
Differential Privacy - II

Prof. Dan A. Simovici

UMB

1 / 34

Outline

1 Introduction

2 The Prefix Tree

3 Utility Requirements

4 Utility Requirements

5 Sanitization Algorithm

6 Treatment of Empty Nodes and Private Release Information

2 / 34

Introduction

Rui Chen and colleagues studied the transportation traffic of Société de
transport de Montrèal or STM, the public transit system of the city of
Montreal in Quebec, Canada.
The goals of their analysis were:

1 to protect individual privacy, and

2 to preserve utility in sanitized data for data analysis.

3 / 34

Introduction

The STM System Characteristics

Since 2008 STM uses a smart card automated fare collection
(SCAFC) system to ensure user validation and fare collection.

System collects daily passengers’ transit data which must be shared
(after being anonymized):

administrative regulations;
profit sharing;
data analysis.

SCAFC is integrated with other transit networks in adjacent cities.

4 / 34

Introduction

transit information (smart card number and station ID) is collected
and stored in a central database system;

the transit info of a passenger is organized as a sequence of stations
in time order;

the nature of transit data is raising major privacy concerns on the
part of card users.

5 / 34

Introduction

Challenges of Exploring Transit Data

the are close to 1,000 bus and subway stations in the STM system;

if the maximum length of a sequence of stations is 20, a database D

would need to contain about
∑20

i=1 1000i records which is about 1060

entries, which is impossible.

System is data driven: only sequences and counts generated by real
sequences are stored.

6 / 34

Introduction

Data mining tasks:

answering count queries, and

frequent sequential pattern mining.

With accurate answers to count queries, data recipients can answer
questions, such as how many passengers have visited both stations Park
Station and Government Center”.
Frequent sequential pattern mining helps the STM better understand
passengers transit patterns and consequently allows the STM to adjust its
network geometry and schedules in order to better utilize its existing
resources.

7 / 34

Introduction

Let L = {L1, L2, . . . , L|C |} be the universe of locations.
Locations are considered as discrete spatial area on a map.
For the STM transit data, L represent all stations in the STM network.
Each record on a sequential database consists of a sequence of
time-ordered locations drawn from L.

8 / 34

Introduction

Definition

A sequence of locations is an ordered list

S = L1 → L2 → · · · → Ln,

where n is the length of the sequence (also denoted by |S |).

A location may occur multiple time in S and may occur consecutively in S .

9 / 34

Introduction

Definition

A sequential database D of size |D| is a multiset of sequences

D = {S1, S2, . . . ,S|D|}.

Each sequence represents the movement history of a record owner.

10 / 34

Introduction

Example

A sample sequential database is shown below:

Rec.# Path

1 L1 → L2 → L3

2 L1 → L2

3 L3 → L2 → L1

4 L1 → L2 → L4

5 L1 → L2 → L3

6 L3 → L2

7 L1 → L2 → L4 → L1

8 L3 → L1

11 / 34

The Prefix Tree

A prefix tree groups sequences with the same prefix into the same branch.
A sequence

S ′ = L′1 → L′2 → · · · → L′m

is a prefix of a sequence

S = L1 → L2 → · · · → Ln

if m 6 n and L′i = Li for 1 6 i 6 m.
This is denoted by S ′ � S .

Example

S ′ = L1 → L2 is a prefix of S = L1 → L2 → L3; S ′′ = L1 → L4 is not a
prefix of S .

12 / 34

The Prefix Tree

Definition

A prefix tree of a sequential database D is a triplet PT = (V ,E ,Root),
where

V is a set of nodes labelled with locations, each corresponding to a
unique prefix in D;

E is the set of edges, representing transitions between nodes;

Root ∈ V is the virtual root of PT.

The unique prefix represented by a node v ∈ V , denoted by prefix(v ,PT)
is a sequence of locations starting from Root to v .

13 / 34

The Prefix Tree

Each node v ∈ V keeps a pair (tr(v), c(v)), where

tr(v) is the set of sequences in D having prefix(v ,T), that is,
{S ∈ D | prefix(v ,T) � S}, and

c(v) is a noisy version of |tr(v)| (e.g. |tr(v)|+ X , where X is Laplace
noise.

tr(Root) contains all sequence in D.

The set of all nodes at a depth i is a level of PT and is denoted by
level(i ,T).
Root is at level 0.

