Inner Products and Norms (part I)

Prof. Dan A. Simovici

UMB

- Linear Spaces
- 2 Inner Products
- Seminorms and Norms

4 Norms on Finite Dimensional Linear Spaces

Definition of Linear Spaces

Definition

Let L be a nonempty set and let $(\mathbb{F}, \{0, +, -, \cdot, \})$ be either the real field \mathbb{R} or the complex field \mathbb{C} .

An \mathbb{F} -linear space is a triple $(L,+,\cdot)$ such that $(L,\{0_L,+,-\})$ is an Abelian group and $\cdot: \mathbb{F} \times L \longrightarrow L$ is an operation such that the following conditions are satisfied:

- $0 \cdot 1 \cdot x = x$
- $a \cdot (x + y) = a \cdot x + a \cdot y$, and
- $(a+b) \cdot x = a \cdot x + b \cdot x$

for every $a, b \in F$ and $x, y \in L$.

If $\mathbb{F} = \mathbb{R}$, then we refer to L as a *real linear space*; for $\mathbb{F} = \mathbb{C}$ we say that L is a *complex linear space*.

Notations

- The commutative binary operation of L is denoted by the same symbol "+" as the corresponding operation of the field \mathbb{F} .
- The multiplication by a scalar, $\cdot : \mathbb{F} \times L \longrightarrow L$ is also referred to as an external operation since its two arguments belong to two different sets, \mathbb{F} and L.
- The neutral additive element 0_L of L is referred to as the zero element of L; every linear space must contain at least this element.
- To simplify the notation, we will simply denote a linear space $(L,+,\cdot)$ by L.

Vectors

Let S be a nonempty set and let $n \in \mathbb{N}$ be a number such that $n \geqslant 1$. A vector of length n over S is a function $\mathbf{v}: \{1, \ldots, n\} \longrightarrow S$, that is a sequence of length n of elements of S. We denote \mathbf{v} by

$$\mathbf{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix},$$

where $v_i = \mathbf{v}(i)$ is the i^{th} component of \mathbf{v} for $1 \le i \le n$. The set of vectors of length n over S will be denoted by S^n .

The set \mathbb{R}^n of vectors of length n over \mathbb{R} is a real linear space under the definitions

$$\mathbf{x} + \mathbf{y} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$
 and $\mathbf{a} \cdot \mathbf{x} = \begin{pmatrix} \mathbf{a} \cdot x_1 \\ \vdots \\ \mathbf{a} \cdot x_n \end{pmatrix}$

of the operations + and \cdot , where

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 and $\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$.

In this linear space, the zero of the Abelian group is the *n*-tuple

$$\mathbf{0}_n = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}.$$

The set of infinite sequences of real numbers $\mathbf{Seq}_{\infty}(\mathbb{R})$ can be organized as a real linear space by defining the addition of two sequences

$$\mathbf{x} = (x_0, x_1, \ldots)$$
 and $\mathbf{y} = (y_0, y_1, \ldots)$

as $\mathbf{x} + \mathbf{y} = (x_0 + y_0, x_1 + y_1, ...)$, and the multiplication by $c\mathbf{x}$ as $c\mathbf{x} = (cx_0, cx_1, ...)$ for $c \in \mathbb{R}$.

The set of complex-valued functions defined on a set S is a real linear space. The addition of functions is given by (f+g)(s)=f(s)+g(s), and the multiplication of a function with a real number is defined by (af)(s)=af(s) for $s\in S$ and $a\in \mathbb{R}$.

Let S be a set. A function $f:S\longrightarrow \mathbb{R}$ is *bounded* if there exists $k\in \mathbb{R}$ such that $|f(x)|\leqslant k$. The set of bounded functions defined on S is denoted by bound(S). It is easy to see that the sum of two bounded functions on S is again bounded and the product af of a bounded function f with $a\in \mathbb{R}$ is also bounded. Thus, the set of functions bounded on S is a real linear space.

Relations on \mathbb{R}^n

- **1** $\mathbf{x} \geqslant \mathbf{y}$ if $x_i \geqslant y_i$ for $1 \leqslant i \leqslant n$;
- $\mathbf{0} \mathbf{x} \geq \mathbf{y} \text{ if } \mathbf{x} \geqslant \mathbf{y} \text{ and } \mathbf{x} \neq \mathbf{y};$
- \bullet **x** > **y** if $x_i > y_i$ for $1 \leqslant i \leqslant n$.

