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© Eigenvalues and eigenvectors

@ Variational Characterizations of Spectra

© Singular Values
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Let A € C™" be a square matrix.
e An eigenpair of A'is a pair (A, x) € C x (C"—{0}) such that Ax = Ax.
@ We refer to A is an eigenvalue and to x is an eigenvector.
@ The set of eigenvalues of A is the spectrum of A and will be denoted
by spec(A).
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If (\,x) is an eigenpair of A, the linear system Ax = Ax has a non-trivial
solution in x. An equivalent homogeneous system is (A, — A)x = 0 and
this system has a non-trivial solution only if det(\/, — A) = 0.
Definition

The characteristic polynomial of the matrix A is the polynomial pa defined
by pa(\) = det(Al, — A) for A € C.

Thus, the eigenvalues of A are the roots of the characteristic polynomial of
A.
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Lemma

Let A= (a1 --- a,) € C" and let B be the matrix obtained from A by
replacing the column a; by e;. Then, we have

B 1--j—1j+1---n
det(B)—det(A[1 o141 n])

If B is obtained from A by replacing the columns a;,,...,a; bye;,...,e;
and {i,...,ip} ={1,...,n} — {j1,...,jk} then

det(B) = det (A[ﬁ - ZD (1)

In other words, det(B) equals a principal p-minor of A.
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Theorem

Let A € C™" be a matrix. Its characteristic polynomial pa can be written
as

pa(d) =D (=1 aA"k,
k=0

where ay is the sum of the principal minors of order k of A.
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Proof

pa(A) = det(A, — A) = (—1)"det(A — \l,)
can be written as a sum of 2" determinants of matrices obtained by
replacing each subset of the columns of A by the corresponding subset of
columns of —\/,.
If the subset of columns of —\/, involved are —)\ej;, ..., —\ej, the result
of the substitution is (—1)¥\X det (A [ :.1 o ;.p }) where

1 ip

{i,...,ip} ={1,...,n} —{j1,....jk}. The total contribution of sets of k
columns of —\l, is (—1)¥\¥a,_,. Therefore,

n

pa(A) = (=1)" Y (~1)*Nap .

k=0
Replacing k by n — k as the summation index yields
n n
pA()\) = (—1)"2(—1)”71()\"7,(3;( = Z(—l)ka;%k.
k:0 k:0 BOSTON
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Definition

Two matrices A, B € C"™" are similar if there exists an invertible matrix
P € C"™" such that B = PAP~L. This is denoted by A ~ B.

If there exists a unitary matrix U such that B = UAU™!, then A is
unitarily similar to B. This is denoted by A ~, B.

The matrices A, B are congruent if B = SAS" for some non-singular
matrix S. This is denoted by A= B. If A, B € R™", we say that they are
t-congruent if B = SAS’ for some invertible matrix S; this is denoted by
A= B.
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Similar matrices have the same characteristic polynomial. Indeed, suppose
that B = PAP~1. We have

pe(\) = det(\, — B) = det(\, — PAP71)
= det(A\PI,Pt — PAP™Y) = det(P(\, — A)P7Y)
= det(P)det(\, — A)det(P~1) = det(\, — A) = pa()),

because det(P)det(P~1) = 1. Thus, similar matrices have the same
eigenvalues.
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Example

Let A be the matrix
A (cos ¢ —sind
~ \sinf cosf )

pa = det(Ah — A) = (A — cos0)? +sin?6 = A% — 2\ cos 6 + 1.

We have

The roots of this polynomial are Ay = cosf + isin6 and

Ao = cosf — isin@, so they are complex numbers.

We regard A as a complex matrix with real entries. If we were to consider
A as a real matrix, we would not be able to find real eigenvalues for A
unless # were equal to 0.
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Definition

The algebraic multiplicity of the eigenvalue A\ of a matrix A € C"*" is the
multiplicity of A as a root of the characteristic polynomial pa of A.

