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Metrics

Dissimilarities

Definition

A dissimilarity on a set S is a function d : S2 −→ R>0 satisfying the
following conditions:

i d(x , x) = 0 for all x ∈ S ;

ii d(x , y) = d(y , x) for all x , y ∈ S .

The pair (S , d) is a dissimilarity space.

The set of dissimilarities defined on a set S is denoted by DS .
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Metrics

Other Properties of Dissimilarities

1 d(x , y) = 0 implies d(x , z) = d(y , z) for every x , y , z ∈ S (evenness);

2 d(x , y) = 0 implies x = y for every x , y (definiteness);

3 d(x , y) 6 d(x , z) + d(z , y) for every x , y , z (triangular inequality);

4 d(x , y) 6 max{d(x , z), d(z , y)} for every x , y , z (the ultrametric
inequality);

5 d(x , y) + d(u, v) 6 max{d(x , u) + d(y , v), d(x , v) + d(y , u)} for
every x , y , u, v (Buneman’s inequality, also known as the four-point
condition).
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Metrics

If d : S2 −→ R is a function that satisfies the properties of dissimilarities
and the triangular inequality, then the values of d are nonnegative
numbers. Indeed, by taking x = y in the triangular inequality, we have

0 = d(x , x) 6 d(x , z) + d(z , x) = 2d(x , z),

for every z ∈ S .
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Metrics

Classes of Dissimilarities

Definition

A dissimilarity d ∈ DS is

i a pseudo-metric if it satisfies the triangular inequality;

ii a metric if it satisfies the definiteness property and the triangular
inequality,

iii a tree metric if it satisfies the definiteness property and Buneman’s
inequality, and

iv an ultrametric if it satisfies the definiteness property and the
ultrametric inequality.

The set of metrics on a set S is denoted by MS . The sets of tree metrics
and ultrametrics on a set S are denoted by TS and US , respectively.
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Metrics

Metrics

A function d : S2 −→ R>0 is a metric if it has the following properties:

i d(x , y) = 0 if and only if x = y for x , y ∈ S ;

ii d(x , y) = d(y , x) for x , y ∈ S ;

iii d(x , y) 6 d(x , z) + d(z , y) for x , y , z ∈ S .

If the first property is replaced by the weaker requirement that d(x , x) = 0
for x ∈ S , then we refer to d as a semimetric on S . Thus, if d is a
semimetric d(x , y) = 0 does not necessarily imply x = y and we can have
for two distinct elements x , y of S , d(x , y) = 0.
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Metrics

Example

Let S be a nonempty set. Define the mapping d : S2 −→ R>0 by

d(u, v) =

{
1 if u 6= v ,

0 otherwise,

for x , y ∈ S . It is clear that d satisfies the definiteness property. The
triangular inequality, d(x , y) 6 d(x , z) + d(z , y) is satisfied if x = y .
Therefore, suppose that x 6= y , so d(x , y) = 1. Then, for every z ∈ S , we
have at least one of the inequalities x 6= z or z 6= y , so at least one of the
numbers d(x , z) or d(z , y) equals 1. Thus d satisfies the triangular
inequality. The metric d introduced here is the discrete metric on S .
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Metrics

Example

Consider the mapping dh : (Seqn(S))2 −→ R>0 defined by

dh(p,q) = |{i | 0 6 i 6 n − 1 and p(i) 6= q(i)}|

for all sequences p,q of length n on the set S .
Clearly, dh is a dissimilarity that is both even and definite. Moreover, it
satisfies the triangular inequality. Indeed, let p,q, r be three sequences of
length n on the set S . If p(i) 6= q(i), then r(i) must be distinct from at
least one of p(i) and q(i). Therefore,

{i | 0 6 i 6 n − 1 and p(i) 6= q(i)}
⊆ {i | 0 6 i 6 n − 1 and p(i) 6= r(i)} ∪ {i | 0 6 i 6 n − 1 and r(i) 6= q(i)},

which implies the triangular inequality. This distance is known as the
Hamming distance on Seqn(S).
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Metrics

If we need to compare sequences of unequal length, we can use an
extended metric d ′h defined by

d ′h(x, y) =

{
|{i | 0 6 i 6 |x| − 1, xi 6= yi} if |x| = |y|,
∞ if |x| 6= |y|.
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Metrics

