Inner Products and Norms (part II)

Prof. Dan A. Simovici

UMB

Metrics

- Metrics Generated by Norms
- Normed Spaces of Sequences
- 4 Orthogonality

Dissimilarities

Definition

A dissimilarity on a set S is a function $d: S^2 \longrightarrow \mathbb{R}_{\geqslant 0}$ satisfying the following conditions:

The pair (S, d) is a dissimilarity space.

The set of dissimilarities defined on a set S is denoted by \mathcal{D}_S .

Other Properties of Dissimilarities

- d(x,y) = 0 implies d(x,z) = d(y,z) for every $x,y,z \in S$ (evenness);
- ② d(x, y) = 0 implies x = y for every x, y (definiteness);
- **3** $d(x,y) \leq d(x,z) + d(z,y)$ for every x,y,z (triangular inequality);
- $d(x,y) \leq \max\{d(x,z),d(z,y)\}$ for every x,y,z (the ultrametric inequality);
- $d(x,y) + d(u,v) \le \max\{d(x,u) + d(y,v), d(x,v) + d(y,u)\}$ for every x,y,u,v (Buneman's inequality, also known as the four-point condition).

If $d:S^2\longrightarrow \mathbb{R}$ is a function that satisfies the properties of dissimilarities and the triangular inequality, then the values of d are nonnegative numbers. Indeed, by taking x=y in the triangular inequality, we have

$$0 = d(x,x) \leqslant d(x,z) + d(z,x) = 2d(x,z),$$

for every $z \in S$.

Classes of Dissimilarities

Definition

A dissimilarity $d \in \mathcal{D}_S$ is

- a pseudo-metric if it satisfies the triangular inequality;
- a metric if it satisfies the definiteness property and the triangular inequality,
- a tree metric if it satisfies the definiteness property and Buneman's inequality, and
- an ultrametric if it satisfies the definiteness property and the ultrametric inequality.

The set of metrics on a set S is denoted by \mathfrak{M}_S . The sets of tree metrics and ultrametrics on a set S are denoted by \mathfrak{T}_S and \mathfrak{U}_S , respectively.

Metrics

A function $d: S^2 \longrightarrow \mathbb{R}_{\geqslant 0}$ is a metric if it has the following properties:

If the first property is replaced by the weaker requirement that d(x,x)=0 for $x \in S$, then we refer to d as a semimetric on S. Thus, if d is a semimetric d(x,y)=0 does not necessarily imply x=y and we can have for two distinct elements x,y of S, d(x,y)=0.

Example

Let S be a nonempty set. Define the mapping $d:S^2\longrightarrow \mathbb{R}_{\geqslant 0}$ by

$$d(u, v) = \begin{cases} 1 & \text{if } u \neq v, \\ 0 & \text{otherwise,} \end{cases}$$

for $x,y\in S$. It is clear that d satisfies the definiteness property. The triangular inequality, $d(x,y)\leqslant d(x,z)+d(z,y)$ is satisfied if x=y. Therefore, suppose that $x\neq y$, so d(x,y)=1. Then, for every $z\in S$, we have at least one of the inequalities $x\neq z$ or $z\neq y$, so at least one of the numbers d(x,z) or d(z,y) equals 1. Thus d satisfies the triangular inequality. The metric d introduced here is the discrete metric on S.

Example

Consider the mapping $d_h: (\mathbf{Seq}_n(S))^2 \longrightarrow \mathbb{R}_{\geqslant 0}$ defined by

$$d_h(\mathbf{p}, \mathbf{q}) = |\{i \mid 0 \leqslant i \leqslant n-1 \text{ and } \mathbf{p}(i) \neq \mathbf{q}(i)\}|$$

for all sequences \mathbf{p} , \mathbf{q} of length n on the set S.