The algebraic multiplicity of A is denoted by algm(A, \). If algm(A,\) =1
we say that A is a simple eigenvalue.
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Example

Let A € R2%2 be the matrix

The characteristic polynomial of A is

A1
pA(A):‘_l )\_2‘:>\2—2>\+1.

Therefore, A has the eigenvalue 1 with algm(A, 1) = 2.

Prof. Dan A. Simovici (University of MassalCS724: Topics in Algorithms Spectral Prop
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Theorem

The eigenvalues of Hermitian complex matrices are real numbers.

Proof.
Let A € C™" be a Hermitian matrix and let A be an eigenvalue of A. We
have Ax = A\x for some x € C" — {0,}, so x"A" = Ax". Since A" = A, we
have

Ax"x = x"Ax = x"A'x = Ax"x.
Since x # 0 implies x"x # 0, it follows that A = A. Thus, \ is a real
number. Ol
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Corollary

The eigenvalues of symmetric real matrices are real numbers.
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Theorem

The eigenvectors of a complex Hermitian matrix corresponding to distinct
eigenvalues are orthogonal to each other.

Proof: Let (A, u) and (p,v) be two eigenpairs of the Hermitian matrix
A€ C™" where \ # p. Since A is Hermitian, A\, u € R. Since Au = \u
we have v'Au = Av"u. The last equality can be written as (Av)"u = Av'u,
or as uv"u = Av"u. Since p # A, v"u =0, so u and v are orthogonal.
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Corollary

The eigenvectors of a Hermitian matrix corresponding to distinct
eigenvalues form a linearly independent set.
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Theorem

(Schur’s Triangularization Theorem) Let A € C"*" be a square matrix.
There exists an upper-triangular matrix T € C"™" such that A~, T.
The diagonal elements of T are the eigenvalues of A; moreover, each
eigenvalue X\ of A occurs in the sequence of diagonal elements of T a
number of algm(A, \) times. The columns of U are unit eigenvectors of A.

v
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Proof

The argument is by induction on n. The base case, n = 1, is immediate.
Suppose that the statement holds for matrices in C("~D*("=1) and let
A e C™ If (A, x) is an eigenpair of A with || x [2=1, let H, be a
Householder matrix that transforms x into e;. Since we also have

Hye1 = x, x is the first column of H, and we can write Hy, = (x K), where
K e c™(n=1)  Consequently,

HyAH, = HyA(x K) = Hy(Ax H,AK) = (Aey H,AK).
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Proof (cont'd)

Since H, is Hermitian and H, = (x K), it follows that

Therefore,

Prof. Dan A. Simovici (University of MassalCS724: Topics in Algorithms Spectral Prop

H
HY = (;H) = H,.

A xHAK
AR = (on_l K“AK)'
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Proof (cont'd)

Since K"AK e c(m=1)x(n=1) by the inductive hypothesis, there exists a

unitary matrix W and an upper triangular matrix S such that
WH(KYAK)W = S. Note that the matrix

1 i
U=H, (0“ . )
is unitary and

wow (A XAKW A xPAKW
UtAU —<on1 WK AKW) T\0,, S )

The last matrix is clearly upper triangular.
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Proof (cont'd)

Since A~, T, A and T have the same characteristic polynomials and,
therefore, the same eigenvalues, with identical multiplicities.

The factorization of A can be written as A = UDU" because U~ = U".
Since AU = UD, each column u; of U is an eigenvector of A that
corresponds to the eigenvalue \; for 1 </ < n.
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Corollary

Let A€ C"™" and let f be a polynomial. If spec(A) = {)\1,..., A}
(including multiplicities), then spec(f(A)) = {f(A1),...,f(An)}.