Example

Define the mapping d : R× R −→ R>0 as d(x , y) = |x − y | for x , y ∈ R.
It is clear that d(x , y) = 0 if and only if x = y and that d(x , y) = d(y , x)
for x , y ∈ S ;
To prove the triangular inequality suppose that x 6 y 6 z . Then,
d(x , z) + d(z , y) = z − x + z − y = 2z − x − y and we have
2z − x − y > y − x = d(x , y) because z > y . The triangular inequality is
similarly satisfied no matter what the relative order of x , y , z is.
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Metrics

Open and Closed Spheres

Definition

Let (S , d) be a metric space. The closed sphere centered in x ∈ S of
radius r is the set

Bd [x , r ] = {y ∈ S |d(x , y) 6 r}.

The open sphere centered in x ∈ S of radius r is the set

Bd(x , r) = {y ∈ S |d(x , y) < r}.

The spherical surface centered in x ∈ S of radius r is the set

Sn(x , r) = {y ∈ S | d(x , y) = r}.

If the metric d is clear from context we drop the subscript d and replace
Bd [x , r ] and Bd(x , r) by B[x , r ] and B(x , r), repectively.
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Metrics

Definition

Let (S , d) be a metric space. The diameter of a subset U of S is the
number diamS,d(U) = sup{d(x , y) | x , y ∈ U}. The set U is bounded if
diamS,d(U) is finite.
The diameter of the metric space (S , d) is the number

diamS ,d = sup{d(x , y) | x , y ∈ S}.

If the metric space is clear from the context, then we denote the diameter
of a subset U just by diam(U).
If (S , d) is a finite metric space, then diamS ,d = max{d(x , y) | x , y ∈ S}.
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Metrics

Definition

Let (S , d) and (T , d ′) be two metric spaces. An isometry between these
spaces is a function f : S −→ T that satisfies the equality

d ′(f (x), f (y)) = d(x , y)

for every x , y ∈ S .
If an isometry exists between (S , d) and (T , d ′) we say that these metric
spaces are isometric.

Note that if f : S −→ T is an isometry, then f (x) = f (y) implies
d(f (x), f (y)) = d(x , y) = 0, which yields x = y for x , y ∈ S . Therefore,
every isometry is injective.
A surjective isometry is, therefore, a bijection.
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Metrics Generated by Norms

Theorem

Each norm ν : L −→ R>0 on a linear space L generates a metric on the set
L defined by dν(x, y) = νx− y for x, y ∈ L.
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Metrics Generated by Norms

Proof

Note that if dν(x, y) = νx− y = 0, it follows that x− y = 0L, so x = y.
The symmetry of dν is obvious and so we need to verify only the triangular
axiom. Let x, y, z ∈ L. We have

ν(x− z) = ν(x− y + y− z) 6 ν(x− y) + ν(y− z)

or, equivalently, dν(x, z) 6 dν(x, y) + dν(y, z), for every x, y, z ∈ L, which
concludes the argument.
We refer to dν as the metric induced by the norm ν on the linear space L.
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Metrics Generated by Norms

Norms Generated by Translation-Invariant Metrics

The metric dν on L induced by a norm is translation invariant, that is,
dν(x + z , y + z) = dν(x , y) for every z ∈ L. Also, for every a ∈ R and
x , y ∈ L we have the homogeneity property dν(ax , ay) = |a|dν(x , y) for
x , y ∈ L.

Theorem

Let L be a real linear space and let d : L× L −→ R>0 be a metric on L. If
d is translation invariant and homogeneous, then there exists a norm ν of
L such that d = dν .

Proof: Let d be a metric on L that is translation invariant and
homogeneous. Define ν(x) = d(x , 0L). It follows immediately that ν is a
norm on L.
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Metrics Generated by Norms

Minkowski Metrics

For p > 1, then dp denotes the metric dνp induced by the norm νp on the
linear space (Rn,+, ·) known as the Minkowski metric on Rn.
The metrics d1, d2 and d∞ defined on Rn are given by

d1(x, y) =
n∑

i=1

|xi − yi |,

d2(x, y) =

√√√√ n∑
i=1

|xi − yi |2,

d∞(x, y) = max{|xi − yi | | 1 6 i 6 n},

for x, y ∈ Rn.
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Metrics Generated by Norms

If

x =

(
x0
x1

)
and y =

(
y0
y1

)
,

then d1(x, y) is the sum of the lengths of the two legs of the triangle,
d2(x, y) is the length of the hypotenuse of the right triangle and d∞(x, y)
is the largest of the lengths of the legs.