Clearly, d_h is a dissimilarity that is both even and definite. Moreover, it satisfies the triangular inequality. Indeed, let \mathbf{p} , \mathbf{q} , \mathbf{r} be three sequences of length n on the set S. If $\mathbf{p}(i) \neq \mathbf{q}(i)$, then $\mathbf{r}(i)$ must be distinct from at least one of $\mathbf{p}(i)$ and $\mathbf{q}(i)$. Therefore,

$$\{i \mid 0 \leqslant i \leqslant n-1 \text{ and } \mathbf{p}(i) \neq \mathbf{q}(i)\}$$

$$\subseteq \{i \mid 0 \leqslant i \leqslant n-1 \text{ and } \mathbf{p}(i) \neq \mathbf{r}(i)\} \cup \{i \mid 0 \leqslant i \leqslant n-1 \text{ and } \mathbf{r}(i) \neq \mathbf{q}(i)\}$$

which implies the triangular inequality. This distance is known as the Hamming distance on $\mathbf{Seq}_n(S)$.

If we need to compare sequences of unequal length, we can use an extended metric d'_h defined by

$$d_h'(\mathbf{x}, \mathbf{y}) = \begin{cases} |\{i \mid 0 \leqslant i \leqslant |\mathbf{x}| - 1, x_i \neq y_i\} & \text{if } |\mathbf{x}| = |\mathbf{y}|, \\ \infty & \text{if } |\mathbf{x}| \neq |\mathbf{y}|. \end{cases}$$

Example

Define the mapping $d: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}_{\geqslant 0}$ as d(x,y) = |x-y| for $x,y \in \mathbb{R}$. It is clear that d(x,y) = 0 if and only if x = y and that d(x,y) = d(y,x) for $x,y \in S$;

To prove the triangular inequality suppose that $x \le y \le z$. Then, d(x,z) + d(z,y) = z - x + z - y = 2z - x - y and we have 2z - x - y > y - x = d(x,y) because z > y. The triangular inequality is similarly satisfied no matter what the relative order of x, y, z is.

Open and Closed Spheres

Definition

Let (S, d) be a metric space. The closed sphere centered in $x \in S$ of radius r is the set

$$B_d[x,r] = \{ y \in S | d(x,y) \leqslant r \}.$$

The open sphere centered in $x \in S$ of radius r is the set

$$B_d(x,r) = \{ y \in S | d(x,y) < r \}.$$

The spherical surface centered in $x \in S$ of radius r is the set

$$S_n(x,r) = \{ y \in S \mid d(x,y) = r \}.$$

If the metric d is clear from context we drop the subscript d and replace $B_d[x, r]$ and $B_d(x, r)$ by B[x, r] and B(x, r), repectively.

Definition

Let (S,d) be a metric space. The diameter of a subset U of S is the number $diam_{S,d}(U) = \sup\{d(x,y) \mid x,y \in U\}$. The set U is bounded if $diam_{S,d}(U)$ is finite.

The diameter of the metric space (S, d) is the number

$$diam_{S,d} = \sup\{d(x,y) \mid x,y \in S\}.$$

If the metric space is clear from the context, then we denote the diameter of a subset U just by diam(U).

If (S,d) is a finite metric space, then $diam_{S,d} = \max\{d(x,y) \mid x,y \in S\}$.

Definition

Let (S, d) and (T, d') be two metric spaces. An isometry between these spaces is a function $f: S \longrightarrow T$ that satisfies the equality

$$d'(f(x), f(y)) = d(x, y)$$

for every $x, y \in S$.

If an isometry exists between (S, d) and (T, d') we say that these metric spaces are isometric.

Note that if $f: S \longrightarrow T$ is an isometry, then f(x) = f(y) implies d(f(x), f(y)) = d(x, y) = 0, which yields x = y for $x, y \in S$. Therefore, every isometry is injective.

A surjective isometry is, therefore, a bijection.

Theorem

Each norm $\nu: L \longrightarrow \mathbb{R}_{\geqslant 0}$ on a linear space L generates a metric on the set L defined by $d_{\nu}(\mathbf{x}, \mathbf{y}) = \nu \mathbf{x} - \mathbf{y}$ for $\mathbf{x}, \mathbf{y} \in L$.

