality 1 becomes

1− ε 6 P[M(D1) ∈ S ]

P[M(D2) ∈ S ]
6 1 + ε.

The quantity lnP[M(D1)∈S]
lnP[M(D2)∈S] is the privacy loss incurred by observing the

output M(D1).
The definition of differential privacy ensures that seeing D2 instead of D1

can only increase the probability of any event by at most a small factor.
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Differential Privacy

A more general concept is the notion of (ε, δ)-differential privacy.

Definition

Let M be a randomized algorithm M : Xn −→ B. M is (ε, δ)-differentially
private if for every two databases D1 and D2 in Xn such that
|D1 ⊕ D2| = 2 and for all S in the range of M we have:

P(M(D1) ∈ S) 6 eεP(M(D2) ∈ S) + δ.
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Differential Privacy

Example

Consider a database D of individuals draw from a population X that may
or may not smoke. We present a technique that allows us to estimate the
fraction p of individuals who smoke by using a randomized survey that
preserves the privacy of individual responders. The individuals are
instructed to answer yes or no when questioned about their smoking as
follows:

i flip a coin;

ii if tail, then respond truthfully;

iii if head, then flip a second coin and respond “yes” if head and “no”
if tail.
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Differential Privacy

Example cont’d

Let a be an individual who smokes. We have the following scenario:

1 If the first coin toss produces a tail, a responds truthfully and the
answer is yes.

2 If the first coin toss produces head, a second coin is tossed and the
answer is q dictated by tossing of the coin: if head the individual will
respond yes (which is the truth); if tail the answer will be no

(which is not truthful.

The distribution of the answer is

ξMa :

(
yes no

3/4 1/4

)
.
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Differential Privacy

Example cont’d

If a does not smoke the distribution of the answer is

ξMa :

(
yes no

1/4 3/4

)
.

Noise is introduced in this experiment through the spurious yes and no

answers obtained by coin tossing.
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Differential Privacy

Example cont’d

A yes answer is not incriminating because this answer occurs with
probability at least 1/4 regardless whether the respondent smokes. This
provides plausible deniability to participants.
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Differential Privacy

Example cont’d

If p is the fraction of individuals who smoke, the expected number of
yes answers in the histogram s ′ is n = 1

4 (1− p) + 3
4 p = 1

4 + p
2 . Thus,

p can be estimated as 2n − 1
2 .

The expected number of no answers in s ′ is 1
4 p + 3

4 (1− p).

The randomized algorithm discussed above has (ln 3, 0) privacy. Note
that the range of M is the set {yes, no}.
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Differential Privacy

Example cont’d

If D1,D2 are such that {x1, x2} = D1 ⊕ D2, where x1 ∈ D1 − D2 and
x2 ∈ D2 − D1 we may have the following four cases:

i M(x1) = M(x2) = yes;

ii M(x1) = M(x2) = no;

iii M(x1) = yes and M(x2) = no;

iv M(x1) = no and M(x2) = yes.
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Differential Privacy

Example cont’d

In the first two cases, we have

P[M(D1) ∈ S ]

P[M(D2) ∈ S ]
= 1

for S = {yes} or S = {no}.
In the third case, four subcases are possible:

i both x1 and x2 are smokers;

ii neither x1 nor x2 are smokers;

iii x1 is a smoker, but x2 is not a smoker;

iv x1 is not a smoker but x2 is one.
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Differential Privacy

Example cont’d

The probabilities the first subcase are:

P(M(x1)=no)
P(M(x2)=no) = 1/4

1/4 = 1;
P(M(x1)=yes)
P(M(x2)=no) = 3/4

1/4 = 3;
P(M(x1)=no)
P(M(x2)=yes) = 1/4

3/4 = 1/3;
P(M(x1)=yes)
P(M(x2)=yes) = 3/4

3/4 = 1.

