CS724: Topics in Algorithms Spectral Properties of Matrices - 1

Prof. Dan A. Simovici

University of Massachusetts Boston

February 3, 2014

Prof. Dan A. Simovici (University of MassaCS724: Topics in Algorithms Spectral Prop

2 Variational Characterizations of Spectra

Prof. Dan A. Simovici (University of Massa CS724: Topics in Algorithms Spectral Prop

Let $A \in \mathbb{C}^{n \times n}$ be a square matrix.

- An *eigenpair* of A is a pair $(\lambda, \mathbf{x}) \in \mathbb{C} \times (\mathbb{C}^n \{\mathbf{0}\})$ such that $A\mathbf{x} = \lambda \mathbf{x}$.
- We refer to λ is an *eigenvalue* and to **x** is an *eigenvector*.
- The set of eigenvalues of A is the *spectrum* of A and will be denoted by spec(A).

If (λ, \mathbf{x}) is an eigenpair of A, the linear system $A\mathbf{x} = \lambda \mathbf{x}$ has a non-trivial solution in \mathbf{x} . An equivalent homogeneous system is $(\lambda I_n - A)\mathbf{x} = \mathbf{0}$ and this system has a non-trivial solution only if $\det(\lambda I_n - A) = 0$.

Definition

The *characteristic polynomial* of the matrix A is the polynomial p_A defined by $p_A(\lambda) = \det(\lambda I_n - A)$ for $\lambda \in \mathbb{C}$.

Thus, the eigenvalues of A are the roots of the characteristic polynomial of A.

Lemma

Let $A = (\mathbf{a}_1 \cdots \mathbf{a}_n) \in \mathbb{C}^n$ and let B be the matrix obtained from A by replacing the column \mathbf{a}_j by \mathbf{e}_j . Then, we have

$$\det(B) = \det\left(A\left[\begin{array}{ccc} 1 \cdots j - 1 j + 1 \cdots n \\ 1 \cdots j - 1 j + 1 \cdots n\end{array}\right]\right)$$

If B is obtained from A by replacing the columns $\mathbf{a}_{j_1}, \ldots, \mathbf{a}_{j_k}$ by $\mathbf{e}_{j_1}, \ldots, \mathbf{e}_{j_k}$ and $\{i_1, \ldots, i_p\} = \{1, \ldots, n\} - \{j_1, \ldots, j_k\}$, then

$$\det(B) = \det\left(A\left[\begin{array}{cc}i_1 \cdots i_p\\i_1 \cdots i_p\end{array}\right]\right). \tag{1}$$

In other words, det(B) equals a principal *p*-minor of *A*.

Theorem

Let $A \in \mathbb{C}^{n \times n}$ be a matrix. Its characteristic polynomial p_A can be written as

$$p_{\mathcal{A}}(\lambda) = \sum_{k=0}^{n} (-1)^k a_k \lambda^{n-k},$$

where a_k is the sum of the principal minors of order k of A.

Proof

$$p_A(\lambda) = \det(\lambda I_n - A) = (-1)^n \det(A - \lambda I_n)$$

can be written as a sum of 2^n determinants of matrices obtained by replacing each subset of the columns of A by the corresponding subset of columns of $-\lambda I_n$.

If the subset of columns of $-\lambda I_n$ involved are $-\lambda \mathbf{e}_{j_1}, \ldots, -\lambda \mathbf{e}_{j_k}$ the result of the substitution is $(-1)^k \lambda^k \det \left(A \begin{bmatrix} i_1 \cdots i_p \\ i_1 \cdots i_p \end{bmatrix} \right)$, where

 $\{i_1, \ldots, i_p\} = \{1, \ldots, n\} - \{j_1, \ldots, j_k\}$. The total contribution of sets of k columns of $-\lambda I_n$ is $(-1)^k \lambda^k a_{n-k}$. Therefore,

$$p_A(\lambda) = (-1)^n \sum_{k=0}^n (-1)^k \lambda^k a_{n-k}.$$

Replacing k by n - k as the summation index yields

$$p_{A}(\lambda) = (-1)^{n} \sum_{k=0}^{n} (-1)^{n-k} \lambda^{n-k} a_{k} = \sum_{\substack{k=0 \\ k \neq 0}}^{n} (-1)^{k} a_{k} \sum_{\substack{k \neq 0 \\ k \neq 0}}^{-k} b_{k} a_{k} = \sum_{\substack{k=0 \\ k \neq 0}}^{n} (-1)^{k} a_{k} \sum_{\substack{k \neq 0 \\ k \neq 0}}^{-k} b_{k} a_{k} = \sum_{\substack{k=0 \\ k \neq 0}}^{n} (-1)^{k} a_{k} \sum_{\substack{k \neq 0 \\ k \neq 0}}^{-k} b_{k} a_{k} = \sum_{\substack{k \neq 0 \\ k \neq 0}}^{n} (-1)^{k} a_{k} \sum_{\substack{k \neq 0 \\ k \neq 0}}^{-k} b_{k} a_{k} a_{k} = \sum_{\substack{k \neq 0 \\ k \neq 0}}^{n} (-1)^{k} a_{k} \sum_{\substack{k \neq 0 \\ k \neq 0}}^{-k} b_{k} a_{k} a_{$$