Proof

Note that if $d_{\nu}(\mathbf{x},\mathbf{y}) = \nu \mathbf{x} - \mathbf{y} = 0$, it follows that $\mathbf{x} - \mathbf{y} = \mathbf{0}_{L}$, so $\mathbf{x} = \mathbf{y}$. The symmetry of d_{ν} is obvious and so we need to verify only the triangular axiom. Let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in L$. We have

$$\nu(\mathbf{x} - \mathbf{z}) = \nu(\mathbf{x} - \mathbf{y} + \mathbf{y} - \mathbf{z}) \leqslant \nu(\mathbf{x} - \mathbf{y}) + \nu(\mathbf{y} - \mathbf{z})$$

or, equivalently, $d_{\nu}(\mathbf{x}, \mathbf{z}) \leq d_{\nu}(\mathbf{x}, \mathbf{y}) + d_{\nu}(\mathbf{y}, \mathbf{z})$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z} \in L$, which concludes the argument.

We refer to d_{ν} as the metric induced by the norm ν on the linear space L.

Norms Generated by Translation-Invariant Metrics

The metric d_{ν} on L induced by a norm is translation invariant, that is, $d_{\nu}(x+z,y+z)=d_{\nu}(x,y)$ for every $z\in L$. Also, for every $a\in \mathbb{R}$ and $x,y\in L$ we have the homogeneity property $d_{\nu}(ax,ay)=|a|d_{\nu}(x,y)$ for $x,y\in L$.

Theorem

Let L be a real linear space and let $d: L \times L \longrightarrow \mathbb{R}_{\geqslant 0}$ be a metric on L. If d is translation invariant and homogeneous, then there exists a norm ν of L such that $d=d_{\nu}$.

Proof: Let d be a metric on L that is translation invariant and homogeneous. Define $\nu(x) = d(x, 0_L)$. It follows immediately that ν is a norm on L.

Minkowski Metrics

For $p \geqslant 1$, then d_p denotes the metric d_{ν_p} induced by the norm ν_p on the linear space $(\mathbb{R}^n,+,\cdot)$ known as the Minkowski metric on \mathbb{R}^n .

The metrics d_1, d_2 and d_{∞} defined on \mathbb{R}^n are given by

$$d_{1}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} |x_{i} - y_{i}|,$$

$$d_{2}(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{n} |x_{i} - y_{i}|^{2}},$$

$$d_{\infty}(\mathbf{x}, \mathbf{y}) = \max\{|x_{i} - y_{i}| \mid 1 \leq i \leq n\},$$

for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

lf

$$\mathbf{x} = \begin{pmatrix} x_0 \\ x_1 \end{pmatrix}$$
 and $\mathbf{y} = \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}$,

then $d_1(\mathbf{x}, \mathbf{y})$ is the sum of the lengths of the two legs of the triangle, $d_2(\mathbf{x}, \mathbf{y})$ is the length of the hypotenuse of the right triangle and $d_{\infty}(\mathbf{x}, \mathbf{y})$ is the largest of the lengths of the legs.

The distances $d_1(\mathbf{x}, \mathbf{y}), d_2(\mathbf{x}, \mathbf{y})$ and $d_{\infty}(\mathbf{x}, \mathbf{y})$.

Lemma

Let a_1, \ldots, a_n be n positive numbers. If p and q are two positive numbers such that $p \leq q$, then $\left(a_1^p + \cdots + a_n^p\right)^{\frac{1}{p}} \geqslant \left(a_1^q + \cdots + a_n^q\right)^{\frac{1}{q}}$.

