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Dissimilarities

Definition
A dissimilarity on a set S is a function d : S — R satisfying the
following conditions:
Q@ d(x,x)=0forall x € S;
@ d(x,y)=d(y,x) forall x,y € S.
The pair (S, d) is a dissimilarity space.

The set of dissimilarities defined on a set S is denoted by Dgs.
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Other Properties of Dissimilarities

©00O0

o

(x,y) = 0 implies d(x, z) = d(y, z) for every x,y,z € S (evenness);
d(x,y) = 0 implies x = y for every x, y (definiteness);

(x,y) < d(x,z)+ d(z,y) for every x,y, z (triangular inequality);
max{d(x, z),d(z,y)} for every x, y, z (the ultrametric

d(x,y) +d(u,v) < max{d(x,u) + d(y,v),d(x,v) + d(y, u)} for
every x, y, u,v (Buneman's inequality, also known as the four-point
condition).
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If d : S> — R is a function that satisfies the properties of dissimilarities
and the triangular inequality, then the values of d are nonnegative
numbers. Indeed, by taking x = y in the triangular inequality, we have

0=d(x,x) < d(x,z)+ d(z,x) = 2d(x, z),

for every z € S.
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Classes of Dissimilarities

Definition
A dissimilarity d € Dg is
@ a pseudo-metric if it satisfies the triangular inequality;
@ a metric if it satisfies the definiteness property and the triangular
inequality,
@ a tree metric if it satisfies the definiteness property and Buneman'’s
inequality, and

@ an ultrametric if it satisfies the definiteness property and the
ultrametric inequality.

The set of metrics on a set S is denoted by Ms. The sets of tree metrics
and ultrametrics on a set S are denoted by Ts and Ug, respectively.
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Metrics

A function d : 5% — R>q is a metric if it has the following properties:
Q d(x,y)=0ifand only if x =y for x,y € S;
@ d(x,y)=d(y,x) for x,y € S;
@ d(x,y) <d(x,z)+d(z,y) for x,y,z € S.

If the first property is replaced by the weaker requirement that d(x,x) =0
for x € S, then we refer to d as a semimetric on S. Thus, if d is a
semimetric d(x,y) = 0 does not necessarily imply x = y and we can have
for two distinct elements x,y of S, d(x,y) = 0.
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Example

Let S be a nonempty set. Define the mapping d : $2 — R>¢ by

d(u,v) = {1 if us#v,

0 otherwise,

for x,y € S. It is clear that d satisfies the definiteness property. The
triangular inequality, d(x, y) < d(x,z) + d(z,y) is satisfied if x = y.
Therefore, suppose that x # y, so d(x,y) = 1. Then, for every z € S, we
have at least one of the inequalities x £ z or z # y, so at least one of the
numbers d(x, z) or d(z,y) equals 1. Thus d satisfies the triangular
inequality. The metric d introduced here is the discrete metric on S.
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Example

Consider the mapping dj, : (Seq,,(S))?> — Rxo defined by

dp(p;q) = [{i | 0<7<n—1andp(i) #q(i)}|

for all sequences p, q of length n on the set S.

Clearly, dj is a dissimilarity that is both even and definite. Moreover, it
satisfies the triangular inequality. Indeed, let p, q, r be three sequences of
length n on the set S. If p(i) # q(i), then r(i) must be distinct from at
least one of p(i) and q(i). Therefore,

{i [ 0<i<n—1andp(i) #q(i)}

C {ijo<i<n—Tlandp(i)#r(i)}U{i| 0<i<n—1andr(i)#q

which implies the triangular inequality. This distance is known as the
Hamming distance on Seq,(5).
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If we need to compare sequences of unequal length, we can use an
extended metric d} defined by

P 0<i<|x|—1,x#y} if x| =]y|,
d;’,(X,y)Z{'O{O | . }

if x| 7 [yl.
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Example

Define the mapping d : R x R — R as d(x,y) = |x — y| for x,y € R.
It is clear that d(x,y) = 0 if and only if x =y and that d(x,y) = d(y, x)
for x,y € S;

To prove the triangular inequality suppose that x < y < z. Then,
d(x,z)+d(z,y)=z—x+z—y=2z—x—y and we have

2z —x—y>y—x=d(x,y) because z > y. The triangular inequality is
similarly satisfied no matter what the relative order of x, y, z is.
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Open and Closed Spheres

Definition
Let (S, d) be a metric space. The closed sphere centered in x € S of
radius r is the set

Balx, 1l = {y € Sld(xy) < r}.