14 / 34

The Prefix Tree

Example

�� ��
�� ���� ��

�� ��
�� ��

�� �� �� ���� �� �� ���� ��
#
#
#

@
@@

����
PPPP

Root

L1 : 5

L2 : 5

L3 : 2 L4 : 2

L1 : 1

L3 : 2

L1 : 1 L2 : 2

L1 : 1

�����

Rec.# Path
1 L1 → L2 → L3
2 L1 → L2
3 L3 → L2 → L1
4 L1 → L2 → L4
5 L1 → L2 → L3
6 L3 → L2
7 L1 → L2 → L4 → L1
8 L3 → L1

15 / 34

Utility Requirements

Definition

Let L be a set of locations. A count query QL over a database D is
defined as

QL(D) = |{S ∈ D | L ⊆ loc(S)}|,

where loc(S) is the set of locations in S .

The order of locations is not considered in count queries, because the
major users of count queries are the personnel of the marketing
department of the STM, who are merely interested in users’ presence in
certain stations for marketing analysis, known as passenger counting, but
not the order of visiting.

16 / 34

Utility Requirements

Utility of a Count Query

The utility of a count query QL over a sanitized database D̃ is the relative
error with respect to the original database D:

err(QL(D̃)) =
QL(D̃)− QL(D)

max{QL(D), s}
,

where s is a sanity bound that mitigates the influence of queries with very
small selectivities.

17 / 34

Utility Requirements

Utility for Frequent Sequential Pattern Mining

For k ∈ N, k > 2 the set of top k most frequent patterns in D is denoted
by Fk(D); the corresponding set of the sanitized database D is Fk(D̃).

The true positive rate is the number of frequent sequential patterns in
Fk(D) that are correctly identified in Fk(D̃), that is,
|Fk(D) ∩ Fk(D̃)|.
The false positive rate is the number of infrequent sequential patterns
in D that are mistakenly included in Fk(D̃), that is, |Fk(D̃)−Fk(D)|.
The false drop rate is the number of frequent sequential patterns in
Fk(D) that are wrongly omitted in Fk(D̃), that is, |FF (D)− Fk(D̃)|.

Since in our setting |Fk(D)| = |Fk(D̃)| = k , false positives always equal
false drops.

18 / 34

Utility Requirements

TP
FP

FD

D

D̃

TP : true positive, FP: false positive, FD : false drop

19 / 34

Sanitization Algorithm

The taxonomy tree of STM

The taxonomy tree is a two-level tree T that specifies the strucure of the
transportation network:

· · · · · ·

STM system

Green Line Red Line

s41 s42 s43 s44 s51 s52 s53 s54 s55 · · ·· · ·

20 / 34

Sanitization Algorithm

Input data:
raw data set D;
privacy budget ε;
a user-specified height of prefix tree h;
a location taxonomy tree T.

Output data:
a sanitized data set D̃ satisfying ε-differential privacy.

21 / 34

Sanitization Algorithm

Components of the algorithm:

BuildNoisyPrefixTree(D, ε, h,T);
GeneratePrivateRelease(PT);

BuildNoisyPrefixTree(D, ε, h,T) constructs a noisy hybrid-granularity
prefix tree PT of D using a set of count queries based on a given
taxonomy tree T.

In STM case, T has two level: each station can be generalized to a
metro or a bus line on which it is located.

GeneratePrivateRelease(PT) uses utility-boosting techniques on PT

based on two sets of consistency constraints, and then generates a
differentially private release D̃.

22 / 34

Sanitization Algorithm

The Algorithm

Input: Raw sequential dataset D;
Privacy budget ε;
Height of the prefix tree h;
Location taxonomy tree T;

Output: Sanitized data set D̃;

1. Noisy prefix tree PT ← BuildNoisyPrefixTree(D, ε, h,T);

2. Sanitized data set D̃← GeneratePrivateRelease(PT);

3. return D̃.

23 / 34

Sanitization Algorithm

Noisy Prefix Tree Construction

Group recursively sequences in D into disjoint sub-databases based on
their prefixes.
We begin with

Line no. Code
1. i = 0;
2. Create a prefix tree PT with root Root;
3. Add all sequence in D to tr(Root);

24 / 34

Sanitization Algorithm

Noisy Prefix Tree Construction

In constructing PT we employ a uniform privacy budget allocation scheme,
by dividing the total privacy budget ε into equal portions ε̄ = ε

h . Each
portion is used for constructing a level of PT.

