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Linear Spaces

Definition of Linear Spaces

Definition

Let L be a nonempty set and let (F, {0,+,−, ·, }) be either the real field R
or the complex field C.
An F-linear space is a triple (L,+, ·) such that (L, {0L,+,−}) is an
Abelian group and · : F× L −→ L is an operation such that the following
conditions are satisfied:

i a · (b · x) = (a · b) · x ,

ii 1 · x = x ,

iii a · (x + y) = a · x + a · y , and

iv (a + b) · x = a · x + b · x

for every a, b ∈ F and x , y ∈ L.
If F = R, then we refer to L as a real linear space; for F = C we say that L
is a complex linear space.
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Linear Spaces

Notations

The commutative binary operation of L is denoted by the same
symbol “+” as the corresponding operation of the field F.

The multiplication by a scalar, · : F× L −→ L is also referred to as an
external operation since its two arguments belong to two different
sets, F and L.

The neutral additive element 0L of L is referred to as the zero
element of L; every linear space must contain at least this element.

To simplify the notation, we will simply denote a linear space (L,+, ·)
by L.

4 / 47



Linear Spaces

Vectors

Let S be a nonempty set and let n ∈ N be a number such that n > 1. A
vector of length n over S is a function v : {1, . . . , n} −→ S , that is a
sequence of length n of elements of S . We denote v by

v =

v1
...

vn

 ,

where vi = v(i) is the i th component of v for 1 6 i 6 n. The set of
vectors of length n over S will be denoted by Sn.
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Linear Spaces

Example

The set Rn of vectors of length n over R is a real linear space under the
definitions

x + y =

x1 + y1
...

xn + yn

 and a · x =

a · x1
...

a · xn


of the operations + and ·, where

x =

x1
...

xn

 and y =

y1
...

yn

 .

In this linear space, the zero of the Abelian group is the n-tuple

0n =

0
...
0

 .

Similarly, the set Cn of n-tuples of complex numbers is a real linear space
under the same formal definitions of vector sum and scalar multiplication
as Rn.
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Linear Spaces

Example

The set of infinite sequences of real numbers Seq∞(R) can be organized
as a real linear space by defining the addition of two sequences

x = (x0, x1, . . .) and y = (y0, y1, . . .)

as x + y = (x0 + y0, x1 + y1, . . .), and the multiplication by cx as
cx = (cx0, cx1, . . .) for c ∈ R.
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Linear Spaces

Example

The set of complex-valued functions defined on a set S is a real linear
space. The addition of functions is given by (f + g)(s) = f (s) + g(s), and
the multiplication of a function with a real number is defined by
(af )(s) = af (s) for s ∈ S and a ∈ R.
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Linear Spaces

Example

Let S be a set. A function f : S −→ R is bounded if there exists k ∈ R
such that |f (x)| 6 k . The set of bounded functions defined on S is
denoted by bound(S). It is easy to see that the sum of two bounded
functions on S is again bounded and the product af of a bounded function
f with a ∈ R is also bounded. Thus, the set of functions bounded on S is
a real linear space.
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Linear Spaces

Relations on Rn

i x > y if xi > yi for 1 6 i 6 n;

ii x ≥ y if x > y and x 6= y;

iii x > y if xi > yi for 1 6 i 6 n.

If x > 0n, we say that x is non-negative; if x ≥ 0n, x is said to be
semi-positive, and if x > 0n, then x is positive. The relation “>” is a
partial order on Rn; the other two relations, “≥” and “>” are strict partial
orders on the same set because they lack reflexivity.
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Linear Spaces

Example

Let C be the set of real-valued continuous functions defined on R,

C = {f : R −→ R | f is continuous}.

Define f + g by (f + g)(x) = f (x) + g(x) and (a · f )(x) = a · f (x) for
x ∈ R.
The triple (C ,+, ·) is a real linear space.
Similarly, the set C [a, b] of real-valued continuous functions on [a, b] is a
real linear space.
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Inner Products

Inner Products on Complex Linear Spaces

Definition

Let L be a complex linear space. An inner product on L is a function
℘ : L× L −→ C that has the following properties:

i ℘(x , y) = ℘(y , x) for x , y ∈ L;

ii ℘(x + y , z) = ℘(x , z) + ℘(y , z) for x , y , z ∈ L;

iii ℘(ax , y) = a℘(x , y) for x , y ∈ L and a ∈ C;

iv (x , x) is a non-negative real number for x ∈ L;

v (x , x) = 0 implies x = 0L.