Proof: By Schur's Triangularization Theorem there exists a unitary matrix
U € C™" and an upper-triangular matrix T € C"*" such that A= UTU"
and the diagonal elements of T are the eigenvalues of A, A1,..., Ap.
Therefore f(A) = Uf(T)U" and the diagonal elements of f(T) are
f(M),,-..,f(Am). Since f(A) ~, f(T), we obtain the desired conclusion
because two similar matrices have the same eigenvalues with the same
algebraic multiplicities.
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Definition

A matrix A € C"™*" is diagonalizable (unitarily diagonalizable) if there
exists a diagonal matrix D = diag(di, ..., ds) such that A~ D (A ~, D).
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Theorem

A matrix A € C"™" js diagonalizable if and only if there exists a linearly

independent set {v1,...,v,} of n eigenvectors of A.

Prof. Dan A. Simovici (University of MassalCS724: Topics in Algorithms Spectral Prop
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Proof

Let A € C"*" such that there exists a set {v1,...,v,} of n eigenvectors of

A that is linearly independent and let P be the matrix (v1 v v,) that
is clearly invertible. We have:

PIAP = P7Y(Av; Avy - Avp) =P (M\vi dova - Apvp)

M O -0 M O -0
p1p 0 X -+ 0 0 X -+ 0
0 0 - A\, 0 0 - A\,
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Proof (cont'd)

Therefore, we have A = PDP~1, where

A O - 0
0 X - 0
0 0 - A\,
so A~ D.
Conversely, suppose that A is diagonalizable, so AP = PD, where D is a
diagonal matrix and P is an invertible matrix, and let vi,...,v, be the

columns of the matrix P. We have Av; = d;v; for 1 < i < n, so each v; is
an eigenvector of A. Since P is invertible, its columns are linear
independent.
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Corollary

If A€ C™" is diagonalizable then the columns of any matrix P such that
D = P~YAP is a diagonal matrix are eigenvectors of A. Furthermore, the
diagonal entries of D are the eigenvalues that correspond to the columns
of P.
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Corollary

A matrix A € C"™*" s unitarily diagonalizable if and only if there exists a
set {v1,...,vp} of n orthonormal eigenvectors of A.
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Theorem

Let A be a Hermitian matrix, A\1 > --- > X\, be its eigenvalues having the

orthonormal eigenvectors uy, ..., u,, respectively.

Define the subspace M = (up, ..., uq), where1< p< qg<n. Ifxe M

and || x [2=1, we have \g < x"Ax < Xp.

Prof. Dan A. Simovici (University of MassalCS724: Topics in Algorithms Spectral Prop
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Proof

If x is a unit vector in M, then x = apu, + - - - + agug, so x"'u; = a; for
p <i<gq. Since || x[]2=1, we have |a,|*> + - -+ + |ag|?> = 1. This allows
us to write:

x"Ax = x"(apAup + - + agAug)
= x"(apApup + - + agAquq)
= x"(|ap*Ap + - 4 |ag[*Aq)-

Since |ap|2 + - + |ag|> = 1, the desired inequalities follow immediately.
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Corollary

Let A be a Hermitian matrix, A\1 > --- > X\, be its eigenvalues having the
orthonormal eigenvectors uy, ..., u,, respectively. The following
statements hold for a unit vector x:

o ifx € (ug,...,u;), then x"Ax > \;;

e ifx € (uy,..., u;_l)J‘, then x"Ax < \;.
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Theorem

(Rayleigh-Ritz Theorem) Let A be a Hermitian matrix and let
(A1,u1),...,(An,up) be the eigenpairs of A, where \y > --- = \,. If x is
a unit vector, we have \, < x"Ax < \1.

Proof.