Proof

Let $f: \mathbb{R}^{>0} \longrightarrow \mathbb{R}$ be the function defined by $f(r) = (a_1^r + \cdots + a_n^r)^{\frac{1}{r}}$. Since

$$\ln f(r) = \frac{\ln \left(a_1^r + \cdots + a_n^r\right)}{r},$$

it follows that

$$\frac{f'(r)}{f(r)} = -\frac{1}{r^2} \left(a_1^r + \dots + a_n^r \right) + \frac{1}{r} \cdot \frac{a_1^r \ln a_1 + \dots + a_n^r \ln a_r}{a_1^r + \dots + a_n^r}.$$

To prove that f'(r) < 0, it suffices to show that

$$\frac{a_1^r \ln a_1 + \dots + a_n^r \ln a_r}{a_1^r + \dots + a_n^r} \leqslant \frac{\ln \left(a_1^r + \dots + a_n^r\right)}{r}.$$

Proof (cont'd)

This last inequality is easily seen to be equivalent to

$$\sum_{i=1}^n \frac{a_i^r}{a_1^r + \dots + a_n^r} \ln \frac{a_i^r}{a_1^r + \dots + a_n^r} \leqslant 0,$$

which holds because

$$\frac{a_i^r}{a_1^r + \dots + a_n^r} \leqslant 1$$

for $1 \leqslant i \leqslant n$.

Theorem

Let p and q be two positive numbers such that $p \leq q$. We have $\|\mathbf{u}\|_{p} \ge \|\mathbf{u}\|_{q}$ for $\mathbf{u} \in \mathbb{R}^{n}$.

This follows from the previous Lemma.

Corollary

Let p, q be two positive numbers such that $p \leq q$. For every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, we have $d_p(\mathbf{x}, \mathbf{y}) \geqslant d_q(\mathbf{x}, \mathbf{y})$.

Theorem

Let $p \geqslant 1$. We have $\|\mathbf{x}\|_{\infty} \leqslant \|\mathbf{x}\|_{p} \leqslant n \|\mathbf{x}\|_{\infty}$ for $\mathbf{x} \in \mathbb{R}^{n}$.

Proof: The first inequality is an immediate consequence of Theorem ??. The second inequality follows by observing that

$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}} \leqslant n \max_{1 \leqslant i \leqslant n} |x_i| = n \|\mathbf{x}\|_{\infty}.$$

Corollary

Let p and q be two numbers such that $p, q \geqslant 1$. For $\mathbf{x} \in \mathbb{R}^n$ we have:

$$\frac{1}{n} \parallel \mathbf{x} \parallel_q \leqslant \parallel \mathbf{x} \parallel_p \leqslant n \parallel \mathbf{x} \parallel_q.$$

Proof: Since $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_{p}$ and $\|\mathbf{x}\|_{q} \leq n \|\mathbf{x}\|_{\infty}$, it follows that $\|\mathbf{x}\|_{q} \leq n \|\mathbf{x}\|_{p}$. Exchanging the roles of p and q, we have $\|\mathbf{x}\|_{p} \leq n \|\mathbf{x}\|_{q}$, so

$$\frac{1}{n} \parallel \mathbf{x} \parallel_q \leqslant \parallel \mathbf{x} \parallel_p \leqslant n \parallel \mathbf{x} \parallel_q$$

for every $\mathbf{x} \in \mathbb{R}^n$.

Corollary

For every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $p \geqslant 1$, we have $d_{\infty}(\mathbf{x}, \mathbf{y}) \leqslant d_p(\mathbf{x}, \mathbf{y}) \leqslant nd_{\infty}(\mathbf{x}, \mathbf{y})$. Further, for p, q > 1, there exist $c, c' \in \mathbb{R}_{>0}$ such that

$$c d_q(\mathbf{x}, \mathbf{y}) \leqslant d_p(\mathbf{x}, \mathbf{y}) \leqslant c' d_q(\mathbf{x}, \mathbf{y})$$

for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

If $p \leqslant q$, then the closed sphere $B_{d_p}[\mathbf{x},r]$ is included in the closed sphere $B_{d_q}[\mathbf{x},r]$. For example, we have

$$B_{d_1}[\mathbf{0},1]\subseteq B_{d_2}[\mathbf{0},1]\subseteq B_{d_\infty}[\mathbf{0},1].$$
(a) (b) (c) Spheres $B_{d_p}[\mathbf{0},1]$ for $p=1,2,\infty$.