In the second subcase we have:

P(M(x1)=no)
P(M(x2)=no) = 3/4

3/4 = 1;
P(M(x1)=yes)
P(M(x2)=no) = 3/4

1/4 = 3;
P(M(x1)=no)
P(M(x2)=yes) = 1/4

3/4 = 1/3;
P(M(x1)=yes)
P(M(x2)=yes) = 1/4

1/4 = 1.
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Differential Privacy

Example cont’d

For the third subcase (x1 is a smoker, but x2 is not a smoker) we can write:

P(M(x1)=no)
P(M(x2)=no) = 1/4

1/4 = 1;
P(M(x1)=yes)
P(M(x2)=no) = 3/4

1/4 = 3;
P(M(x1)=no)
P(M(x2)=yes) = 1/4

3/4 = 1/3;
P(M(x1)=yes)
P(M(x2)=yes) = 3/4

3/4 = 1.
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Differential Privacy

Example cont’d

Finally, for the fourth subcase (x1 is not a smoker but x2 is one):

P(M(x1)=no)
P(M(x2)=no) = 3/4

1/4 = 3;
P(M(x1)=yes)
P(M(x2)=no) = 1/4

1/4 = 1;
P(M(x1)=no)
P(M(x2)=yes) = 3/4

3/4 = 1/3;
P(M(x1)=yes)
P(M(x2)=yes) = 1/4

3/4 = 1/3.
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Differential Privacy

A more general randomization algorithm can be developed using a binary
tree, that is, a tree where every vertex with the exception of the leaves has
two descendants. These descendants correspond to results of flipping a
coin, that is, to head and tail.
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Sensitivity and Privacy

Definition

Let X be a universe and let f : Xn −→ Rd be a function. The
L1-sensitivity of f is the smallest number S(f ) such that for all D, D̃ ∈ Xn

which differ in a single entry we have

‖ f (D)− f (D̃) ‖16 S(f )d(D, D̃),

where d is the Hamming distance on Xn.

In particular, if D,D ′ are two databases that differ in one position,
‖ f (D)− f (D̃) ‖16 S(f ).
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Sensitivity and Privacy

Example

If X = {0, 1} and f (D) =
∑n

i=1 xi , then the sensitivity of f is 1.
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Sensitivity and Privacy

Example

Suppose that a domain X has been partitioned into d bins X1, . . . ,Xn.
The histogram s : Xn −→ Rd that computes the number of points that fall
into each bin has sensitivity 2 independent of d because changing one
point in a database can change at most two of these points: one bin loses
a point and another gains one.
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Sensitivity and Privacy

Example

Consider the analyst of a private student database, where xt is the total
number of students, xA, xB , xC , xD , xF are the numbers of students who
received A,B,C ,D, or F , respectively, and xp is the number of students
with passing grades (D or higher).
A query that seeks to determine (xA, xB , xC , xD , xF ) has sensitivity one
because adding or removing a student changes exactly one of the variables.
If wee seek to determine (xA, xB , xC , xD , xF , xt , xp) the sensitivity is 3 (one
change could affect three return values!
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Differential Privacy with Output Perturbation

Laplace Distribution

Definition

A random variable has the Laplace (µ, b) distribution if its probability
density function is

h(x |µ, b) =
1

2b
e−
|x−µ|

b

for x ∈ R, where b > 0.

In particular, the Laplace distribution centered ar 0 with scale 1 is the
distribution with the probability density given by

h(x |0, b) =
1

2b
e−
|x|
b .

This function will be denoted simply by hb(x).
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Differential Privacy with Output Perturbation

The Laplace distribution can be regarded as a symmetric version of the
exponential distribution.
It is easy to see that

∫
R Lap(x |µ, b) dx = 1. The mean of this distribution

is µ, while the variance is 2b2. The probability density function for the
Laplace distribution with µ = 0 and b = 1 is shown below.

−2 0 2

0.1

0.15

0.2

0.25

y

x

45 / 60



Differential Privacy with Output Perturbation

The privacy preserving Laplace mechanism computes the query f (D) ∈ Rk

and perturbs each coordinate f (D)i with noise drawn from a Laplace
distribution Yi .