The pair (L, ℘) is called an inner product space.
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Inner Products

Inner Products in Real and Complex Linear Spaces

Observe that for a ∈ C we have

℘(x , ay) = a℘(x , y)

because
℘(x , ay) = ℘(ay , x) = a℘(y , x) = a℘(x , y).

If L is a real linear space we assume that ℘(x , y) ∈ R for x , y ∈ L. Thus,
for an inner product on a real linear space we have the symmetry property
℘(x , y) = ℘(y , x) for x , y ∈ L.
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Inner Products

Example

Let a1, . . . , an are n real, positive numbers. The function
℘ : Rn × Rn −→ R defined by ℘(x, y) = a1x1y1 + a2x2y2 + · · ·+ anxnyn is
an inner product on Rn, as the reader can easily verify.
If a1 = · · · = an = 1, we have the Euclidean inner product:

℘(x, y) = x1y1 + · · ·+ xnyn = y′x = x′y.

To simplify notations we denote an inner product ℘(x , y) by (x , y) when
there is no risk of confusion.
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Inner Products

Example

An inner product on Rn×n, the real linear space of matrices of format
n × n, can be defined as (X ,Y ) = trace(XY ′) for X ,Y ∈ Rn×n.
Similarly, for the complex linear space Cn×n, an inner product can be
defined as (X ,Y ) = trace(XY H).
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Inner Products

An Inner Product on Rn

A fundamental property of the inner product defined on Rn is the equality

(Ax, y) = (x,A′y), (1)

which holds for every matrix A ∈ Rn×n and x, y ∈ Rn. Indeed, we have

(Ax, y) =
n∑

i=1

(Ax)iyi =
n∑

i=1

n∑
j=1

aijxjyi =
n∑

j=1

xj

n∑
i=1

aijyi

=
n∑

j=1

xj

n∑
i=1

aijyi = (x,A′y).
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Inner Products

An Inner Product on Cn

For the complex linear space Cn we can define an inner product as

(x, y) =
n∑

i=1

xiyi = yx.

In this case we have
(Ax, y) = (x,AHy), (2)

Indeed, if A ∈ Cn×n, then

(Ax, y) =
n∑

i=1

(Ax)iyi =
n∑

i=1

n∑
j=1

aijxjyi =
n∑

j=1

xj

n∑
i=1

aijyi

=
n∑

j=1

xj

n∑
i=1

aijyi = (x,AHy)

for x, y ∈ Cn.
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Inner Products

The Cauchy-Schwarz Inequality

Theorem

Let (L, (·, ·)) be an inner product F-linear space. For x , y ∈ L we have

|(x , y)|2 6 (x , x)(y , y).
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Inner Products

Proof

We discuss the complex case. If a, b ∈ C we have

(ax + by , ax + by) = aa(x , x) + ab(x , y) + ba(y , x) + bb(y , y)

= |a|2(x , x) + 2<(ab(x , y)) + |b|2(y , y) > 0.

Let a = (y , y) and b = −(x , y). We have

(y , y)2(x , x)− 2(y , y)|(x , y)|2 + |(x , y)|2(y , y) > 0,

hence
(y , y)|(x , y)|2 6 (y , y)2(x , x).

If y = 0 the inequality obviously holds. If y 6= 0, the inequality follows.
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Seminorms and Norms

Seminorms

The notions of seminorm and norm formalize the notion of vector length.

Definition

Let L be an F-linear space. A seminorm on L is a mapping ν : L −→ R>0

that satisfies the following conditions:

i ν(x + y) 6 ν(x) + ν(y) (subadditivity), and

ii ν(ax) = |a|ν(x) (positive homogeneity),

for x , y ∈ L and every scalar a.

By taking a = 0 in the second condition of the definition we have
ν(0L) = 0 for every seminorm on a real or complex space.
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Seminorms and Norms

Theorem

If L is a real linear space and ν : L −→ R is a seminorm on L, then
ν(x − y) > |ν(x)− ν(y)| for x , y ∈ L.

Proof.