Examples

- The set of real number sequences $\mathbf{Seq}(\mathbb{R})$ is a real linear space where the sum of the sequences $\mathbf{x} = (x_n)$ and $\mathbf{y} = (y_n)$ is defined as $\mathbf{x} + \mathbf{y} = (x_n + y_n)$ and the product of a real with \mathbf{x} is $a\mathbf{x} = (ax_n)$.
- The subspace $\ell^1(\mathbb{R})$ of $\mathbf{Seq}(\mathbb{R})$ consists of all sequences $\mathbf{x}=(x_n)$ such that $\sum_{n\in\mathbb{N}}|x_n|$ is convergent. Note that a norm exists on ℓ^1 defined by $\parallel\mathbf{x}\parallel=\sum_{n\in\mathbb{N}}|x_n|$.
- The set of sequences $\mathbf{x} \in \mathbf{Seq}_{\infty}(\mathbb{R})$ such that $\|\mathbf{x}\|_p$ is finite is a real normed linear space.

• Let $\mathbf{x}, \mathbf{y} \in \mathbf{Seq}_{\infty}(\mathbb{R})$ be two sequences such that $\|\mathbf{x}\|_{\rho}$ and $\|\mathbf{y}\|_{\rho}$ are finite. By Minkowski's inequality, if $\rho \geqslant 1$ we have

$$\left(\sum_{i=1}^{n}|x_{i}+y_{i}|^{p}\right)^{\frac{1}{p}} \leqslant \left(\sum_{i=1}^{n}(|x_{i}|+|y_{i}|)^{p}\right)^{\frac{1}{p}} \leqslant \left(\sum_{i=1}^{n}|x_{i}|^{p}\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n}|y_{i}|^{p}\right)^{\frac{1}{p}}$$

When n tends to ∞ we have $\|\mathbf{x} + \mathbf{y}\|_p \le \|\mathbf{x}\|_p + \|\mathbf{y}\|_p$, so the function $\|\cdot\|_p$ is indeed a norm.

• If $S_p(\mathbb{R})$ is the set of all sequences \mathbf{x} in $\mathbf{Seq}_{\infty}(\mathbb{R})$ such that $\parallel \mathbf{x} \parallel_p < \infty$, then $(S_p(\mathbb{R}), \|\cdot\|_p)$ is a normed space denoted by $\ell^p(\mathbb{R})$. The space $\ell^{\infty}(\mathbb{R})$ consists of bounded sequences in $\mathbf{Seq}_{\infty}(\mathbb{R})$.

The angle between vector

The Cauchy-Schwarz Inequality implies that $|(\mathbf{x},\mathbf{y})| \leq ||\mathbf{x}||_2 ||\mathbf{y}||_2$. Equivalently, this means that

$$-1\leqslant rac{(\mathbf{x},\mathbf{y})}{\parallel\mathbf{x}\parallel_2\parallel\mathbf{y}\parallel_2}\leqslant 1.$$

This double inequality allows us to introduce the notion of angle between two vectors \mathbf{x} , \mathbf{y} of a real linear space L.

Definition

The angle between the vectors ${\bf x}$ and ${\bf y}$ is the number $\alpha \in [0,\pi]$ defined by

$$\cos \alpha = \frac{(\mathbf{x}, \mathbf{y})}{\parallel \mathbf{x} \parallel_2 \parallel \mathbf{y} \parallel_2}.$$

This angle will be denoted by $\angle(x, y)$.

Example

Let $\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \in \mathbb{R}^2$ be a unit vector. Since $u_1^2 + u_2^2 = 1$, there exists $\alpha \in [0, 2\pi]$ such that $u_1 = \cos \alpha$ and $u_2 = \sin \alpha$. Thus, for any two unit vectors in \mathbb{R}^2 , $\mathbf{u} = (\cos \alpha, \sin \alpha)$ and $\mathbf{v} = (\cos \beta, \sin \beta)$ we have $(\mathbf{u}, \mathbf{v}) = \cos \alpha \cos \beta + \sin \alpha \sin \beta = \cos(\alpha - \beta)$, where $\alpha, \beta \in [0, 2\pi]$. Consequently, $\angle(\mathbf{u}, \mathbf{v})$ is the angle in the interval $[0, \pi]$ that has the same cosine as $\alpha - \beta$.