Prof. Dan A. Simovici (University of Massa CS724: Topics in Algorithms Spectral Prop

Definition

Two matrices $A, B \in \mathbb{C}^{n \times n}$ are *similar* if there exists an invertible matrix $P \in \mathbb{C}^{n \times n}$ such that $B = PAP^{-1}$. This is denoted by $A \sim B$. If there exists a unitary matrix U such that $B = UAU^{-1}$, then A is *unitarily similar* to B. This is denoted by $A \sim_u B$. The matrices A, B are *congruent* if $B = SAS^{H}$ for some non-singular matrix S. This is denoted by $A \approx B$. If $A, B \in \mathbb{R}^{n \times n}$, we say that they are *t*-congruent if B = SAS' for some invertible matrix S; this is denoted by $A \approx_t B$.

Similar matrices have the same characteristic polynomial. Indeed, suppose that $B = PAP^{-1}$. We have

$$p_B(\lambda) = \det(\lambda I_n - B) = \det(\lambda I_n - PAP^{-1})$$

=
$$\det(\lambda PI_nP^{-1} - PAP^{-1}) = \det(P(\lambda I_n - A)P^{-1})$$

=
$$\det(P)\det(\lambda I_n - A)\det(P^{-1}) = \det(\lambda I_n - A) = p_A(\lambda),$$

because $det(P) det(P^{-1}) = 1$. Thus, similar matrices have the same eigenvalues.

Example

Let A be the matrix

$$A = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$$

We have

$$p_A = \det(\lambda I_2 - A) = (\lambda - \cos \theta)^2 + \sin^2 \theta = \lambda^2 - 2\lambda \cos \theta + 1.$$

The roots of this polynomial are $\lambda_1 = \cos \theta + i \sin \theta$ and $\lambda_2 = \cos \theta - i \sin \theta$, so they are complex numbers. We regard A as a complex matrix with real entries. If we were to consider A as a real matrix, we would not be able to find real eigenvalues for A unless θ were equal to 0.

Definition

The algebraic multiplicity of the eigenvalue λ of a matrix $A \in \mathbb{C}^{n \times n}$ is the multiplicity of λ as a root of the characteristic polynomial p_A of A. The algebraic multiplicity of λ is denoted by $\operatorname{algm}(A, \lambda)$. If $\operatorname{algm}(A, \lambda) = 1$ we say that λ is a simple eigenvalue.

Example

Let $A \in \mathbb{R}^{2 \times 2}$ be the matrix

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$$

The characteristic polynomial of A is

$$p_A(\lambda) = \begin{vmatrix} \lambda & 1 \\ -1 & \lambda - 2 \end{vmatrix} = \lambda^2 - 2\lambda + 1.$$

Therefore, A has the eigenvalue 1 with algm(A, 1) = 2.

Theorem

The eigenvalues of Hermitian complex matrices are real numbers.

Proof.

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix and let λ be an eigenvalue of A. We have $A\mathbf{x} = \lambda \mathbf{x}$ for some $\mathbf{x} \in \mathbb{C}^n - {\mathbf{0}_n}$, so $\mathbf{x}^{\mathsf{H}}A^{\mathsf{H}} = \overline{\lambda}\mathbf{x}^{\mathsf{H}}$. Since $A^{\mathsf{H}} = A$, we have

$$\lambda \mathbf{x}^{\mathsf{H}} \mathbf{x} = \mathbf{x}^{\mathsf{H}} A \mathbf{x} = \mathbf{x}^{\mathsf{H}} A^{\mathsf{H}} \mathbf{x} = \overline{\lambda} \mathbf{x}^{\mathsf{H}} \mathbf{x}.$$

Since $\mathbf{x} \neq \mathbf{0}$ implies $\mathbf{x}^{\mathsf{H}}\mathbf{x} \neq \mathbf{0}$, it follows that $\overline{\lambda} = \lambda$. Thus, λ is a real number.

Corollary

The eigenvalues of symmetric real matrices are real numbers.

ъ

14 / 72

< (司 ▶

Theorem

The eigenvectors of a complex Hermitian matrix corresponding to distinct eigenvalues are orthogonal to each other.