The open sphere centered in x € S of radius r is the set
Ba(x,r) ={y € Sld(x,y) < r}.

The spherical surface centered in x € S of radius r is the set
Sn(x,r) ={y eS| d(x,y)=r}.

If the metric d is clear from context we drop the subscript d and replace
By[x, r] and By4(x, r) by B[x,r] and B(x,r), repectively.
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Definition

Let (S, d) be a metric space. The diameter of a subset U of S is the
number diams 4(U) = sup{d(x,y) | x,y € U}. The set U is bounded if
diams 4(U) is finite.

The diameter of the metric space (S, d) is the number

diams. g = sup{d(x.y) | x.y € S}.

If the metric space is clear from the context, then we denote the diameter
of a subset U just by diam(U).
If (S, d) is a finite metric space, then diams 4 = max{d(x,y) | x,y € S}.
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Definition
Let (S,d) and (T,d’) be two metric spaces. An isometry between these
spaces is a function f : S — T that satisfies the equality

d'(f(x).f(v)) = d(x,y)

for every x,y € S.
If an isometry exists between (S, d) and (T, d’) we say that these metric
spaces are isometric.

Note that if f : S — T is an isometry, then f(x) = f(y) implies
d(f(x),f(y)) = d(x,y) =0, which yields x = y for x,y € S. Therefore,
every isometry is injective.

A surjective isometry is, therefore, a bijection.
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Metrics Generated by Norms

Theorem

Each norm v : L — R>q on a linear space L generates a metric on the set
L defined by d,(x,y) = vx —y for x,y € L.
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Proof

Note that if dy(x,y) = vx —y =0, it follows that x —y =0;, so x =y.
The symmetry of d, is obvious and so we need to verify only the triangular
axiom. Let x,y,z € L. We have

Vx—2) = v(x—y+y—2) < v(x—y) + vy — 2)
or, equivalently, d,(x,z) < d,(x,y) + du(y, z), for every x,y,z € L, which

concludes the argument.
We refer to d,, as the metric induced by the norm v on the linear space L.
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Metrics Generated by Norms

Norms Generated by Translation-Invariant Metrics

The metric d, on L induced by a norm is translation invariant, that is,

dy(x+z,y + z) =dy(x,y) for every z € L. Also, for every a € R and

x,y € L we have the homogeneity property d,(ax, ay) = |ald,(x,y) for
x,y € L.

Theorem

Let L be a real linear space and let d : L x L — R>q be a metric on L. If

d is translation invariant and homogeneous, then there exists a norm v of
L such that d = d,,.

Proof: Let d be a metric on L that is translation invariant and

homogeneous. Define v(x) = d(x,0.). It follows immediately that v is a
norm on L.
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Minkowski Metrics

For p > 1, then d,, denotes the metric d,, induced by the norm v, on the
linear space (R”,+,-) known as the Minkowski metric on R".
The metrics di, d> and d, defined on R” are given by

n
dl(xay) = Z|Xi_)/i|7
i=1

n
da(x,y) = Z]x,-—y,-P,
i=1
doo(x,y) = max{[xi —yi| | 1 <i<n},

for x,y € R".
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Metrics Generated by Norms

< (3) wor- 7).
X1 i

then di(x,y) is the sum of the lengths of the two legs of the triangle,
d>(x,y) is the length of the hypotenuse of the right triangle and do(x,y)
is the largest of the lengths of the legs.

A

y = (¥o.)1)

x = (xo, x1) (v0,x1)

The distances di(x,y), da(x,y) and dy(X,y).
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Metrics Generated by Norms

Lemma

Let a1, ...,an be n positive numbers. If p and q are two positive numbers
1 1

such that p < q, then (a’f+-~-—i—aﬁ)!’ > (ai’—k-u—i—ag)‘?.
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Proof

Let f : R”9 — R be the function defined by f(r) = (a] +--- + a,r,)%.

