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Linear Spaces

Definition of Linear Spaces

Definition

Let L be a nonempty set and let (F, {0,+, —, -, }) be either the real field R
or the complex field C.

An F-linear space is a triple (L,+, ) such that (L,{0.,+,—}) is an
Abelian group and - : F x L — L is an operation such that the following
conditions are satisfied:

Q@ a-(b-x)=(a-b)-x,

Q1 -x=x,

@ a (x+y)=a-x+a-y,and
® (a+b):x=a-x+b-x

for every a,b € F and x,y € L.

If F =R, then we refer to L as a real linear space; for F = C we say that L
is a complex linear space.

v
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Notations

@ The commutative binary operation of L is denoted by the same
symbol “4" as the corresponding operation of the field F.

@ The multiplication by a scalar, - : F x L — L is also referred to as an
external operation since its two arguments belong to two different
sets, IF and L.

@ The neutral additive element 0; of L is referred to as the zero
element of L; every linear space must contain at least this element.

e To simplify the notation, we will simply denote a linear space (L, +, )
by L.



Vectors

Let S be a nonempty set and let n € N be a number such that n > 1. A
vector of length n over S is a function v: {1,...,n} — S, that is a
sequence of length n of elements of S. We denote v by

Vi

where v; = v(i) is the i*" component of v for 1 < i < n. The set of
vectors of length n over S will be denoted by S”.
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Example

The set R” of vectors of length n over R is a real linear space under the

definitions
x1+y1 a-xi

x+y= : and a-x =
Xn + Yn a- Xp

of the operations + and -, where

X1 y1
x=|: ] andy=

Xn Yn
In this linear space, the zero of the Abelian group is the n-tuple

0
0,=

6
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Example

The set of infinite sequences of real numbers Seq.,(R) can be organized
as a real linear space by defining the addition of two sequences

x = (xo,x1,-..) and y = (Yo, v1,---)

as x+y = (xo+ Yo,x1 + yi,...), and the multiplication by cx as
cx = (cxp, cx1, . ..) for c € R.
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Example

The set of complex-valued functions defined on a set S is a real linear
space. The addition of functions is given by (f + g)(s) = f(s) + g(s), and
the multiplication of a function with a real number is defined by

(af)(s) = af(s) for s € S and a € R.
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Example

Let S be a set. A function f : S — R is bounded if there exists k € R
such that |f(x)| < k. The set of bounded functions defined on S is
denoted by bound(S). It is easy to see that the sum of two bounded
functions on S is again bounded and the product af of a bounded function
f with a € R is also bounded. Thus, the set of functions bounded on S is
a real linear space.
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Relations on R”

Q@ x>yifx; >y for 1 <i<n
@ x>yifx>yandx#y;

@ x>yifxi>y forl<i<<n
If x > 0,, we say that x is non-negative; if x > 0,, x is said to be
semi-positive, and if x > 0,, then x is positive. The relation ">" is a
partial order on R”; the other two relations, “>" and “>" are strict partial
orders on the same set because they lack reflexivity.
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Example

Let C be the set of real-valued continuous functions defined on R,
C={f:R— R | f is continuous}.

Define f 4+ g by (f + g)(x) = f(x) + g(x) and (a- f)(x) = a- f(x) for
x € R.

The triple (C,+, ) is a real linear space.

Similarly, the set C[a, b] of real-valued continuous functions on [a, b] is a
real linear space.
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Inner Products

Inner Products on Complex Linear Spaces

Definition
Let L be a complex linear space. An inner product on L is a function
g L x L — C that has the following properties:

@ o(x,y) = p(y,x) for x,y € L;

Q o(x+y,z) = p(x,2) + p(y, 2) for x,y,z € L;

@ p(ax,y) = ap(x,y) for x,y € L and a € C;

@ (x,x) is a non-negative real number for x € L;

@ (x,x) =0 implies x = 0;.

The pair (L, p) is called an inner product space.
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Inner Products

Inner Products in Real and Complex Linear Spaces

Observe that for a € C we have

p(x, ay) = ap(x, y)

because

p(x, ay) = p(ay, x) = ap(y, x) = ap(x, y).