Definition

Given a query f : DB(Xn) −→ Rk , the Laplace mechanism is defined as

M(D, f , ε) = f (D) + (Y1, . . . ,Yk)

where Y1, . . . ,Yk are independent, identically distributed Laplace variables

from Lap
(
S(f )
ε

)
.
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Differential Privacy with Output Perturbation

Example

Suppose D ∈ {0, 1}n and the user wishes to learn f (D) =
∑n

i=1 xi , that is,
the total number of 1s in D.
If we add random Laplace noise Y ∼ Lap(1/ε) (that is, a Laplace random
variable with the parameter b = 1

ε and the probability density function

h(x) = ε
2 e−ε|x |), then the algorithm will produce T (D), where

T (D) =
∑n

i=1 xi + Y . Note that T (D) = t is equivalent to

Y = t −
n∑

i=1

xi = t − f (D).
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Differential Privacy with Output Perturbation

Example cont’d

Let D and D̃ be two databases that differ in a single entry. We have:

P(T (D) = t)

P(T (D̃) = t)
=

h(t − f (D))

h(t − f (D̃))

6 eε|f (D)−f (D̃) 6 eε

because the two databases D and D̃ differ in a single entry (which means
that the sums f (D) and f (D ′) differ by 1) which shows that we have
ε-privacy.
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Differential Privacy with Output Perturbation

Definition

Given a query f : DB(Xn) −→ Rk , the Laplace mechanism is defined as

M(D, f , ε) = f (D) + (Y1, . . . ,Yk)

where Y1, . . . ,Yk are independent, identically distributed Laplace variables

from Lap
(

GSn(f )
ε

)
.

Note that for the Laplace density function h we have:

hb(y)

hb(y ′)
=

e−
|y|
b

e−
|y′|
b

= e
|y′|−|y|

b 6 e
|y−y′|

b

for y , y ′ ∈ R.
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Differential Privacy with Output Perturbation

Example

Suppose D ∈ {0, 1}n and the user wishes to learn f (D) =
∑n

i=1 xi , that is,
the total number of 1s in D.
If we add random Laplace noise Y ∼ Lap(1/ε) (that is, a Laplace random
variable with the parameter b = 1

ε and the probability density function

h(x) = ε
2 e−ε|x |), then the algorithm will produce T (D), where

T (D) =
n∑

i=1

xi + Y .

Note that T (D) = t is equivalent to

Y = t −
n∑

i=1

xi = t − f (D).

Let D and D̃ be two databases that differ in a single entry. We have:

P(T (D) = t)

P(T (D̃) = t)
=

h(t − f (D))

h(t − f (D̃))

6 eε|f (D)−f (D̃) 6 eε

because the two databases D and D̃ differ in a single entry (which means
that the sums f (D) and f (D ′) differ by 1) which shows that we have
ε-privacy.
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Differential Privacy with Output Perturbation

Noise that must be added to a querying algorithm can be calibrated to
achieve differential privacy according to the sensitivity of a query. If we
have a querying mechanism M(D, f , ε) = f (D) + y, where the noise y is
drawn from (Y1, . . . ,Yk), the density function of (Y1, . . . ,Yk) at y is

proportional to e−
‖y‖1
b . Thus, for all t ∈ Rd we have

P(z + Y = t)

P(z̃ + Y = t)
∈ {e

‖z−z̃‖1
b , e−

‖z−z̃‖1
b , }

Thus, to release a perturbed value f (D) while satisfying ε-differential

privacy it suffices to add Laplace noise with standard deviation S(f )
ε in

each coordinate.
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Combining Differential Private Algorithms

Sequential Composition

Definition

Let Mi be two private algorithms that are εi differentially private, for
i = 1, 2. The composition of M1 and M2 is the algorithm M1,2 defined as

M1,2(D) = (M1(D),M2(D))
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Combining Differential Private Algorithms

Sequential Composition

Suppose that for i = 1, 2 Mi are private εi differential algorithms,
respectively and that D,D ′ are databases that differ in one position. We
have

P(M1(D) = S1] 6 eε1P(M1(D ′) = S1),

P(M2(D) = S2] 6 eε2P(M2(D ′) = S2).