-

6

x = (x0, x1)

y = (y0, y1)

(y0, x1)

The distances d1(x, y), d2(x, y) and d∞(x, y).
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Metrics Generated by Norms

Lemma

Let a1, . . . , an be n positive numbers. If p and q are two positive numbers

such that p 6 q, then
(
ap1 + · · ·+ apn

) 1
p >

(
aq1 + · · ·+ aqn

) 1
q .

20 / 45



Metrics Generated by Norms

Proof

Let f : R>0 −→ R be the function defined by f (r) = (ar1 + · · ·+ arn)
1
r .

Since

ln f (r) =
ln (ar1 + · · ·+ arn)

r
,

it follows that

f ′(r)

f (r)
= − 1

r2
(ar1 + · · ·+ arn) +

1

r
· a

r
1 ln a1 + · · ·+ arn ln ar

ar1 + · · ·+ arn
.

To prove that f ′(r) < 0, it suffices to show that

ar1 ln a1 + · · ·+ arn ln ar
ar1 + · · ·+ arn

6
ln (ar1 + · · ·+ arn)

r
.
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Metrics Generated by Norms

Proof (cont’d)

This last inequality is easily seen to be equivalent to

n∑
i=1

ari
ar1 + · · ·+ arn

ln
ari

ar1 + · · ·+ arn
6 0,

which holds because
ari

ar1 + · · ·+ arn
6 1

for 1 6 i 6 n.
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Metrics Generated by Norms

Theorem

Let p and q be two positive numbers such that p 6 q. We have
‖ u ‖p>‖ u ‖q for u ∈ Rn.

This follows from the previous Lemma.
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Metrics Generated by Norms

Corollary

Let p, q be two positive numbers such that p 6 q. For every x, y ∈ Rn, we
have dp(x, y) > dq(x, y).
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Metrics Generated by Norms

Theorem

Let p > 1. We have ‖ x ‖∞6‖ x ‖p6 n ‖ x ‖∞ for x ∈ Rn.

Proof: The first inequality is an immediate consequence of Theorem ??.
The second inequality follows by observing that

‖ x ‖p=

(
n∑

i=1

|xi |p
) 1

p

6 n max
16i6n

|xi | = n ‖ x ‖∞ .
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Metrics Generated by Norms

Corollary

Let p and q be two numbers such that p, q > 1. For x ∈ Rn we have:

1

n
‖ x ‖q6‖ x ‖p6 n ‖ x ‖q .

Proof: Since ‖ x ‖∞6‖ x ‖p and ‖ x ‖q6 n ‖ x ‖∞, it follows that
‖ x ‖q6 n ‖ x ‖p. Exchanging the roles of p and q, we have
‖ x ‖p6 n ‖ x ‖q, so

1

n
‖ x ‖q6‖ x ‖p6 n ‖ x ‖q

for every x ∈ Rn.
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Metrics Generated by Norms

Corollary

For every x, y ∈ Rn and p > 1, we have d∞(x, y) 6 dp(x, y) 6 nd∞(x, y).
Further, for p, q > 1, there exist c , c ′ ∈ R>0 such that

c dq(x, y) 6 dp(x, y) 6 c ′ dq(x, y)

for x, y ∈ Rn.
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Metrics Generated by Norms

If p 6 q, then the closed sphere Bdp [x, r ] is included in the closed sphere
Bdq [x, r ]. For example, we have

Bd1 [0, 1] ⊆ Bd2 [0, 1] ⊆ Bd∞ [0, 1].

6 6 6

- - -
�
�
@
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�
@
@

&%
'$

(a) (b) (c)
Spheres Bdp [0, 1] for p = 1, 2,∞.
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Normed Spaces of Sequences

Examples

The set of real number sequences Seq(R) is a real linear space where
the sum of the sequences x = (xn) and y = (yn) is defined as
x + y = (xn + yn) and the product of a real with x is ax = (axn).