If L is a real linear space we assume that p(x,y) € R for x,y € L. Thus,
for an inner product on a real linear space we have the symmetry property
p(x,y) = p(y,x) for x,y € L.
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Inner Products

Example

Let a1,...,a, are n real, positive numbers. The function

o R" x R" — R defined by p(x,y) = aixiy1 + axxoys + « -+ + anXnyn is
an inner product on R”, as the reader can easily verify.

If ay =--- = a, =1, we have the Euclidean inner product:

P(x,y) = x1y1 + -+ Xy = ¥'x = Xy.

To simplify notations we denote an inner product p(x, y) by (x,y) when
there is no risk of confusion.
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Inner Products

Example

An inner product on R™*", the real linear space of matrices of format
n x n, can be defined as (X, Y) = trace(XY’) for X, Y € R"™*".
Similarly, for the complex linear space C"™", an inner product can be
defined as (X, Y) = trace(XY").
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Inner Products

An Inner Product on RrR”

A fundamental property of the inner product defined on R” is the equality

(Ax,y) = (x, Aly), (1)

which holds for every matrix A € R"*" and x,y € R". Indeed, we have

n n n
(Axy) = D (Ax)iyi = Zzauxjy, D x> aiyi
i—1 j=1 =1

i=1 j=1

= D x> ayi = (x,AY).

j=1 =1
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Inner Products

An Inner Product on ¢”

For the complex linear space C” we can define an inner product as

n
X,¥) = D XY = yx.
i=1

In this case we have

(Ax,y) = (x, A'y),

Indeed, if A € C"™", then

n
(Ax>y) = Z AX Iyl ZZaUXJYI
i=1 i=1 j=1
n  ~n
= Y x5y = (x,A)
j=1 =1
for x,y € C".

n n
> XD aVi
j=1 i=1
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Inner Products

The Cauchy-Schwarz Inequality

Theorem

Let (L,(-,-)) be an inner product F-linear space. For x,y € L we have

(3, )12 < (%, X)(y, )
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Proof

We discuss the complex case. If a, b € C we have

(ax + by,ax + by) = aa(x,x)+ ab(x,y) + ba(y,x) + bb(y, y)
= |a]’(x,x) 4+ 2R(ab(x,y)) + |b[*(y.y) = 0.
Let a=(y,y) and b = —(x,y). We have
(v, ¥)2(x, %) = 2(y, V)|, V)P + [ (%, ¥) Py, y) = 0,

hence
I < (92 (30 %).
If y = 0 the inequality obviously holds. If y # 0, the inequality follows.
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Seminorms and Norms

Seminorms

The notions of seminorm and norm formalize the notion of vector length.
Definition
Let L be an F-linear space. A seminorm on L is a mapping v : L — Rxg
that satisfies the following conditions:

Q@ v(x+y) <v(x)+v(y) (subadditivity), and

@ v(ax) = |a|v(x) (positive homogeneity),
for x,y € L and every scalar a.

By taking a = 0 in the second condition of the definition we have
v(0,) = 0 for every seminorm on a real or complex space.
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Seminorms and Norms

Theorem

If L is a real linear space and v : L — R is a seminorm on L, then
v(ix —y) = |v(x) —v(y)| for x,y € L.

Proof.

We have v(x) < v(x —y) + v(y), so v(x) —v(y) < v(x —y). Since
v(y — x)+v(x) <v(y) and v(y — x) = v(x — y), we have the inequalities

v(x) —v(y) <v(x—y) <v(y) —v(x),

O

which imply the inequality of the theorem.
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Seminorms and Norms

Definition

Let L be a real or complex linear space. A norm on L is a seminorm
v : L — R such that v(x) = 0 implies x = 0 for x € L.
The pair (L,v) is referred to as a normed linear space.




Seminorms and Norms

Inner products on linear spaces induce norms on these spaces.

Theorem

Let (L,(-,-)) be an inner product F-linear space. The function
| - ||: L — R defined by || x ||= +/(x,x) is a norm on L.
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Proof

We present the argument for inner product C-linear spaces.

It is immediate from the properties of the inner product that || x || is a real
non-negative number and that || ax ||=|a| || x || for a € C.