This statement follows by observing that the subspace generated by
ui,...,u, is the entire space C". [
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The Courant-Fisher Theorem

Let S; be the collection of p-dimensional subspaces of C". Note that
Sg = {{0n}} and S5 = {C"}.
Theorem

Let A € C"™" be a Hermitian matrix having the eigenvalues
A1 == \,. We have

A = max mi HA € U and =1

Kk Ue?S)z in{x"Ax | x and || x |2= 1}
= min  max{x"Ax | x € U and || x |[o=1}.
UeST { | H “2 }
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Proof

Let A= V¥"diag(A1,...,An)V be the factorization of A, where
V = (uy --- up) is a unitary matrix.
If

U= (u1,...,u) €S and W = (ug,...,up) €8] 41,

then there is a non-zero vector x € U N W because
dim(U) + dim(W) = n+ 1; we can assume that || x ||o= 1.
We have A\, > x"Ax, and, therefore, for any U € S7,

Ak = min{x"Ax | x € U and || x ||2= 1}. This implies

Ak = in{x"A € Uand =1}
k/(rjneagémln{x x | x and || x ||2=1}
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Proof (cont'd)

For a unit vector x € (ug,...,ux) € S] we have x"Ax > A\, and
ujAui = X. Therefore, for U = (uy,...,ux) € S] we have
min{x"Ax | x € U, || x |l2= 1} > A, so

maxyesy min{x"Ax | x € U, || x [|2= 1} > Ax. The inequalities proved
above yield

Ak = in{x"A U and =1}.
K (r}wee‘%mm{x x | xe Uand | x|2=1}
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Proof (cont'd)

For the second equality, let U € S]_, ;. If W = (ug, ..., uy), there is a
non-zero unit vector x € U N W because dim(U) + dim(W) > n+ 1. We
have x"Ax < Ax. Therefore, for any U € S]_, .,

Ak = max{x"Ax | x € U and | x |[[2=1}. This implies

Ak = minyesn . max{x"Ax | x € U and || x []2=1}.
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Proof (cont'd)

For a unit vector x € (ug,...,u,) €8], ; we have A, < x"Ax and
Ak = ulAug. Thus, A\ < max{x"Ax | x € U and | x |»=1}.
Consequently, Ak < minyesn ,  max{x"Ax | x € U and || x [|o= 1},
which completes the proof of the second equality of the theorem.
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An equivalent formulation of Courant-Fisher Theorem is given next.
Theorem

Let A € C"™" be a Hermitian matrix having the eigenvalues
A1 = > Ay We have

Ak = max min{x"Ax | x Lwy,....,x Lw, g and || x[=1}
Wi,...;Wn—k
= min  max{x"Ax | x Lwy,...,x Lwg_7 and | x |2=1}.

W1,..., W1

Proof: The equalities of the Theorem follow from the Courant-Fisher

theorem taking into account that if U € S7, then UL = (wq,...,w,_)
for some vectors wy,...,wn—k, and if U € S,’,’_k+1, then
U= (wi,...wg_1) for some vectors wy,...,wk — 1 in C".
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Ky Fan’s Theorem

Theorem

Let A € C™" be a Hermitian matrix such that spec(A) = {A1,..., An},
where \1 > Mo = -+ = \,. Also, let V € C"™" be a matrix,

V = (vi1,...,v,) whose set of columns constitutes an orthonormal set of
eigenvectors of A. For every q € N such that 1 < q < n, the sums

Ai=da+oo A
i=1

and v
Z An-i—l—i =X+ Ap1 4+ + )\n—(q—l)
i=1

are the maximum and minimum of Z_?:l x['Ax;, respectively, where
{X1,...,%q} is an orthonormal set of vectors in C". The maximum

(minimum) is achieved when X1, ..., Xq are the first (last) columns of V.

v
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Proof

Let {x1,...,X,} be an orthonormal set of eigenvectors of A and let

Xi = > p_1 bkivk be the expression of x; using the columns of V as a basis
for 1 < i < n. Since each x; is a unit vector we have

n
| xi [P=xi%; = > |bu* =1
k=1

for 1 < i < n. Also, note that

n
H I H 0
XjVy = 5 bkivk v, = by,
k=1

due to the orthonormality of the set of columns of V.
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Proof (cont'd)
We have