If $\mathbf{x} \geqslant \mathbf{0}_n$, we say that \mathbf{x} is *non-negative*; if $\mathbf{x} \geq \mathbf{0}_n$, \mathbf{x} is said to be *semi-positive*, and if $\mathbf{x} > \mathbf{0}_n$, then \mathbf{x} is *positive*. The relation " \geqslant " is a partial order on \mathbb{R}^n ; the other two relations, " \ge " and ">" are strict partial orders on the same set because they lack reflexivity.

Let C be the set of real-valued continuous functions defined on \mathbb{R} ,

$$C = \{f : \mathbb{R} \longrightarrow \mathbb{R} \mid f \text{ is continuous}\}.$$

Define f + g by (f + g)(x) = f(x) + g(x) and $(a \cdot f)(x) = a \cdot f(x)$ for $x \in \mathbb{R}$.

The triple $(C, +, \cdot)$ is a real linear space.

Similarly, the set C[a, b] of real-valued continuous functions on [a, b] is a real linear space.

Inner Products on Complex Linear Spaces

Definition

Let L be a complex linear space. An *inner product* on L is a function $\wp: L \times L \longrightarrow \mathbb{C}$ that has the following properties:

- (x,x) is a non-negative real number for $x \in L$;
- (x,x) = 0 implies $x = 0_L$.

The pair (L, \wp) is called an *inner product space*.

Inner Products in Real and Complex Linear Spaces

Observe that for $a \in \mathbb{C}$ we have

$$\wp(x,ay) = \overline{a}\wp(x,y)$$

because

$$\wp(x, ay) = \overline{\wp(ay, x)} = \overline{a}\overline{\wp(y, x)} = \overline{a}\wp(x, y).$$

If L is a real linear space we assume that $\wp(x,y) \in \mathbb{R}$ for $x,y \in L$. Thus, for an inner product on a real linear space we have the symmetry property $\wp(x,y) = \wp(y,x)$ for $x,y \in L$.

Let a_1, \ldots, a_n are n real, positive numbers. The function $\wp: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ defined by $\wp(\mathbf{x}, \mathbf{y}) = a_1 x_1 y_1 + a_2 x_2 y_2 + \cdots + a_n x_n y_n$ is an inner product on \mathbb{R}^n , as the reader can easily verify. If $a_1 = \cdots = a_n = 1$, we have the *Euclidean inner product*:

$$\wp(\mathbf{x},\mathbf{y})=x_1y_1+\cdots+x_ny_n=\mathbf{y}'\mathbf{x}=\mathbf{x}'\mathbf{y}.$$

To simplify notations we denote an inner product $\wp(x,y)$ by (x,y) when there is no risk of confusion.

An inner product on $\mathbb{R}^{n\times n}$, the real linear space of matrices of format $n\times n$, can be defined as (X,Y)=trace(XY') for $X,Y\in\mathbb{R}^{n\times n}$. Similarly, for the complex linear space $\mathbb{C}^{n\times n}$, an inner product can be defined as $(X,Y)=trace(XY^{\mathsf{H}})$.

An Inner Product on \mathbb{R}^n

A fundamental property of the inner product defined on \mathbb{R}^n is the equality

$$(A\mathbf{x}, \mathbf{y}) = (\mathbf{x}, A'\mathbf{y}), \tag{1}$$

which holds for every matrix $A \in \mathbb{R}^{n \times n}$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Indeed, we have

$$(A\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} (A\mathbf{x})_{i} y_{i} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{j} y_{i} = \sum_{j=1}^{n} x_{j} \sum_{i=1}^{n} a_{ij} y_{i}$$
$$= \sum_{j=1}^{n} x_{j} \sum_{i=1}^{n} a_{ij} y_{i} = (\mathbf{x}, A'\mathbf{y}).$$

An Inner Product on \mathbb{C}^n

For the complex linear space \mathbb{C}^n we can define an inner product as

$$(\mathbf{x},\mathbf{y}) = \sum_{i=1}^n x_i \overline{y_i} = \overline{\mathbf{y}} \mathbf{x}.$$