Note that

Ix+y P = (x+y.x+y)
(X, %)+ (x,¥) + (v, x) + (v, y)
= || x|? +2R0C )+ [y |

(because (y,x) = (x,y))

< x P 200001+l y 112
(because R(y, x) < [(x, ¥)[)
< Ix P20y I+ 1y 12

(be the Cauchy-Schwarz Inequality)
= (IxIl+1y 1)

which produces the needed inequality. .



Seminorms and Norms

The Cauchy-Schwarz Inequality can now be formulated using the norm.

Corollary

Let (L, (-,-)) be an inner product F-linear space. For x,y € L we have

(O <IEx -1y -
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The Polarization Identity

Theorem

Let || - || be a norm on a complex linear space L that is generated by the
inner product (-,-). We have the complex polarization identity:

1 . . . .
(oy) =g (Dx+y [P = lx =y [P =i x =iy [ +i | x+ iy |?)

for x,y € L.
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Proof

Ix+y P = (x+y.x+y)=lxP+lyl>+0(y)+ (y,x)
= (x+y.x+y)=lxP+lyI?+0(y) +(xy)
= [ xIP+ 1y > +2R(x, ).

Replacing y by —y we have
I x =y IP=ll x [I>+ | y > —2R(x, y),
hence || x+y H2 —Ix—y H2: 4R(x,y). Replacing now y by iy we obtain
I x+iy |2 = || x =iy |°=4R(x, iy).
Note that
(X> Iy) = _i(Xay) = _I(%(Xa)/) + I%(va)) = %(X’y) - iéR(Xv.y)’
so R(x, iy) = J(x, y), which implies
Ix iy 12 = | x — iy 2= 43(x, i).



Proof (cont'd)

Taking into account the previous equalities we can write

Ix+y P =[x=y P+l x+iy [P =i x—iy|?
= 4R(x,y) +4iS(x,y) = 4(x, y),
which is the desired identity.
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Seminorms and Norms

Corollary

Let || - || be a norm on a real linear space L that is generated by the inner
product (-,-). We have the polarization identity

1
(oy) =g (bx+y P =lx =y [?)

for x,y € L.
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Seminorms and Norms

Parallelogram Equality

Theorem

Let || - || be a norm on a linear space L that is generated by the inner
product (-,-). We have the parallelogram equality:

1
Ix P+ 1y =5 (I x+y 2+ 1 x =y I?)

for x,y € L.
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Proof

By applying the definition of || - || and the properties of the inner product
we can write:

1
SUx+y P+ x=y1?)

= 1((x+y,x+y)+(X—)/7X_)’))

2
= 2 ((0x) +2005) + (19) + (630~ 206,9) + (v,7)
= IxIP+ly I

which concludes the proof.
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Norms on Finite Dimensional Linear Spaces

Lemma

Let p,g € R —{0,1} be two numbers such that % + % =1andp>1.
Then, for every a, b € Rxq, we have

aP b9
abg 7+7a
p q

where the equality holds if and only if a = b_ﬁ.
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Norms on Finite Dimensional Linear Spaces
Proof

Let f:[0,00) — R be the function defined by
f(x)=xP—px+p—1,

where p > 1. Note that f(1) = 0 and that f/(x) = p(xP~* — 1). This
implies that f has a minimum in x = 1 and, therefore, xP —px+p—12>0

1
for x € [0,00). Substituting ab™ »—1 for x yields the desired inequality.

33 /47



Norms on Finite Dimensional Linear Spaces

Discrete Holder's Inequality

Theorem

Let a1,...,a, and by, ..., b, be 2n nonnegative numbers, and let p and q
be two numbers such that % + % =1andp>1. We have

1 1
a,-b,- < a’? ' . bq ’ .
i=1 i=1 I i=1 I
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Norms on Finite Dimensional Linear Spaces

Proof

Define the numbers

aj b;
Xj = nipl and yi = niql
DI ESL (i bi)e
for 1 < i< n. Lemma 19 applied to x;, y; yields
ajb; 1 a° 1 b

gi 1 _‘_7 1 .
(S a)? (S b)e PR 92 b

Adding these inequalities, we obtain

1 1
S (3) (20)
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Norms on Finite Dimensional Linear Spaces

Theorem

Let aj,...,an and by, ..., b, be 2n real numbers and let p and q be two
numbers such that % + % =1and p > 1. We have