X::IAX,' = X',*Ai bk;vk = i bk,'XFlAVk
n n L n
— Z biix? Mevie = Z Ak byibii = Z | bril* M
= )\ Z|bk,| —I—Z A — A |bk,| + Z ()\k_ |bk1|

k=qg+1

< A +Z(Ak— )b

The last inequality implies

q 9 q
Zx'ﬂAxiquq+ZZ A — A \bk, m
i=1

— — UMASS
i=1 k=1 BOSTON
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Proof (cont'd)

Therefore,

q q

Z)\,’ — ZX?AX,’ 2 Z()\I - >\q) <1 - Z |bki|2> . (2)
k=1

i=1 i=1 i=1

We have >"7_ |bi|*> <[/ xi |°=1, so

i(x, —Ag) (1 — i ]bk,-]2> > 0.

=1 k=1

The left member of Inequality 2 becomes 0 when x; = v;, so

T xPAx; < 307 0 Aj. The maximum of Y7 | x!'Ax; is obtained when
x; = v; for 1 < i < g, that is, when X consists of the first g columns of V.
The argument for the minimum is similar.
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Theorem

Let A € C"™" be a Hermitian matrix. If A is positive semidefinite, then all
its eigenvalues are non-negative; if A is positive definite then its
eigenvalues are positive.

Proof.

Since A is Hermitian all its eigenvalues are real numbers. Suppose that A
is positive semidefinite, that is, x"Ax > 0 for x € C". If A € spec(A), then
Av = Av for some eigenvector v # 0. The positive semi-definiteness of A
implies v!Av = Avi'v = \ || v ||3> 0, which implies A > 0. It is easy to see
that if A is positive definite, then A > 0. [

v
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Theorem

Let A € C"™" be a Hermitian matrix. If A is positive semidefinite, then all
its principal minors are non-negative real numbers. If A is positive definite
then all its principal minors are positive real numbers.

Proof.

Since A is positive semidefinite, every sub-matrix A [ il ik ] is a

1 e g
Hermitian positive semidefinite matrix by Theorem ??, so every principal
minor is a non-negative real number. The second part of the theorem is

proven similarly. [

v
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Corollary

Let A € C"™" be a Hermitian matrix. The following statements are
equivalent.

A is positive semidefinite;

all eigenvalues of A are non-negative numbers;

there exists a Hermitian matrix C € C"™" such that C? = A;

A is the Gram matrix of a sequence of vectors, that is, A= B"B for
some B € C"™".
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Definition

Let A € C™*" be a matrix. A singular triplet of A'is a triplet (o, u,v) such
that 0 € Ryg, u € C", v e C™, Au = ov and A''v = ou.

The number o is a singular value of A, u is a left singular vector and v is a
right singular vector.
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For a singular triplet (o, u,v) of A we have
A'Au = ¢ A"v = o%u and AA"Y = o Au = o?v.

Therefore, 2 is both an eigenvalue of AA" and an eigenvalue of A"A.
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Example

Let A be the real matrix
A= [cose sin v
~ \cosp sinB)’
We have det(A) = sin(8 — ), so the eigenvalues of A’A are the roots of

the equation A2 — 2) +sin?(8 — a) = 0, that is, \; = 1 + cos(3 — a) and
A2 =1 —cos(f — a). Therefore, the singular values of A are

1= \/5‘ Cosﬂ%a‘ and oy = ﬁ}sm B O“
It is easy to see that a unit left singular vector that corresponds to the
eigenvalue 1 + cos(f — «) is

"y cos#
~ \sin 242

which corresponds to the average direction of the rows of A.
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@ The eigenvalues of a positive semi-definite matrix are non-negative
numbers. Since both AA" and A"A are positive semi-definite matrices
for A € C™*" the spectra of these matrices consist of non-negative
numbers Aq,..., Ap.

o AA" and A"A have the same rank r and therefore, the same number
r of non-zero eigenvalues Aq,..., A,.