In this case we have

$$(A\mathbf{x}, \mathbf{y}) = (\mathbf{x}, A^{\mathsf{H}}\mathbf{y}), \tag{2}$$

Indeed, if $A \in \mathbb{C}^{n \times n}$, then

$$(A\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} (A\mathbf{x})_{i} \overline{y_{i}} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{j} \overline{y_{i}} = \sum_{j=1}^{n} x_{j} \sum_{i=1}^{n} a_{ij} \overline{y_{i}}$$
$$= \sum_{i=1}^{n} x_{j} \sum_{i=1}^{n} \overline{a_{ij}} y_{i} = (\mathbf{x}, A^{\mathsf{H}} \mathbf{y})$$

for $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$.

The Cauchy-Schwarz Inequality

Theorem

Let $(L, (\cdot, \cdot))$ be an inner product \mathbb{F} -linear space. For $x, y \in L$ we have $|(x, y)|^2 \leq (x, x)(y, y)$.

Proof

We discuss the complex case. If $a, b \in \mathbb{C}$ we have

$$(ax + by, ax + by) = a\overline{a}(x, x) + a\overline{b}(x, y) + b\overline{a}(y, x) + b\overline{b}(y, y)$$
$$= |a|^2(x, x) + 2\Re(a\overline{b}(x, y)) + |b|^2(y, y) \ge 0.$$

Let a = (y, y) and b = -(x, y). We have

$$(y,y)^2(x,x) - 2(y,y)|(x,y)|^2 + |(x,y)|^2(y,y) \ge 0,$$

hence

$$(y,y)|(x,y)|^2 \leqslant (y,y)^2(x,x).$$

If y = 0 the inequality obviously holds. If $y \neq 0$, the inequality follows.

Seminorms

The notions of seminorm and norm formalize the notion of vector length.

Definition

Let L be an \mathbb{F} -linear space. A *seminorm* on L is a mapping $\nu: L \longrightarrow \mathbb{R}_{\geqslant 0}$ that satisfies the following conditions:

- $\nu(ax) = |a|\nu(x)$ (positive homogeneity),

for $x, y \in L$ and every scalar a.

By taking a=0 in the second condition of the definition we have $\nu(0_L)=0$ for every seminorm on a real or complex space.

Theorem

If L is a real linear space and $\nu:L\longrightarrow\mathbb{R}$ is a seminorm on L, then $\nu(x-y)\geqslant |\nu(x)-\nu(y)|$ for $x,y\in L$.

Proof.

We have $\nu(x) \leqslant \nu(x-y) + \nu(y)$, so $\nu(x) - \nu(y) \leqslant \nu(x-y)$. Since $\nu(y-x) + \nu(x) \leqslant \nu(y)$ and $\nu(y-x) = \nu(x-y)$, we have the inequalities

$$\nu(x) - \nu(y) \leqslant \nu(x - y) \leqslant \nu(y) - \nu(x),$$

which imply the inequality of the theorem.

Definition

Let L be a real or complex linear space. A *norm* on L is a seminorm $\nu: L \longrightarrow \mathbb{R}$ such that $\nu(x) = 0$ implies x = 0 for $x \in L$. The pair (L, ν) is referred to as a *normed linear space*.

Inner products on linear spaces induce norms on these spaces.

Theorem

Let $(L,(\cdot,\cdot))$ be an inner product \mathbb{F} -linear space. The function $\|\cdot\|:L\longrightarrow\mathbb{R}_\geqslant$ defined by $\|x\|=\sqrt{(x,x)}$ is a norm on L.

Proof

We present the argument for inner product \mathbb{C} -linear spaces. It is immediate from the properties of the inner product that $\parallel x \parallel$ is a real non-negative number and that $\parallel ax \parallel = |a| \parallel x \parallel$ for $a \in \mathbb{C}$. Note that

$$\| x + y \|^{2} = (x + y, x + y)$$

$$= (x, x) + (x, y) + (y, x) + (y, y)$$

$$= \| x \|^{2} + 2\Re(x, y) + \| y \|^{2}$$
(because $(y, x) = \overline{(x, y)}$)
$$\leqslant \| x \|^{2} + 2|(x, y)| + \| y \|^{2}$$
(because $\Re(y, x) \leqslant |(x, y)|$)
$$\leqslant \| x \|^{2} + 2 \| x \| \| y \| + \| y \|^{2}$$
(be the Cauchy-Schwarz Inequality)
$$= (\| x \| + \| y \|)^{2},$$

which produces the needed inequality.