1 1
n p n q

zn:aibi <D lalP) DIkl
i=1

i=1 i=1
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Norms on Finite Dimensional Linear Spaces
Proof

By a previous theorem we have:

n n % n %
D " ail|bil < (ZI%’”) : (Zbi\q> :
i—1 i=1 i=1

The needed equality follows from the fact that

n
E a;b;
i=1

n

<3 Jaillbi

i=1
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The Cauchy-Schwarz Inequality

Corollary

Let a1,...,a, and by,..., b, be 2n real numbers. We have

n
D aibi
i=1

n n
SNDBIETEEN DRI
i=1 i=1

The inequality follows immediately by taking p = g = 2.
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Minkowski's Inequality

Theorem
Let aj,...,an and by, ..., b, be 2n nonnegative numbers. If p > 1, we
have
1 1 1
n 5 n 5 n s
(Z(a; + b,‘)p> < <Z af’) + (Z bf’) .
i=1 i=1 i=1

If p < 1, the inequality sign is reversed.
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Norms on Finite Dimensional Linear Spaces
Proof

For p =1, the inequality is immediate. Therefore, we can assume that
p > 1. Note that

n n

D (ai+bi)P = aj(aj+ bi)P Tt + Z bi(aj + bi)P~!

i=1 i=1 i=1
By Holder's inequality for p, g such that p > 1 and % + % =1, we have

1
n

S ai(ar+ by)? (Z) (Zl a,+b,~)(”‘1)‘7>q

e

n i
Z aj + bi)p .
—1 40

Similarly, we can write

Zb (ai + bi)P (Zb”)

o=



Proof (cont'd)

Adding the last two inequalities yields
1 1 1
n n b n n q
D (ai+ bi)P < (Z af) + <Z bf’) (Z(ai + bi)p) ;
i=1 i=1 i=1 '
which is equivalent to the desired inequality

() (5] (£

i=1
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Norms on Finite Dimensional Linear Spaces

Theorem

For p > 1, the function v, : R" — Rxq defined by

n P
vod) = [ Sl |
i=1

is a norm on the linear space (R",+, ).
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Norms on Finite Dimensional Linear Spaces
Proof

Let x,y € R". Minkowski's inequality applied to the nonnegative numbers
a; = |x;| and b; = |y;| amounts to

(iz_n;(\xll + lyil) > <Z |X:|”> (; Iyil”>;

Since |x; + yi| < |xi| + |yi| for every i, 1 < i < n, we have

(é(lxlﬂa ) (Z IX/”> (é Iy;!”>’1’,

that is, vp(x +y) < vp(x) + vp(y). Thus, v, is a norm on R".
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Norms on Finite Dimensional Linear Spaces

Example

Consider the mappings v1, Vo : R” — R given by

v1(x) = st + ol + -+ + [xa| and vao(x) = max{[xal, lxels . [xal},

for every x € R". Both 11 and v, are norms on R".
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Norms on Finite Dimensional Linear Spaces

To verify that v, is @ norm we start from the inequality
Ixi + yil < Ixi] + Vil € Voo(X) + voo(y) for 1 < i < n. This in turn implies

Voo (X +y) = max{|xi + yi| [ 1 <7< n} < voo(X) + veo(Y),

which gives the desired inequality.

This norm is a limit case of the norms v,,. Indeed, let x € R” and let

M =max{|x;| | 1<i<n}=|x,|="---=|x,| for some h,..., I, where
1< h,...,lk <n. Herexp,...,x, are the components of x that have the
maximal absolute value and k > 1. We can write:

n x|\ P P i
le_)mool/p(x): lim M Z(M) = lim M(k)r =M,

p—oo .
i=1

which justifies the notation v.
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Norms on Finite Dimensional Linear Spaces

We will frequently use the alternative notation || x ||, for v,(x). We refer
to the norm v, as the Euclidean norm.
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Norms on Finite Dimensional Linear Spaces

Example

X : . .

Let x = <x1) € R? be a unit vector in the sense of the Euclidean norm.
2

We have |x1 |2 + |x2|?> = 1. Since x; and xy are real numbers we can write

x1 = cosa and xp = sin«. This allows us to write

Ccos «
X = . .
SIin &
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