@ The singular values of A have the form /A1 > --- > V/A,.

Notation: o; = /\; for 1 < i < r and will assume that
o1>=-->=>0,>0.
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Theorem

Let A € C"™" be a matrix having the singular values o1 > --- > op. If X is
an eigenvalue value of A, then o, < |\| < o1.

v

Proof.

Let u be an unit eigenvector for the eigenvalue A. Since Au = \u it
follows that (A"Au,u) = (Au, Au) = A\(u,u) = A\ = |A\|?. The matrix
A" A is Hermitian and its largest and smallest eigenvalues are o2 and o2,
respectively. Thus, o, < || < 01. O

v
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The SVD Theorem

Theorem

If A€ C™*" s a matrix and rank(A) = r, then A can be factored as
A = UDV", where U € C™*™ and V € C"*" are unitary matrices, and

D = diag(o1,...,0,0,...,0) € R™*" where 01 > ... > o, are real
positive numbers.
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Proof

The square matrix A"A € C"*" has the same rank r as the matrix A and
is positive semidefinite. Therefore, there are r positive eigenvalues of this

matrix, denoted by O'%, ... ,af, where 01 > 09 > --- > 0, > 0. Let
V1,...,V, be the corresponding pairwise orthogonal unit eigenvectors in
Cc".
We have A"Av; = a,-2v,- for 1 <i<r. DefineV=_(vi Vv, V1 - vp)
by completing the set {vi,...,v,} to an orthogonal basis

{V17 sV Vg1, e ,Vn}
for C". If Vi = (v -+ v,) and Vo = (Vp41 -+ vp), we can write
V=(W V).
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Proof (cont'd)

The equalities involving the eigenvectors can now be written as
A"AVy = V1 E?, where E = diag(o1,...,0,).
Define Uy = AViE~1 € C™*". We have U = E"1V'A", so

UttUy = ETYVRARAVIE Y = ETYVIVIE2E L = |,

which shows that the columns of U; are pairwise orthogonal unit vectors.
Consequently, UFAV1E~1 = I, so Ul'AV; = E.
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Proof (cont'd)

If Uy =(u; ---,u,), let Uz = (up41,...,uy) be the matrix whose
columns constitute the extension of the set {u; --- ,u,} to an orthogonal
basis of C™.

Define U € C™*™ as U = (U; Uz). Note that

wan, (U _ (UPAV,  UHAV,
vtav: = (UZ;I AlVL Vo) = USAV,  USAV;

_ [UPAV, UPAV,\  (UFAV; O\ (E O
— WA, UsAw) —\ o o) \o o)’

which is the desired decomposition.
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Corollary

Let A € C™*" be a matrix such that rank(A) =r. Ifo1 > ... > o, are
non-zero singular values, then

A=opuvy + -+ oV, (3)

where (oj,uj,v;) are singular triplets of A for 1 < i < r.
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The value of a unitarily invariant norm of a matrix depends only on its
singular values.

Corollary

Let A € C™*" be a matrix and let A= UDV" be the singular value
decomposition of A. If || - || is a unitarily invariant norm, then

| All=ll D ||=| diag(o1,---,0r,0,...,0)] .

Proof.
This statement follows because the matrices U € C™*™ and V € C™" are
unitary. L]

v
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Il - Il and || - || are unitarily invariant. Therefore, the Frobenius norm can
be written as

1A llF=

and [|All2 = 1.
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Theorem

Let A and B be two matrices in C™*". If A ~, B, then they have the
same singular values.

Proof.

Suppose that A ~, B, that is, A = W;'BW, for some unitary matrices W
and W5. If A has the SVD A = U"diag(o1,...,0,,0,...,0)V, then

B = Wi AWS = (W4 UM)diag(o, ..., 0,0, ,0)(VIAL).