4. ε̄ = ε
h ;

25 / 34

Sanitization Algorithm

To satisfy differential privacy every sequence that can be derived from
the location universe (either in D or not) has a non-zero probability
to appear in the noisy prefix tree. Therefore, at each level, for each
node, we need to consider every possible location as a potential child.

We need to identify children associated to non-empty nodes.

26 / 34

Sanitization Algorithm

Each level of PT is divided into two sub-levels:

1 the first sub-level consists of nodes associated with generalized
location information (generalized nodes);

2 depending on the noisy counts of generalized noise, we decide
whether to further expand them to create a second sub-level in which
nodes are associated with non-generalized locations (e.g., ask the
noisy count of passengers in a metro line and then decide whether to
ask the count of each station on that line).

27 / 34

Sanitization Algorithm

ε̄ is allocated to the two levels as a function of the fan-out of the
location taxonomy tree T; the first level receives ε̄1 = 2 ε̄f and the

second ε̄2 = (f−2)ε̄
f .

All nodes on the same sub-level are associated with disjoint sequence
subsets, so the privacy budget allocated to a sub-level can be used in
full for each node.

5. calculate ε̄1 and ε̄2 such that
ε̄1 + ε̄2 = ε̄;

28 / 34

Sanitization Algorithm

Location

Root

L{1,2} : t1, t2, t4, t5, t7 L{3,4} : t3, t6, t88 3

L2 : t3, t6

L{1,2} : t3, t6, t8

L4 : ∅L2 : ∅

L{3,4} : ∅

L1 : ∅ L1 : t8

L3,4 : ∅

L3 : t3, t6, t84

6

5 2

4

01

2

1 2

2

4

b
b
b

�
��

@
@@

�
�
��

Q
Q
QQ

I

Noisy size

tr(node)

t1, t2, t3, t4, t5, t6, t7, t8

L1 : t1, t2, t4, t5, t7

L{1,2} : t1, t2, t4, t5, t7

L2 : t1, t2, t4, t5, t7

29 / 34

Sanitization Algorithm

6. while i < h do
7. foreach non-generalized node v ∈ level(i) do
8. Ug ← the set of generalized nodes from T;
9. foreach node u ∈ Ug do
10. add sequences S with prefix(u) � S to tr(u);
11. c(u) = NoisyCount(|tr(u)|, ε̄1);
12. if c(u) > θg then
13. add u to PT;
14. Ung ← u’s non-generalized children in T;
15. foreach node w ∈ Ung do
16. add sequences S with prefix(w) � S to tr(w);
17. c(w) = NoisyCount(|tr(w)|, ε̄2);
18. if c(w) > θng then
19. add w to PT;
20.i++;
21.return PT;

30 / 34

Sanitization Algorithm

θ is a given threshold used to decide if a node u is empty;

c(u) is the noisy count of the node u;

For a potential non-empty node u, Laplace noise is added to |tr(u)|
and use the noisy answer c(u) to decide if u is non-empty.

If c(u) > θ, u is deemed non-empty and inserted into PT.

For a non-generalized node θng = 2
√

2
ε̄2

(two standard deviations of noise).

For a generalized node, θg = 4
√

2
ε̄1

31 / 34

Treatment of Empty Nodes and Private Release Information

Empty Nodes

For each empty node tests are run to determine if

NoisyCount(|tr(w)|, ε̄) = NoisyCount(0, ε̄) > θ,

where ε̄ is the privacy budget (either ε̄1 or ε̄2).

Example

For the database D we have h = 2 and θ = 3. If L1, L2 can be generalized
to L1,2 L3, L4 can be generalized to L3,4. The construction of a hybrid
prefix tree PT was shown previously.

32 / 34

Treatment of Empty Nodes and Private Release Information

The sanitized database D̃ can be obtained by traversing PT one is
post-order ignoring the generalized nodes.

For each node the number n of sequences terminating at each
non-generalized node v and appending n copies of prefix(v ,PT) to
output.

The addition of noise to the counts may create inconsistencies in the
release.

33 / 34

Treatment of Empty Nodes and Private Release Information

Consistency Constraints in the prefix tree

1 For any root-to-leaf path p and for every node vi on this path,

|tr(vi)| 6 |tr(vi+1)|,

where vi is a child of vi+1;

2 For each node v ,

|tr(v)| >
∑

u∈children(v)

|tr(u)|.

34 / 34

	Introduction
	The Prefix Tree
	Utility Requirements
	Utility Requirements
	Sanitization Algorithm
	Treatment of Empty Nodes and Private Release Information