The Cauchy-Schwarz Inequality can now be formulated using the norm.

Corollary

Let $(L,(\cdot,\cdot))$ be an inner product \mathbb{F} -linear space. For $x,y\in L$ we have

$$|(x,y)| \leqslant ||x|| \cdot ||y||.$$

The Polarization Identity

Theorem

Let $\|\cdot\|$ be a norm on a complex linear space L that is generated by the inner product (\cdot, \cdot) . We have the complex polarization identity:

$$(x,y) = \frac{1}{4} (||x+y||^2 - ||x-y||^2 - i||x-iy||^2 + i||x+iy||^2)$$

for $x, y \in L$.

Proof

$$|| x + y ||^{2} = (x + y, x + y) = || x ||^{2} + || y ||^{2} + (x, y) + (y, x)$$

$$= (x + y, x + y) = || x ||^{2} + || y ||^{2} + (x, y) + (x, y)$$

$$= || x ||^{2} + || y ||^{2} + 2\Re(x, y).$$

Replacing y by -y we have

$$||x - y||^2 = ||x||^2 + ||y||^2 - 2\Re(x, y),$$

hence
$$\|x+y\|^2 - \|x-y\|^2 = 4\Re(x,y)$$
. Replacing now y by iy we obtain $\|x+iy\|^2 - \|x-iy\|^2 = 4\Re(x,iy)$.

Note that

$$(x, iy) = -i(x, y) = -i(\Re(x, y) + i\Im(x, y)) = \Im(x, y) - i\Re(x, y),$$

so $\Re(x, iy) = \Im(x, y)$, which implies

$$||x + iy||^2 - ||x - iy||^2 = 4\Im(x, iy).$$

Proof (cont'd)

Taking into account the previous equalities we can write

$$||x + y||^{2} - ||x - y||^{2} + i||x + iy||^{2} - i||x - iy||^{2}$$

$$= 4\Re(x, y) + 4i\Im(x, y) = 4(x, y),$$

which is the desired identity.

Corollary

Let $\|\cdot\|$ be a norm on a real linear space L that is generated by the inner product (\cdot,\cdot) . We have the polarization identity

$$(x,y) = \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2)$$

for $x, y \in L$.

Parallelogram Equality

Theorem

Let $\|\cdot\|$ be a norm on a linear space L that is generated by the inner product (\cdot,\cdot) . We have the parallelogram equality:

$$||x||^2 + ||y||^2 = \frac{1}{2} (||x + y||^2 + ||x - y||^2)$$

for $x, y \in L$.

Proof

By applying the definition of $\|\cdot\|$ and the properties of the inner product we can write:

$$\frac{1}{2} (\|x+y\|^2 + \|x-y\|^2)
= \frac{1}{2} ((x+y,x+y) + (x-y,x-y))
= \frac{1}{2} ((x,x) + 2(x,y) + (y,y) + (x,x) - 2(x,y) + (y,y))
= \|x\|^2 + \|y\|^2,$$

which concludes the proof.

Lemma

Let $p,q\in\mathbb{R}-\{0,1\}$ be two numbers such that $\frac{1}{p}+\frac{1}{q}=1$ and p>1. Then, for every $a,b\in\mathbb{R}_{\geqslant 0}$, we have

$$ab\leqslant rac{a^p}{p}+rac{b^q}{q},$$

where the equality holds if and only if $a = b^{-\frac{1}{1-p}}$.

Proof

Let $f:[0,\infty)\longrightarrow\mathbb{R}$ be the function defined by

$$f(x) = x^p - px + p - 1,$$

where p>1. Note that f(1)=0 and that $f'(x)=p(x^{p-1}-1)$. This implies that f has a minimum in x=1 and, therefore, $x^p-px+p-1\geqslant 0$ for $x\in [0,\infty)$. Substituting $ab^{-\frac{1}{p-1}}$ for x yields the desired inequality.