Theorem

(The Cosine Theorem) Let x and y be two vectors in \mathbb{R}^n equipped with the Euclidean inner product. We have:

$$\| \mathbf{x} - \mathbf{y} \|^2 = \| \mathbf{x} \|^2 + \| \mathbf{y} \|^2 - 2 \| \mathbf{x} \| \| \mathbf{y} \| \cos \alpha,$$

where $\alpha = \angle(\mathbf{x}, \mathbf{y})$.

Proof

Since the norm is induced by the inner product we have

$$\| \mathbf{x} - \mathbf{y} \|^2 = (\mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y})$$

$$= (\mathbf{x}, \mathbf{x}) - 2(\mathbf{x}, \mathbf{y}) + (\mathbf{y}, \mathbf{y})$$

$$= \| \mathbf{x} \|^2 - 2 \| \mathbf{x} \| \| \mathbf{y} \| \cos \alpha + \| \mathbf{y} \|^2,$$

which is the desired equality.

Definition

Let L be an inner product space. Two vectors \mathbf{x} and \mathbf{y} of L are orthogonal if $(\mathbf{x}, \mathbf{y}) = 0$.

A pair of orthogonal vectors (\mathbf{x}, \mathbf{y}) is denoted by $\mathbf{x} \perp \mathbf{y}$.

Definition

An orthogonal set of vectors in an inner product space L is a subset W of L such that for every distinct $u, v \in W$ we have $u \perp v$. If, in addition, ||u|| = 1 for every $u \in W$, then we say that W is orthonormal.

Theorem

If W is a set of non-zero orthogonal vectors in an inner product space $(V,(\cdot,\cdot))$, then W is linearly independent.

Proof: Let $a_1\mathbf{w}_1 + \cdots + a_n\mathbf{w}_n = \mathbf{0}$ for a linear combination of elements of W. This implies $a_i \parallel \mathbf{w}_i \parallel^2 = 0$, so $a_i = 0$ because $\parallel \mathbf{w}_i \parallel^2 \neq 0$, and this holds for every i, where $1 \leq i \leq n$. Thus, W is linearly independent.

Corollary

Let L be an n-dimensional linear space. If W is an orthonormal set and |W| = n, then W is an orthonormal basis of L.

For an arbitrary subset T of an inner product space L the set T^{\perp} is defined by:

$$T^{\perp} = \{ \mathbf{v} \in L \mid \mathbf{v} \perp \mathbf{t} \text{ for every } \mathbf{t} \in T \}$$

Note that $T \subseteq U$ implies $U^{\perp} \subseteq T^{\perp}$.

If S, T are two subspaces of an inner product space, then S and T are orthogonal if $\mathbf{s} \perp \mathbf{t}$ for every $\mathbf{s} \in S$ and every $\mathbf{t} \in T$. This is denoted as $S \perp T$.

Theorem

Let L be an inner product space and let T be a subset of an inner product \mathbb{F} -linear space L. The set T^{\perp} is a subspace of L.

Proof

Let x and y be two members of T. We have (x,t)=(y,t)=0 for every $t\in T$. Therefore, for every $a,b\in \mathbb{F}$, by the linearity of the inner product we have (ax+by,t)=a(x,t)+b(y,t)=0, for $t\in T$, so $ax+by\in T^{\perp}$. Thus, T^{\perp} is a subspace of L.

Theorem

Let L be an inner product space and let T be a subset of an inner product \mathbb{F} -linear space L. The set T^{\perp} is a subspace of L.

Proof: Let x and y be two members of T. We have (x,t)=(y,t)=0 for every $t\in T$. Therefore, for every $a,b\in \mathbb{F}$, by the linearity of the inner product we have (ax+by,t)=a(x,t)+b(y,t)=0, for $t\in T$, so $ax+by\in T^{\perp}$. Thus, T^{\perp} is a subspace of L.