Since

Inf(r)zln(al—i-----l-an)

)
r

it follows that

f'(r 1 1 aflna;+---+ap,lna
():——2(a5+~--+a;)+—- 1= e
f(r) r r aj+---+aj

To prove that f'(r) < 0, it suffices to show that

r r r r
allnal+---+an|na,< In(af +---+ aj)
~X
aj+---+aj r
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Proof (cont'd)

This last inequality is easily seen to be equivalent to

n

i=1

which holds because .
a;

— <1
al+---+aj
forl <i<n.

a a
> ' In i <
a4+ +an a4+ +al
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Metrics Generated by Norms

Theorem

Let p and g be two positive numbers such that p < q. We have
|ullp=|ulg forueR"

This follows from the previous Lemma.
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Metrics Generated by Norms

Corollary

Let p, q be two positive numbers such that p < q. For every x,y € R”, we
have dp(x,y) > dg(x,y).
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Metrics Generated by Norms

Theorem

Let p>1. We have || X [|oo<|| X [|[p< || X ||oo for x € R". J

Proof: The first inequality is an immediate consequence of Theorem ?77.
The second inequality follows by observing that

XIx

n ,
% o= (2 X;I”> <nmax x| = n | x o .
I=
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Metrics Generated by Norms

Corollary
Let p and q be two numbers such that p,q > 1. For x € R" we have:

1
S xllg<lx o< n i xllq -

Proof: Since || x [[co<|| X ||p and || x ||¢< n || X ||, it follows that
|| x lg< n || x ||p. Exchanging the roles of p and g, we have
I x llp< n [l x [|q, so

1
xlla<lix o< nf x llq

for every x € R".
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Metrics Generated by Norms

Corollary

For every x,y € R" and p > 1, we have dw(x,y) < dp(X,y) < ndso(X,y).
Further, for p, q > 1, there exist c,c’ € R~q such that

¢ dg(x,y) < dp(x,y) < ¢’ dg(x,y)

for x,y € R".
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Metrics Generated by Norms

If p < g, then the closed sphere By [x, r] is included in the closed sphere

B, [x, r]. For example, we have

B4,[0,1] C By [0,1] C By [0, 1].

i

(a) (b) (c)
Spheres By4,[0,1] for p = 1,2, cc.

28 /45



Normed Spaces of Sequences

Examples

@ The set of real number sequences Seq(R) is a real linear space where
the sum of the sequences x = (x,) and y = (y,) is defined as
X +y = (xn + yn) and the product of a real with x is ax = (ax,).

o The subspace ¢1(R) of Seq(R) consists of all sequences x = (x,) such
that 3,y |Xn| is convergent. Note that a norm exists on ¢! defined
by [| x [|= 2= nen [Xnl-

o The set of sequences x € Seq_(R) such that || x ||, is finite is a real
normed linear space.
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Normed Spaces of Sequences

o Let x,y € Seq_,(R) be two sequences such that || x ||, and || y ||, are
finite. By Minkowski's inequality, if p > 1 we have

(glxiﬂf”);S(g(\foly, ) (ZMI”) <Iz:n;!yf|”>

When n tends to oo we have || x +y [[p<|[ x ||, + || ¥ ||p. so the
function || - ||, is indeed a norm.

o If Sp(R) is the set of all sequences x in Seq(R) such that
|| x [[p< oo, then (Sp(R), || - |lp) is a normed space denoted by ¢P(R).
The space ¢>°(R) consists of bounded sequences in Seq(R).
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Orthogonality

The angle between vector

The Cauchy-Schwarz Inequality implies that |(x,y)| <[/ x [|2]| y |2
Equivalently, this means that

(xy) 4

1< +——— <1
% (2]l 'y 12

This double inequality allows us to introduce the notion of angle between
two vectors x,y of a real linear space L.

Definition

The angle between the vectors x and y is the number « € [0, 7] defined by

(x,y)

cosq = ———————.
[ 20y 2

This angle will be denoted by Z(x,y).
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Orthogonality

Example

Let u = (Z;) € R? be a unit vector. Since u? + u3 = 1, there exists
a € [0,27] such that u; = cosa and up = sina. Thus, for any two unit
vectors in R?, u = (cosa,sina) and v = (cos f3,sin ) we have

(u,v) = cosacos 3 + sinasin 5 = cos(a — 3), where «, 5 € [0, 27].
Consequently, Z(u,v) is the angle in the interval [0, 7] that has the same
cosine as a — f3.
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Orthogonality

Theorem

(The Cosine Theorem) Let x and y be two vectors in R" equipped with
the Euclidean inner product. We have:

Ix =y 2=l x>+ Iy > =2 [ x [ll'y || cosa,

where o = Z(x,y).
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Proof

Since the norm is induced by the inner product we have

Ix—y|> = (x—y,x—y)
= (x,x) = 2(x,y) +(y,y)
= | x|?=2x|llyll cosa+ |yl

which is the desired equality.
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Orthogonality

Definition
Let L be an inner product space. Two vectors x and y of L are orthogonal
if (x,y) =0.