Discrete Hölder's Inequality

Theorem

Let a_1, \ldots, a_n and b_1, \ldots, b_n be 2n nonnegative numbers, and let p and q be two numbers such that $\frac{1}{p} + \frac{1}{q} = 1$ and p > 1. We have

$$\sum_{i=1}^n a_i b_i \leqslant \left(\sum_{i=1}^n a_i^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^n b_i^q\right)^{\frac{1}{q}}.$$

Proof

Define the numbers

$$x_i = \frac{a_i}{\left(\sum_{i=1}^n a_i^p\right)^{\frac{1}{p}}} \text{ and } y_i = \frac{b_i}{\left(\sum_{i=1}^n b_i^q\right)^{\frac{1}{q}}}$$

for $1 \le i \le n$. Lemma 19 applied to x_i, y_i yields

$$\frac{a_i b_i}{\left(\sum_{i=1}^n a_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^n b_i^q\right)^{\frac{1}{q}}} \leqslant \frac{1}{p} \frac{a_i^p}{\sum_{i=1}^n a_i^p} + \frac{1}{q} \frac{b_i^q}{\sum_{i=1}^n b_i^q}.$$

Adding these inequalities, we obtain

$$\sum_{i=1}^n a_i b_i \leqslant \left(\sum_{i=1}^n a_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^n b_i^q\right)^{\frac{1}{q}}.$$

Theorem

Let a_1, \ldots, a_n and b_1, \ldots, b_n be 2n real numbers and let p and q be two numbers such that $\frac{1}{p} + \frac{1}{q} = 1$ and p > 1. We have

$$\left|\sum_{i=1}^n a_i b_i\right| \leqslant \left(\sum_{i=1}^n |a_i|^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^n |b_i|^q\right)^{\frac{1}{q}}.$$

Proof

By a previous theorem we have:

$$\sum_{i=1}^{n} |a_i| |b_i| \leqslant \left(\sum_{i=1}^{n} |a_i|^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^{n} |b_i|^q\right)^{\frac{1}{q}}.$$

The needed equality follows from the fact that

$$\left|\sum_{i=1}^n a_i b_i\right| \leqslant \sum_{i=1}^n |a_i| |b_i|.$$

The Cauchy-Schwarz Inequality

Corollary

Let a_1, \ldots, a_n and b_1, \ldots, b_n be 2n real numbers. We have

$$\left|\sum_{i=1}^n a_i b_i\right| \leqslant \sqrt{\sum_{i=1}^n |a_i|^2} \cdot \sqrt{\sum_{i=1}^n |b_i|^2}.$$

The inequality follows immediately by taking p = q = 2.

Minkowski's Inequality

Theorem

Let a_1, \ldots, a_n and b_1, \ldots, b_n be 2n nonnegative numbers. If $p \geqslant 1$, we have

$$\left(\sum_{i=1}^n (a_i+b_i)^p\right)^{\frac{1}{p}}\leqslant \left(\sum_{i=1}^n a_i^p\right)^{\frac{1}{p}}+\left(\sum_{i=1}^n b_i^p\right)^{\frac{1}{p}}.$$

If p < 1, the inequality sign is reversed.

Proof

For p=1, the inequality is immediate. Therefore, we can assume that p>1. Note that

$$\sum_{i=1}^{n} (a_i + b_i)^p = \sum_{i=1}^{n} a_i (a_i + b_i)^{p-1} + \sum_{i=1}^{n} b_i (a_i + b_i)^{p-1}.$$

By Hölder's inequality for p,q such that p>1 and $\frac{1}{p}+\frac{1}{q}=1$, we have

$$\sum_{i=1}^{n} a_i (a_i + b_i)^{p-1} \leq \left(\sum_{i=1}^{n} a_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} (a_i + b_i)^{(p-1)q}\right)^{\frac{1}{q}}$$

$$= \left(\sum_{i=1}^{n} a_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} (a_i + b_i)^p\right)^{\frac{1}{q}}.$$

Similarly, we can write

$$\sum_{i=1}^{n} b_i (a_i + b_i)^{p-1} \leqslant \left(\sum_{i=1}^{n} b_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} (a_i + b_i)^p\right)^{\frac{1}{q}}.$$

Proof (cont'd)