The subspace `1(R) of Seq(R) consists of all sequences x = (xn) such
that

∑
n∈N |xn| is convergent. Note that a norm exists on `1 defined

by ‖ x ‖=
∑

n∈N |xn|.
The set of sequences x ∈ Seq∞(R) such that ‖ x ‖p is finite is a real
normed linear space.
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Normed Spaces of Sequences

Let x, y ∈ Seq∞(R) be two sequences such that ‖ x ‖p and ‖ y ‖p are
finite. By Minkowski’s inequality, if p > 1 we have(

n∑
i=1

|xi + yi |p
) 1

p

6

(
n∑

i=1

(|xi |+ |yi |)p
) 1

p

6

(
n∑

i=1

|xi |p
) 1

p

+

(
n∑

i=1

|yi |p
) 1

p

.

When n tends to ∞ we have ‖ x + y ‖p6‖ x ‖p + ‖ y ‖p, so the
function ‖ · ‖p is indeed a norm.

If Sp(R) is the set of all sequences x in Seq∞(R) such that
‖ x ‖p<∞, then (Sp(R), ‖ · ‖p) is a normed space denoted by `p(R).
The space `∞(R) consists of bounded sequences in Seq∞(R).
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Orthogonality

The angle between vector

The Cauchy-Schwarz Inequality implies that |(x, y)| 6‖ x ‖2‖ y ‖2.
Equivalently, this means that

−1 6
(x, y)

‖ x ‖2‖ y ‖2
6 1.

This double inequality allows us to introduce the notion of angle between
two vectors x, y of a real linear space L.

Definition

The angle between the vectors x and y is the number α ∈ [0, π] defined by

cosα =
(x, y)

‖ x ‖2‖ y ‖2
.

This angle will be denoted by ∠(x, y).
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Orthogonality

Example

Let u =

(
u1
u2

)
∈ R2 be a unit vector. Since u21 + u22 = 1, there exists

α ∈ [0, 2π] such that u1 = cosα and u2 = sinα. Thus, for any two unit
vectors in R2, u = (cosα, sinα) and v = (cosβ, sinβ) we have
(u, v) = cosα cosβ + sinα sinβ = cos(α− β), where α, β ∈ [0, 2π].
Consequently, ∠(u, v) is the angle in the interval [0, π] that has the same
cosine as α− β.
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Orthogonality

Theorem

(The Cosine Theorem) Let x and y be two vectors in Rn equipped with
the Euclidean inner product. We have:

‖ x− y ‖2=‖ x ‖2 + ‖ y ‖2 −2 ‖ x ‖‖ y ‖ cosα,

where α = ∠(x, y).
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Orthogonality

Proof

Since the norm is induced by the inner product we have

‖ x− y ‖2 = (x− y, x− y)

= (x, x)− 2(x, y) + (y, y)

= ‖ x ‖2 −2 ‖ x ‖‖ y ‖ cosα+ ‖ y ‖2,

which is the desired equality.
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Orthogonality

Definition

Let L be an inner product space. Two vectors x and y of L are orthogonal
if (x, y) = 0.

A pair of orthogonal vectors (x, y) is denoted by x ⊥ y.

Definition

An orthogonal set of vectors in an inner product space L is a subset W of
L such that for every distinct u, v ∈W we have u ⊥ v .
If, in addition, ‖ u ‖= 1 for every u ∈W , then we say that W is
orthonormal.
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Orthogonality

Theorem

If W is a set of non-zero orthogonal vectors in an inner product space
(V , (·, ·)), then W is linearly independent.

Proof: Let a1w1 + · · ·+ anwn = 0 for a linear combination of elements of
W . This implies ai ‖ wi ‖2= 0, so ai = 0 because ‖ wi ‖2 6= 0, and this
holds for every i , where 1 6 i 6 n. Thus, W is linearly independent.
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Orthogonality

Corollary

Let L be an n-dimensional linear space. If W is an orthonormal set and
|W | = n, then W is an orthonormal basis of L.
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Orthogonality

For an arbitrary subset T of an inner product space L the set T⊥ is
defined by:

T⊥ = {v ∈ L | v ⊥ t for every t ∈ T}

Note that T ⊆ U implies U⊥ ⊆ T⊥.
If S ,T are two subspaces of an inner product space, then S and T are
orthogonal if s ⊥ t for every s ∈ S and every t ∈ T . This is denoted as
S ⊥ T .