Then,

P[(M1(D) = S1), (M2(D) = S2)]

= P[(M1(D) = S1)]P[(M2(D) = S2)]

6 eε1P[(M1(D ′) = S1)]eε2P[(M2(D ′) = S2)]

= eε1+ε2P[(M1(D ′) = S1)]P[(M2(D ′) = S2)],

hence the composition is (ε1 + ε2)-private.
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Combining Differential Private Algorithms

Parallel Composition

Suppose that a database is partitioned in disjoint sets and the data in each
of these sets is subjected to differential private analysis. The ultimate
privacy guarantee depends only on the worst of the guarantees of each
analysis. Let D and D′ be two databases, and suppose that D is
partitioned into A1, . . . ,An and D′ is partitioned into B1, . . . ,Bn.
If D and D′ differ in one position, then at most one of the pairs (Ai ,Bi )
differ in one position, say j . Then
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Combining Differential Private Algorithms

Parallel Composition

If D and D′ differ in one position, then at most one of the pairs (Ai ,Bi )
differ in one position, say j . Then

P(M(D) = (r1, . . . , rn)) =
n∏

i=1

P(M(Ai ) = ri )

=
n∏

i=1,i 6=j

P(M(Ai ) = ri ) · P(M(Aj) = rj)

=
n∏

i=1,i 6=j

P(M(Bi ) = ri ) · eεj P(M(Bj) = rj)

= P(M(D) = (r1, . . . , rn))eεj .

Since this inequality must be satisfied for all j , we have

P(M(D) = (r1, . . . , rn)) 6 emax{εj | 16j6n} · P(M(D ′) = (r1, . . . , rn)),

so the parallel composition is max{εj | 1 6 j 6 n}-private.
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Combining Differential Private Algorithms

Lemma

If Y ∼ Lap(b), then P(|Y | > tb) = e−t .

Proof.

This fact follows immediately from

P(|Y | > tb) = P(Y > tb) + P(Y < −tb)

= 1−
∫ tb

−tb
hb(t) dt

= 1− 2

∫ tb

0

1

2b
e−

t
b dt = e−t .
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Combining Differential Private Algorithms

Theorem

Let f : DB(Xn) −→ Rk and let y = M(D, f , ε), where M is a
k-dimensional Laplace mechanism. For every δ ∈ (0, 1] we have:

P

(
‖ f (x)− y ‖∞> ln

k

δ
· S(f )

ε

)
6 δ.
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Proof

We have

P

(
‖ f (x)− y ‖∞> ln

k

δ
· S(f )

ε

)
= P

(
max

16i6k
|Yi | > ln

k

δ
· S(f )

ε

)
6 k · P

(
max

16i6k
|Yi | > ln

k

δ
· S(f )

ε

)
= k

δ

k
= δ,

where the inequality follows from the fact that each Yi is distributed
Lap(S(f )

ε and from the previous Lemma.
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Example

Suppose that we have a list of 10,000 potential name and we wish to
compute which first name were the most common in a national census.
Take

k = 10, 000, δ = 0.05, and
S(f )

ε
= 1.

Note that the sensitivity of this query is 1 because every person may have
only one first name. By the theorem, we can calculate the frequency of all
10,000 names with (1,0)-differential privacy and with the probability 95%,
no estimate will be off am additive error of ln 10000

.05 ≈ 12.2.
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The PINQ Architecture

PINQ was proposed as an architecture for data analysis with differential
privacy. It presents a wrapper to C# LINQ language for database access,
which enforces differential privacy.

A data curator allocates a privacy budget ε for each user of the
interface. The user can use this interface to execute aggregate queries
such as count (NoisyCount), sum (NoisySum) and average
(NoisyAvg). The wrapper uses Laplace noise to enforce differential
privacy.
When queries are executed on disjoint data sets, as we saw above, the
privacy costs do not add up. This is achieved in PINQ using the
operator Partition which divides a data set into multiple disjoint
sets according to a user-defined function. This ensures a better use of
the privacy budget allocated to the user.

Any data miner should plan ahead the number of queries and the values of
ε to request for each, because the premature exhaustion of the privacy
budget will block access to the data for the data miner.
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