Adding the last two inequalities yields

$$\sum_{i=1}^{n} (a_i + b_i)^p \leqslant \left(\left(\sum_{i=1}^{n} a_i^p \right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} b_i^p \right)^{\frac{1}{p}} \right) \left(\sum_{i=1}^{n} (a_i + b_i)^p \right)^{\frac{1}{q}},$$

which is equivalent to the desired inequality

$$\left(\sum_{i=1}^n (a_i+b_i)^p\right)^{\frac{1}{p}}\leqslant \left(\sum_{i=1}^n a_i^p\right)^{\frac{1}{p}}+\left(\sum_{i=1}^n b_i^p\right)^{\frac{1}{p}}.$$

Theorem

For $p \geqslant 1$, the function $\nu_p : \mathbb{R}^n \longrightarrow \mathbb{R}_{\geqslant 0}$ defined by

$$\nu_p(\mathbf{x}) = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}},\,$$

is a norm on the linear space $(\mathbb{R}^n, +, \cdot)$.

Proof

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Minkowski's inequality applied to the nonnegative numbers $a_i = |x_i|$ and $b_i = |y_i|$ amounts to

$$\left(\sum_{i=1}^{n}(|x_i|+|y_i|)^p\right)^{\frac{1}{p}} \leqslant \left(\sum_{i=1}^{n}|x_i|^p\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{n}|y_i|^p\right)^{\frac{1}{p}}.$$

Since $|x_i + y_i| \le |x_i| + |y_i|$ for every $i, 1 \le i \le n$, we have

$$\left(\sum_{i=1}^{n}(|x_i+y_i|)^p\right)^{\frac{1}{p}} \leqslant \left(\sum_{i=1}^{n}|x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n}|y_i|^p\right)^{\frac{1}{p}},$$

that is, $\nu_p(\mathbf{x} + \mathbf{y}) \leq \nu_p(\mathbf{x}) + \nu_p(\mathbf{y})$. Thus, ν_p is a norm on \mathbb{R}^n .

Consider the mappings $\nu_1, \nu_\infty : \mathbb{R}^n \longrightarrow \mathbb{R}$ given by

$$\nu_1(\mathbf{x}) = |x_1| + |x_2| + \dots + |x_n| \text{ and } \nu_\infty(\mathbf{x}) = \max\{|x_1|, |x_2|, \dots, |x_n|\},$$

for every $\mathbf{x} \in \mathbb{R}^n$. Both ν_1 and ν_{∞} are norms on \mathbb{R}^n .

To verify that ν_{∞} is a norm we start from the inequality $|x_i + y_i| \leq |x_i| + |y_i| \leq \nu_{\infty}(\mathbf{x}) + \nu_{\infty}(\mathbf{y})$ for $1 \leq i \leq n$. This in turn implies

$$\nu_{\infty}(\mathbf{x} + \mathbf{y}) = \max\{|x_i + y_i| \mid 1 \leqslant i \leqslant n\} \leqslant \nu_{\infty}(\mathbf{x}) + \nu_{\infty}(\mathbf{y}),$$

which gives the desired inequality.

This norm is a limit case of the norms ν_p . Indeed, let $\mathbf{x} \in \mathbb{R}^n$ and let $M = \max\{|x_i| \mid 1 \leqslant i \leqslant n\} = |x_{l_1}| = \cdots = |x_{l_k}|$ for some l_1, \ldots, l_k , where $1 \leqslant l_1, \ldots, l_k \leqslant n$. Here x_{l_1}, \ldots, x_{l_k} are the components of \mathbf{x} that have the maximal absolute value and $k \geqslant 1$. We can write:

$$\lim_{p\to\infty}\nu_p(\mathbf{x})=\lim_{p\to\infty}M\left(\sum_{i=1}^n\left(\frac{|x_i|}{M}\right)^p\right)^{\frac{1}{p}}=\lim_{p\to\infty}M(k)^{\frac{1}{p}}=M,$$

which justifies the notation ν_{∞} .

We will frequently use the alternative notation $\|\mathbf{x}\|_p$ for $\nu_p(\mathbf{x})$. We refer to the norm ν_2 as the *Euclidean norm*.

Let $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$ be a unit vector in the sense of the Euclidean norm.

We have $|x_1|^2 + |x_2|^2 = 1$. Since x_1 and x_2 are real numbers we can write $x_1 = \cos \alpha$ and $x_2 = \sin \alpha$. This allows us to write

$$\mathbf{x} = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}.$$