We have ν(x) 6 ν(x − y) + ν(y), so ν(x)− ν(y) 6 ν(x − y). Since
ν(y − x) + ν(x) 6 ν(y) and ν(y − x) = ν(x − y), we have the inequalities

ν(x)− ν(y) 6 ν(x − y) 6 ν(y)− ν(x),

which imply the inequality of the theorem.
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Seminorms and Norms

Definition

Let L be a real or complex linear space. A norm on L is a seminorm
ν : L −→ R such that ν(x) = 0 implies x = 0 for x ∈ L.
The pair (L, ν) is referred to as a normed linear space.
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Seminorms and Norms

Inner products on linear spaces induce norms on these spaces.

Theorem

Let (L, (·, ·)) be an inner product F-linear space. The function
‖ · ‖: L −→ R> defined by ‖ x ‖=

√
(x , x) is a norm on L.
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Seminorms and Norms

Proof

We present the argument for inner product C-linear spaces.
It is immediate from the properties of the inner product that ‖ x ‖ is a real
non-negative number and that ‖ ax ‖= |a| ‖ x ‖ for a ∈ C.
Note that

‖ x + y ‖2 = (x + y , x + y)

= (x , x) + (x , y) + (y , x) + (y , y)

= ‖ x ‖2 +2<(x , y)+ ‖ y ‖2

(because (y , x) = (x , y))

6 ‖ x ‖2 +2|(x , y)|+ ‖ y ‖2

(because <(y , x) 6 |(x , y)|)
6 ‖ x ‖2 +2 ‖ x ‖‖ y ‖ + ‖ y ‖2

(be the Cauchy-Schwarz Inequality)

= (‖ x ‖ + ‖ y ‖)2,
which produces the needed inequality.
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Seminorms and Norms

The Cauchy-Schwarz Inequality can now be formulated using the norm.

Corollary

Let (L, (·, ·)) be an inner product F-linear space. For x , y ∈ L we have

|(x , y)| 6‖ x ‖ · ‖ y ‖ .
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Seminorms and Norms

The Polarization Identity

Theorem

Let ‖ · ‖ be a norm on a complex linear space L that is generated by the
inner product (·, ·). We have the complex polarization identity:

(x , y) =
1

4

(
‖ x + y ‖2 − ‖ x − y ‖2 −i ‖ x − iy ‖2 +i ‖ x + iy ‖2

)
for x , y ∈ L.
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Seminorms and Norms

Proof

‖ x + y ‖2 = (x + y , x + y) =‖ x ‖2 + ‖ y ‖2 +(x , y) + (y , x)

= (x + y , x + y) =‖ x ‖2 + ‖ y ‖2 +(x , y) + (x , y)

= ‖ x ‖2 + ‖ y ‖2 +2<(x , y).

Replacing y by −y we have

‖ x − y ‖2=‖ x ‖2 + ‖ y ‖2 −2<(x , y),

hence ‖ x + y ‖2 − ‖ x − y ‖2= 4<(x , y). Replacing now y by iy we obtain

‖ x + iy ‖2 − ‖ x − iy ‖2= 4<(x , iy).

Note that

(x , iy) = −i(x , y) = −i(<(x , y) + i=(x , y)) = =(x , y)− i<(x , y),

so <(x , iy) = =(x , y), which implies

‖ x + iy ‖2 − ‖ x − iy ‖2= 4=(x , iy).
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Seminorms and Norms

Proof (cont’d)

Taking into account the previous equalities we can write

‖ x + y ‖2 − ‖ x − y ‖2 +i ‖ x + iy ‖2 −i ‖ x − iy ‖2

= 4<(x , y) + 4i=(x , y) = 4(x , y),

which is the desired identity.
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Seminorms and Norms

Corollary

Let ‖ · ‖ be a norm on a real linear space L that is generated by the inner
product (·, ·). We have the polarization identity

(x , y) =
1

4

(
‖ x + y ‖2 − ‖ x − y ‖2

)
for x , y ∈ L.
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Seminorms and Norms

Parallelogram Equality

Theorem

Let ‖ · ‖ be a norm on a linear space L that is generated by the inner
product (·, ·). We have the parallelogram equality:

‖ x ‖2 + ‖ y ‖2=
1

2

(
‖ x + y ‖2 + ‖ x − y ‖2

)
for x , y ∈ L.
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Seminorms and Norms

Proof

By applying the definition of ‖ · ‖ and the properties of the inner product
we can write:

1

2

(
‖ x + y ‖2 + ‖ x − y ‖2

)
=

1

2
((x + y , x + y) + (x − y , x − y))

=
1

2
((x , x) + 2(x , y) + (y , y) + (x , x)− 2(x , y) + (y , y))

= ‖ x ‖2 + ‖ y ‖2,

which concludes the proof.
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Norms on Finite Dimensional Linear Spaces

Lemma

Let p, q ∈ R− {0, 1} be two numbers such that 1
p + 1

q = 1 and p > 1.
Then, for every a, b ∈ R>0, we have

ab 6
ap

p
+

bq

q
,

where the equality holds if and only if a = b−
1

1−p .
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Norms on Finite Dimensional Linear Spaces

Proof

Let f : [0,∞) −→ R be the function defined by

f (x) = xp − px + p − 1,

where p > 1. Note that f (1) = 0 and that f ′(x) = p(xp−1 − 1). This
implies that f has a minimum in x = 1 and, therefore, xp − px + p− 1 > 0

for x ∈ [0,∞). Substituting ab−
1

p−1 for x yields the desired inequality.
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Norms on Finite Dimensional Linear Spaces

Discrete Hölder’s Inequality

Theorem

Let a1, . . . , an and b1, . . . , bn be 2n nonnegative numbers, and let p and q
be two numbers such that 1

p + 1
q = 1 and p > 1. We have

n∑
i=1

aibi 6

(
n∑

i=1

api

) 1
p

·

(
n∑

i=1

bq
i

) 1
q

.

34 / 47



Norms on Finite Dimensional Linear Spaces

Proof

Define the numbers

xi =
ai(∑n

i=1 api
) 1

p

and yi =
bi(∑n

i=1 bq
i

) 1
q

for 1 6 i 6 n. Lemma 19 applied to xi , yi yields

aibi(∑n
i=1 api

) 1
p
(∑n

i=1 bq
i

) 1
q

6
1

p

api∑n
i=1 api

+
1

q

bq
i∑n

i=1 bq
i

.

Adding these inequalities, we obtain

n∑
i=1

aibi 6

(
n∑

i=1

api

) 1
p
(

n∑
i=1

bq
i

) 1
q

.
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Norms on Finite Dimensional Linear Spaces

Theorem

Let a1, . . . , an and b1, . . . , bn be 2n real numbers and let p and q be two
numbers such that 1

p + 1
q = 1 and p > 1. We have

∣∣∣∣∣
n∑

i=1

aibi

∣∣∣∣∣ 6
(

n∑
i=1

|ai |p
) 1

p

·

(
n∑

i=1

|bi |q
) 1

q

.
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Norms on Finite Dimensional Linear Spaces

Proof

By a previous theorem we have:

n∑
i=1

|ai ||bi | 6

(
n∑

i=1

|ai |p
) 1

p

·

(
n∑

i=1

|bi |q
) 1

q

.

The needed equality follows from the fact that∣∣∣∣∣
n∑

i=1

aibi

∣∣∣∣∣ 6
n∑

i=1

|ai ||bi |.
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Norms on Finite Dimensional Linear Spaces

The Cauchy-Schwarz Inequality

Corollary

Let a1, . . . , an and b1, . . . , bn be 2n real numbers. We have∣∣∣∣∣
n∑

i=1

aibi

∣∣∣∣∣ 6
√√√√ n∑

i=1

|ai |2 ·

√√√√ n∑
i=1

|bi |2.

The inequality follows immediately by taking p = q = 2.
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Norms on Finite Dimensional Linear Spaces

Minkowski’s Inequality

Theorem

Let a1, . . . , an and b1, . . . , bn be 2n nonnegative numbers. If p > 1, we
have (

n∑
i=1

(ai + bi )
p

) 1
p

6

(
n∑

i=1

api

) 1
p

+

(
n∑

i=1

bp
i

) 1
p

.

If p < 1, the inequality sign is reversed.
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Norms on Finite Dimensional Linear Spaces

Proof

For p = 1, the inequality is immediate. Therefore, we can assume that
p > 1. Note that

n∑
i=1

(ai + bi )
p =

n∑
i=1

ai (ai + bi )
p−1 +

n∑
i=1

bi (ai + bi )
p−1.