Proof: Let (λ, \mathbf{u}) and (μ, \mathbf{v}) be two eigenpairs of the Hermitian matrix $A \in \mathbb{C}^{n \times n}$, where $\lambda \neq \mu$. Since A is Hermitian, $\lambda, \mu \in \mathbb{R}$. Since $A\mathbf{u} = \lambda \mathbf{u}$ we have $\mathbf{v}^{\mathsf{H}}A\mathbf{u} = \lambda \mathbf{v}^{\mathsf{H}}\mathbf{u}$. The last equality can be written as $(A\mathbf{v})^{\mathsf{H}}\mathbf{u} = \lambda \mathbf{v}^{\mathsf{H}}\mathbf{u}$, or as $\mu \mathbf{v}^{\mathsf{H}}\mathbf{u} = \lambda \mathbf{v}^{\mathsf{H}}\mathbf{u}$. Since $\mu \neq \lambda$, $\mathbf{v}^{\mathsf{H}}\mathbf{u} = 0$, so \mathbf{u} and \mathbf{v} are orthogonal.

Corollary

The eigenvectors of a Hermitian matrix corresponding to distinct eigenvalues form a linearly independent set.

Theorem

(Schur's Triangularization Theorem) Let $A \in \mathbb{C}^{n \times n}$ be a square matrix. There exists an upper-triangular matrix $T \in \mathbb{C}^{n \times n}$ such that $A \sim_u T$. The diagonal elements of T are the eigenvalues of A; moreover, each eigenvalue λ of A occurs in the sequence of diagonal elements of T a number of $algm(A, \lambda)$ times. The columns of U are unit eigenvectors of A.

Proof

The argument is by induction on *n*. The base case, n = 1, is immediate. Suppose that the statement holds for matrices in $\mathbb{C}^{(n-1)\times(n-1)}$ and let $A \in \mathbb{C}^{n\times n}$. If (λ, \mathbf{x}) is an eigenpair of A with $\| \mathbf{x} \|_2 = 1$, let $H_{\mathbf{v}}$ be a Householder matrix that transforms \mathbf{x} into \mathbf{e}_1 . Since we also have $H_{\mathbf{v}}\mathbf{e}_1 = \mathbf{x}$, \mathbf{x} is the first column of $H_{\mathbf{v}}$ and we can write $H_{\mathbf{v}} = (\mathbf{x} K)$, where $K \in \mathbb{C}^{n \times (n-1)}$. Consequently,

$$H_{\mathbf{v}}AH_{\mathbf{v}} = H_{\mathbf{v}}A(\mathbf{x} \ K) = H_{\mathbf{v}}(\lambda \mathbf{x} \ H_{\mathbf{v}}AK) = (\lambda \mathbf{e}_1 \ H_{\mathbf{v}}AK).$$

Since $H_{\mathbf{v}}$ is Hermitian and $H_{\mathbf{v}} = (\mathbf{x} \ K)$, it follows that

$$H^{\scriptscriptstyle H}_{oldsymbol{v}}=egin{pmatrix} oldsymbol{x}^{\scriptscriptstyle H}\ K^{\scriptscriptstyle H} \end{pmatrix}=H_{oldsymbol{v}}$$

Therefore,

$$H_{\mathbf{v}}AH_{\mathbf{v}} = \begin{pmatrix} \lambda & \mathbf{x}^{\mathsf{H}}AK \\ \mathbf{0}_{n-1} & K^{\mathsf{H}}AK \end{pmatrix}.$$

Since $K^{H}AK \in \mathbb{C}^{(n-1)\times(n-1)}$, by the inductive hypothesis, there exists a unitary matrix W and an upper triangular matrix S such that $W^{H}(K^{H}AK)W = S$. Note that the matrix

$$U = H_{oldsymbol{v}} egin{pmatrix} 1 & oldsymbol{0}_{n-1} \ oldsymbol{0}_{n-1} & W \end{pmatrix}$$

is unitary and

$$U^{\mathsf{H}}AU^{\mathsf{H}} = \begin{pmatrix} \lambda & x^{\mathsf{H}}AKW \\ \mathbf{0}_{n-1} & W^{\mathsf{H}}K^{\mathsf{H}}AKW \end{pmatrix} = \begin{pmatrix} \lambda & \mathbf{x}^{\mathsf{H}}AKW \\ \mathbf{0}_{n-1} & S \end{pmatrix}.$$

The last matrix is clearly upper triangular.

Since $A \sim_u T$, A and T have the same characteristic polynomials and, therefore, the same eigenvalues, with identical multiplicities. The factorization of A can be written as $A = UDU^{H}$ because $U^{-1} = U^{H}$. Since AU = UD, each column \mathbf{u}_i of U is an eigenvector of A that corresponds to the eigenvalue λ_i for $1 \leq i \leq n$.