Theorem

Let L be a finite-dimensional inner product \mathbb{F} -linear space and let T be a subset of L. We have $\langle T \rangle^{\perp} = T^{\perp}$.

Proof: By a previous observation, since $T \subseteq \langle T \rangle$, we have $\langle T \rangle^{\perp} \subseteq T^{\perp}$. To prove the converse inclusion, let $\mathbf{z} \in T^{\perp}$. If $y \in \langle T \rangle$, y is a linear combination of vectors of T, $y = a_1t_1 + \cdots + a_mt_m$, so $(y,z) = a_1(t_1,z) + \cdots + a_m(t_m,z) = 0$. Therefore, $z \perp y$, which implies $z \in \langle T \rangle^{\perp}$. This allows us to conclude that $\langle T \rangle^{\perp} = T^{\perp}$.

We refer to T^{\perp} as the orthogonal complement of T.

Note that $T \cap T^{\perp} \subseteq \{0\}$. If T is a subspace, then this inclusion becomes an equality, that is, $T \cap T^{\perp} = \{0\}$.

Theorem

Let T be a subspace of the finite-dimensional linear space L. We have $L = T \boxplus T^{\perp}$.

Proof: We observed that $T \cap T^{\perp} = 0_L$. Suppose that B and B' are two orthonormal bases in T and T^{\perp} , respectively. The set $B \cup B'$ is a basis for $S = T \boxplus T^{\perp}$.

Suppose that $S \subset L$. The set $B \cup B'$ can be extended to a orthonormal basis $B \cup B' \cup B''$ for L. Note that $B'' \perp B$, so $B'' \perp T$, which implies $B'' \subseteq T^{\perp}$. This is impossible because $B \cup B' \cup B''$ is linearly independent. Therefore, $B \cup B'$ is a basis for L, so $L = T \boxplus T^{\perp}$.

Example

Let $A \in \mathbb{C}^{n \times n}$. We have

$$(A) = (\operatorname{\mathsf{Ran}}(A^{\mathsf{H}}))^{\perp}. \tag{1}$$

Indeed, if $\mathbf{x} \in (A)$ we have $A\mathbf{x} = \mathbf{0}_n$. Since $(A\mathbf{x}, \mathbf{x}) = (\mathbf{x}, A^H\mathbf{x})$ it follows that \mathbf{x} is orthogonal on $A^H\mathbf{x}$, so $\mathbf{x} \in (\text{Ran}(A^H))^{\perp}$.

To prove the converse inclusion, suppose that $\mathbf{x} \in (\text{Ran}(A^H)^{\perp})$. Then, $\mathbf{x} \perp \mathbf{z}$ for every $\mathbf{z} \in \text{Ran}(A^H)$. In particular, for $\mathbf{z} = A^H(A\mathbf{x})$ we have Thus,

$$0 = (\mathbf{x}, \mathbf{z}) = (\mathbf{x}, A^{\mathsf{H}} A \mathbf{x}) = (A \mathbf{x}, A \mathbf{x}),$$

which implies $A\mathbf{x} = \mathbf{0}_n$, that is, $\mathbf{x} \in \text{NullSp}(A)$.

Pythagora's Theorem

Theorem

Let x_1, \ldots, x_n be a finite orthogonal set on n distinct elements in an inner product space L. We have

$$\left\| \sum_{i=1}^{n} x_i \right\|^2 = \sum_{i=1}^{n} \| x_i \|^2.$$

Proof: By applying the definition of the norm induced by the inner product we have

$$\left\| \sum_{i=1}^{n} x_{i} \right\|^{2} = \left(\sum_{i=1}^{n} x_{i}, \sum_{j=1}^{n} x_{j} \right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} (x_{i}, x_{j}) = \sum_{i=1}^{n} (x_{i}, x_{i})$$
(because $(x_{i}, x_{j}) = 0$ for $i \neq j$)