By Hölder’s inequality for p, q such that p > 1 and 1
p + 1

q = 1, we have

n∑
i=1

ai (ai + bi )
p−1 6

(
n∑

i=1

api

) 1
p
(

n∑
i=1

(ai + bi )
(p−1)q

) 1
q

=

(
n∑

i=1

api

) 1
p
(

n∑
i=1

(ai + bi )
p

) 1
q

.

Similarly, we can write

n∑
i=1

bi (ai + bi )
p−1 6

(
n∑

i=1

bp
i

) 1
p
(

n∑
i=1

(ai + bi )
p

) 1
q

.
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Norms on Finite Dimensional Linear Spaces

Proof (cont’d)

Adding the last two inequalities yields

n∑
i=1

(ai + bi )
p 6

( n∑
i=1

api

) 1
p

+

(
n∑

i=1

bp
i

) 1
p

( n∑
i=1

(ai + bi )
p

) 1
q

,

which is equivalent to the desired inequality(
n∑

i=1

(ai + bi )
p

) 1
p

6

(
n∑

i=1

api

) 1
p

+

(
n∑

i=1

bp
i

) 1
p

.
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Norms on Finite Dimensional Linear Spaces

Theorem

For p > 1, the function νp : Rn −→ R>0 defined by

νp(x) =

(
n∑

i=1

|xi |p
) 1

p

,

is a norm on the linear space (Rn,+, ·).
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Norms on Finite Dimensional Linear Spaces

Proof

Let x, y ∈ Rn. Minkowski’s inequality applied to the nonnegative numbers
ai = |xi | and bi = |yi | amounts to(

n∑
i=1

(|xi |+ |yi |)p
) 1

p

6

(
n∑

i=1

|xi |p
) 1

p

+

(
n∑

i=1

|yi |p
) 1

p

.

Since |xi + yi | 6 |xi |+ |yi | for every i , 1 6 i 6 n, we have(
n∑

i=1

(|xi + yi |)p
) 1

p

6

(
n∑

i=1

|xi |p
) 1

p

+

(
n∑

i=1

|yi |p
) 1

p

,

that is, νp(x + y) 6 νp(x) + νp(y). Thus, νp is a norm on Rn.
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Norms on Finite Dimensional Linear Spaces

Example

Consider the mappings ν1, ν∞ : Rn −→ R given by

ν1(x) = |x1|+ |x2|+ · · ·+ |xn| and ν∞(x) = max{|x1|, |x2|, . . . , |xn|},

for every x ∈ Rn. Both ν1 and ν∞ are norms on Rn.
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Norms on Finite Dimensional Linear Spaces

To verify that ν∞ is a norm we start from the inequality
|xi + yi | 6 |xi |+ |yi | 6 ν∞(x) + ν∞(y) for 1 6 i 6 n. This in turn implies

ν∞(x + y) = max{|xi + yi | | 1 6 i 6 n} 6 ν∞(x) + ν∞(y),

which gives the desired inequality.
This norm is a limit case of the norms νp. Indeed, let x ∈ Rn and let
M = max{|xi | | 1 6 i 6 n} = |xl1 | = · · · = |xlk | for some l1, . . . , lk , where
1 6 l1, . . . , lk 6 n. Here xl1 , . . . , xlk are the components of x that have the
maximal absolute value and k > 1. We can write:

lim
p→∞

νp(x) = lim
p→∞

M

(
n∑

i=1

(
|xi |
M

)p
) 1

p

= lim
p→∞

M(k)
1
p = M,

which justifies the notation ν∞.
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Norms on Finite Dimensional Linear Spaces

We will frequently use the alternative notation ‖ x ‖p for νp(x). We refer
to the norm ν2 as the Euclidean norm.
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Norms on Finite Dimensional Linear Spaces

Example

Let x =

(
x1
x2

)
∈ R2 be a unit vector in the sense of the Euclidean norm.

We have |x1|2 + |x2|2 = 1. Since x1 and x2 are real numbers we can write
x1 = cosα and x2 = sinα. This allows us to write

x =

(
cosα
sinα

)
.
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