Since Wi U" and VW}' are both unitary matrices, it follows that the
singular values of B are the same as the singular values of A. Ol

v
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Let v € C" be an eigenvector of the matrix A"A that corresponds to a
non-zero, positive eigenvalue o2 that is, A"Av = o2v.

Define u = %Av. We have Av = ou. Also,

Aty = A" <1Av> =ov.
o

This implies AA"u = o?u, so u is an eigenvector of AA" that corresponds
to the same eigenvalue o2

Conversely, if u € C™ is an eigenvector of the matrix AA" that corresponds
to a non-zero, positive eigenvalue o2, we have AA"u = o2u. Thus, if

v= %Au we have Av = ou and v is an eigenvector of A"A for the

eigenvalue o2.
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The Courant-Fisher Theorem allows the formulation of a similar result for
singular values.

Theorem

Let A € C™*" be a matrix such that o1 > 02 > -+ > o, is the
non-increasing sequence of singular values of A. For 1 < k < r we have

= mi m A €S and =1
Ok dim(5)=|rr1]—k+1 ax{|| Ax [|2| x and || x |2= 1}
= m mi A € d =1 9
Ok B, in{[| Ax [l2| x € T and || x [[>=1}

where S and T range over subspaces of C".
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Proof

We give the argument only for the second equality of the theorem; the
first can be shown in a similar manner.

We saw that o equals the square root of k'™ largest absolute value of the
eigenvalue || of the matrix A"A. By Courant-Fisher Theorem, we have

Ak = in{x"A"A e T and =1
K dimn(17a_;<:kmx|n{x X | x and || x |l2=1}

= in{|| Ax ||3| x € T and =1},
dl_mn(wg):kmxm{ll x [l2] x and | x []2= 1}

which implies the second equality of the theorem.
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Corollary

The smallest singular value of a matrix A € C™*" equals
min{|| Ax [|l2| x € C" and | x [»=1}.

The largest singular value of a matrix A € C™*" equals

maX{“ AX ||2| X € (Cn and || X ||2: ]_}
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The SVD allows us to find the best approximation of of a matrix by a
matrices of limited rank.

Lemma
Let A= oquivy + - - - + o,u,v) be the SVD of a matrix A € R™*", where

o012+ 20,>0. Forevery k, 1 < k < r the matrix
B(k) = le'(:l ojuivt has rank k.

Proof.

The null space of the matrix B(k) consists of those vectors x such that
B(k)x = 2K | ojujv’x = 0. The linear independence of the vectors u;
and the fact that o; > 0 for 1 < i < r implies the equalities vi'x = 0 for

1<i<k. Thus, x € (vq,... 7vk)L and, since vy, ..., v, are linearly

independent it follows that dim(NullSp(B(k)) = n — k, which implies

rank(B(k)) = k for 1 < k<r. O
7A
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Theorem

(Eckhart-Young Theorem) Let A € C™*" be a matrix whose sequence
of non-zero singular values is (o1, ...,0,). Assume thatoy > --- >0, >0
and that A can be written as

H H
A= o1uiVvy + -+ oupv,.

Let B(k) € C™*" be the matrix defined by
k
B(k) = ZU,’U,’V'?.
i=1

If e = inf{||JA— X]l2 | X € C™*" and rank(X) < k}, then
A = B(K)ll2 = rc = o1,

for 1 < k < r, where 0,41 = 0 and B(k) is the best approximation of A
among the matrices of rank no larger than k in the sense of the norm || - 2.
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Proof

Observe that

,
A=B(k)= > ouy},

i=k+1

and the largest singular value of the matrix Zf:kﬂ ogiuiv is oyyq. Since

Ok+1 is the largest singular value of A — B(k) we have
A= B(k)|l2 = oks1 for 1 < k < r.