A pair of orthogonal vectors (x,y) is denoted by x L y.

Definition

An orthogonal set of vectors in an inner product space L is a subset W of
L such that for every distinct u,v € W we have u | v.

If, in addition, || u ||= 1 for every u € W, then we say that W is
orthonormal.
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Orthogonality

Theorem

If W is a set of non-zero orthogonal vectors in an inner product space
(V,(-,-)), then W is linearly independent.

Proof: Let aywy + --- + a,w, = 0 for a linear combination of elements of
W. This implies a; || w; ||>= 0, so a; = 0 because || w; ||?># 0, and this
holds for every i, where 1 < i < n. Thus, W is linearly independent.
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Orthogonality

Corollary

Let L be an n-dimensional linear space. If W is an orthonormal set and
|W/| = n, then W is an orthonormal basis of L.
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Orthogonality

For an arbitrary subset T of an inner product space L the set T is

defined by:
Tt={vel|vltforeverytc T}

Note that T C U implies utcTt.

If S, T are two subspaces of an inner product space, then S and T are
orthogonal if s | t for every s € S and every t € T. This is denoted as
S1T.

Theorem
Let L be an inner product space and let T be a subset of an inner product
F-linear space L. The set T+ is a subspace of L.
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Proof

Let x and y be two members of T. We have (x, t) = (y, t) = 0 for every

t € T. Therefore, for every a, b € T, by the linearity of the inner product

we have (ax + by, t) = a(x,t) + b(y,t) =0, for t € T, so ax + by € T+.
Thus, T+ is a subspace of L.
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Orthogonality

Theorem

Let L be an inner product space and let T be a subset of an inner product
F-linear space L. The set T+ is a subspace of L.

Proof: Let x and y be two members of T. We have (x,t) = (y,t) =0
for every t € T. Therefore, for every a, b € F, by the linearity of the inner
product we have (ax + by, t) = a(x,t) + b(y,t) =0, for t € T, so

ax+ by € T+. Thus, T+ is a subspace of L.
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Orthogonality

Theorem

Let L be a finite-dimensional inner product F-linear space and let T be a
subset of L. We have (T)" = T+

Proof: By a previous observation, since T C (T), we have (T)= C T+
To prove the converse inclusion, let z € T+,

If y € (T), y is a linear combination of vectors of T,

y=aiti + -+ amtm, so (y,z) = a1(t1,z) + -+ + am(tm,z) = 0.
Therefore, z L y, which implies z € (T)L. This allows us to conclude that
(M* =71+
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Orthogonality

We refer to T as the orthogonal complement of T.
Note that 7N T+ C {0}. If T is a subspace, then this inclusion becomes
an equality, that is, TN T+ = {0}.

Theorem

Let T be a subspace of the finite-dimensional linear space L. We have
L=THT

Proof: We observed that T N T+ = 0;. Suppose that B and B’ are two
orthonormal bases in T and T+, respectively. The set BU B’ is a basis for
S=THT.

Suppose that S C L. The set B U B’ can be extended to a orthonormal
basis BU B’ U B” for L. Note that B” 1 B, so B” 1. T, which implies

B" C T+. This is impossible because B U B’ U B" is linearly independent.
Therefore, B U B is a basis for L, so L = TH T+,
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Orthogonality

Example
Let A e C"™". We have

(A) = (Ran(A"))". (1)

Indeed, if x € (A) we have Ax = 0,. Since (Ax,x) = (x, A"x) it follows
that x is orthogonal on A"x, so x € (Ran(A"))+.

To prove the converse inclusion, suppose that x € (Ran(A")%. Then,

x L z for every z € Ran(A"). In particular, for z = A"(Ax) we have Thus,

0 = (x,2) = (x, A"Ax) = (Ax, Ax),

which implies Ax = 0, that is, x € NullSp(A).
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Orthogonality

Pythagora's Theorem

Theorem

Let x1,...,x, be a finite orthogonal set on n distinct elements in an inner
product space L. We have

n 2 n
DS ET
i=1 i=1

Proof: By applying the definition of the norm induced by the inner
product we have

|5

5 n n
= E Xi, E Xj
i=1 j=1
n

= > > ax) =) (xi,x)

i=1 j=1 i=1
(because (x;j,xj) = 0 for i # j)
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