Theorem

Let L be an inner product space and let T be a subset of an inner product
F-linear space L. The set T⊥ is a subspace of L.
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Orthogonality

Proof

Let x and y be two members of T . We have (x , t) = (y , t) = 0 for every
t ∈ T . Therefore, for every a, b ∈ F, by the linearity of the inner product
we have (ax + by , t) = a(x , t) + b(y , t) = 0, for t ∈ T , so ax + by ∈ T⊥.
Thus, T⊥ is a subspace of L.
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Orthogonality

Theorem

Let L be an inner product space and let T be a subset of an inner product
F-linear space L. The set T⊥ is a subspace of L.

Proof: Let x and y be two members of T . We have (x , t) = (y , t) = 0
for every t ∈ T . Therefore, for every a, b ∈ F, by the linearity of the inner
product we have (ax + by , t) = a(x , t) + b(y , t) = 0, for t ∈ T , so
ax + by ∈ T⊥. Thus, T⊥ is a subspace of L.

40 / 45



Orthogonality

Theorem

Let L be a finite-dimensional inner product F-linear space and let T be a
subset of L. We have 〈〈〈T〉〉〉⊥ = T⊥.

Proof: By a previous observation, since T ⊆ 〈〈〈T〉〉〉, we have 〈〈〈T〉〉〉⊥ ⊆ T⊥.
To prove the converse inclusion, let z ∈ T⊥.
If y ∈ 〈〈〈T〉〉〉, y is a linear combination of vectors of T ,
y = a1t1 + · · ·+ amtm, so (y , z) = a1(t1, z) + · · ·+ am(tm, z) = 0.

Therefore, z ⊥ y , which implies z ∈ 〈〈〈T〉〉〉⊥. This allows us to conclude that

〈〈〈T〉〉〉⊥ = T⊥.
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Orthogonality

We refer to T⊥ as the orthogonal complement of T .
Note that T ∩ T⊥ ⊆ {0}. If T is a subspace, then this inclusion becomes
an equality, that is, T ∩ T⊥ = {0}.

Theorem

Let T be a subspace of the finite-dimensional linear space L. We have
L = T � T⊥.

Proof: We observed that T ∩ T⊥ = 0L. Suppose that B and B ′ are two
orthonormal bases in T and T⊥, respectively. The set B ∪B ′ is a basis for
S = T � T⊥.
Suppose that S ⊂ L. The set B ∪ B ′ can be extended to a orthonormal
basis B ∪ B ′ ∪ B ′′ for L. Note that B ′′ ⊥ B, so B ′′ ⊥ T , which implies
B ′′ ⊆ T⊥. This is impossible because B ∪ B ′ ∪ B ′′ is linearly independent.
Therefore, B ∪ B ′ is a basis for L, so L = T � T⊥.
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Orthogonality

Example

Let A ∈ Cn×n. We have

(A) = (Ran(AH))⊥. (1)

Indeed, if x ∈ (A) we have Ax = 0n. Since (Ax, x) = (x,AHx) it follows
that x is orthogonal on AHx, so x ∈ (Ran(AH))⊥.
To prove the converse inclusion, suppose that x ∈ (Ran(AH)⊥. Then,
x ⊥ z for every z ∈ Ran(AH). In particular, for z = AH(Ax) we have Thus,

0 = (x, z) = (x,AHAx) = (Ax,Ax),

which implies Ax = 0n, that is, x ∈ NullSp(A).
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Orthogonality

Pythagora’s Theorem

Theorem

Let x1, . . . , xn be a finite orthogonal set on n distinct elements in an inner
product space L. We have∣∣∣∣∣∣ n∑

i=1

xi

∣∣∣∣∣∣2 =
n∑

i=1

‖ xi ‖2 .

Proof: By applying the definition of the norm induced by the inner
product we have∣∣∣∣∣∣ n∑

i=1

xi

∣∣∣∣∣∣2 =

 n∑
i=1

xi ,
n∑

j=1

xj


=

n∑
i=1

n∑
j=1

(xi , xj) =
n∑

i=1

(xi , xi )

(because (xi , xj) = 0 for i 6= j)

=
n∑

i=1

‖ xi ‖2 .
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