Prof. Dan A. Simovici (University of MassalCS724: Topics in Algorithms Spectral Prop
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Proof (cont'd)

We prove now that for every matrix X € C™*" such that rank(X) < k, we
have H’A — XH|2 > Ok+1-

Since dim(NullSp(X)) = n — rank(X), it follows that

dim(NullSp(X)) = n— k. If T is the subspace of R" spanned by
Vi,...,Vk+1, we have dim(T) = k + 1. Since

dim(NullSp(X)) 4+ dim(T) > n, the intersection of these subspaces
contains a unit non-zero vector x

We have x = ajvy + - - - akVk + ak+1Vk+1 because x € T. The
orthogonality of v1, ..., vk, vk 1 implies || x ||3= ZkH |aj|? =

%
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Since x € NullSp(X), we have Xx = 0, so

k+1 k+1

(A—X)x = Ax = Z ajAv; = Z ajoju;.
i=1 i=1

Thus, we have

k+1 k+1
(A = X)xl5 =D loiai® > Uk+1z |ai® = 0% 11,
i=1
because uq, ..., uy are also orthonormal. This implies

A= X2 = oks1 = [|A— B(K)||2.
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It is interesting to observe that the matrix B(k) provides an optimal
approximation of A not only with respect to || - |2 but also relative to the
Frobenius norm.

Theorem

B(k) is the best approximation of A among matrices of rank no larger
than k in the sense of the Frobenius norm.
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Proof

Note that || A— B(k) |2=|| A||Z — 3K, 02. Let X be a matrix of rank
k, which can be written as X = Ef‘zl x;jy". Without loss of generality we
may assume that the vectors xi, ..., X, are orthonormal. If this is not the
case, we can use the Gram-Schmidt algorithm to express then as linear
combinations of orthonormal vectors, replace these expressions in

S K x;y" and rearrange the terms. Now, the Frobenius norm of A — X
can be written as

H

k k
| A—X||% trace A—z:x,-yH A— Zx,-yH
i=1 i=1

K K
= trace | A"A+ Z(y,- — A%)(y; — A"x)" — Z A'xixHA
i=1

i=1
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Taking into account that Zf'(ﬂ()'i — A"x;)(y; — A"x;)" is a real
non-negative number and that Zf-;l AxixHA =|| Ax; [|% we have

i=1 i=1

K K
|A=X |2 > trace (AHA - ZAHX,'XIHA> =|| A||2 —trace (Z A"x;xi' £

Let A= Udiag(o1,...,0,)V" be the singular value decomposition of A. If
V = (Vi V,), where Vj has k columns vy,...,vi, Dy = diag(o1,...,0k)
and D, = diag(oky1,...,0n), then

Dz O\ (v
H HyH H 1 1
A"A = VD"UMUDVM = (Vi V) (o D22> (v;)
= VD2V + VLD3VA.

and A"A = VD2V",
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Proof (cont'd)

These equalities allow us to write:

| Ax; [|2 = trace(x? A" Ax;)
= trace (x}' Vi DI V{'x; + x' VaD3 Vi3'x; )
= || DuVixi |7 + || D2V5'x; |7
= ai+ (I DVi'xi I —of || Vi'xi [I7)
— (0% I V8%i [ — | D2V3'%; [I7)) — ok(1— || V"' |)-

Since || V"x; ||E= 1 (because x; is an unit vector and V/ is an unitary
matrix) and o2 || V4'x; |2 — || D2V4'x; |2 0, it follows that

| Axi [3< 02 + (Il DaVi'x; |2 —oF || Vit [) -
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Proof (cont'd)

Consequently,

K k
2 2 2 2 2
Z | Axi lE < ko +Z (I DaVi'xi IF = I Vi'xi [|7)
i=1 i=1

k  k
= kai-l—ZZ(af—a,%)M'x;F

i=1 j=1
k
S CRCE D oy
j=1 i=1
k k
< D (or+ (07 —0p) =D a7,
Jj=1 Jj=1
which concludes the argument. m
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