Corollary

Let $A \in \mathbb{C}^{n \times n}$ and let f be a polynomial. If $spec(A) = \{\lambda_1, \ldots, \lambda_n\}$ (including multiplicities), then $spec(f(A)) = \{f(\lambda_1), \ldots, f(\lambda_n)\}$.

Proof: By Schur's Triangularization Theorem there exists a unitary matrix $U \in \mathbb{C}^{n \times n}$ and an upper-triangular matrix $T \in \mathbb{C}^{n \times n}$ such that $A = UTU^{H}$ and the diagonal elements of T are the eigenvalues of A, $\lambda_1, \ldots, \lambda_n$. Therefore $f(A) = Uf(T)U^{H}$ and the diagonal elements of f(T) are $f(\lambda_1), \ldots, f(\lambda_m)$. Since $f(A) \sim_u f(T)$, we obtain the desired conclusion because two similar matrices have the same eigenvalues with the same algebraic multiplicities.

Definition

A matrix $A \in \mathbb{C}^{n \times n}$ is *diagonalizable* (unitarily diagonalizable) if there exists a diagonal matrix $D = \text{diag}(d_1, \ldots, d_n)$ such that $A \sim D$ ($A \sim_u D$).

Theorem

A matrix $A \in \mathbb{C}^{n \times n}$ is diagonalizable if and only if there exists a linearly independent set $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ of n eigenvectors of A.

Proof

Let $A \in \mathbb{C}^{n \times n}$ such that there exists a set $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ of *n* eigenvectors of *A* that is linearly independent and let *P* be the matrix $(\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n)$ that is clearly invertible. We have:

$$P^{-1}AP = P^{-1}(A\mathbf{v}_1 A\mathbf{v}_2 \cdots A\mathbf{v}_n) = P^{-1}(\lambda_1\mathbf{v}_1 \lambda_2\mathbf{v}_2 \cdots \lambda_n\mathbf{v}_n)$$
$$= P^{-1}P\begin{pmatrix}\lambda_1 & 0 & \cdots & 0\\ 0 & \lambda_2 & \cdots & 0\\ \vdots & \vdots & \cdots & \vdots\\ 0 & 0 & \cdots & \lambda_n\end{pmatrix} = \begin{pmatrix}\lambda_1 & 0 & \cdots & 0\\ 0 & \lambda_2 & \cdots & 0\\ \vdots & \vdots & \cdots & \vdots\\ 0 & 0 & \cdots & \lambda_n\end{pmatrix}.$$

Therefore, we have $A = PDP^{-1}$, where

$$D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix},$$

so $A \sim D$.

Conversely, suppose that A is diagonalizable, so AP = PD, where D is a diagonal matrix and P is an invertible matrix, and let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be the columns of the matrix P. We have $A\mathbf{v}_i = d_{ii}\mathbf{v}_i$ for $1 \leq i \leq n$, so each \mathbf{v}_i is an eigenvector of A. Since P is invertible, its columns are linear independent.

Corollary

If $A \in \mathbb{C}^{n \times n}$ is diagonalizable then the columns of any matrix P such that $D = P^{-1}AP$ is a diagonal matrix are eigenvectors of A. Furthermore, the diagonal entries of D are the eigenvalues that correspond to the columns of P.

Corollary

A matrix $A \in \mathbb{C}^{n \times n}$ is unitarily diagonalizable if and only if there exists a set $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ of n orthonormal eigenvectors of A.

Theorem

Let A be a Hermitian matrix, $\lambda_1 \ge \cdots \ge \lambda_n$ be its eigenvalues having the orthonormal eigenvectors $\mathbf{u}_1, \ldots, \mathbf{u}_n$, respectively. Define the subspace $M = \langle \mathbf{u}_p, \ldots, \mathbf{u}_q \rangle$, where $1 \le p \le q \le n$. If $\mathbf{x} \in M$ and $\| \mathbf{x} \|_2 = 1$, we have $\lambda_q \le \mathbf{x}^H A \mathbf{x} \le \lambda_p$.

Proof

If **x** is a unit vector in M, then $\mathbf{x} = a_p \mathbf{u}_p + \cdots + a_q \mathbf{u}_q$, so $\mathbf{x}^{\mathsf{H}} \mathbf{u}_i = \overline{a_i}$ for $p \leq i \leq q$. Since $\|\mathbf{x}\|_2 = 1$, we have $|a_p|^2 + \cdots + |a_q|^2 = 1$. This allows us to write:

$$\mathbf{x}^{\mathsf{H}} A \mathbf{x} = \mathbf{x}^{\mathsf{H}} (a_{p} A \mathbf{u}_{p} + \dots + a_{q} A \mathbf{u}_{q})$$

$$= \mathbf{x}^{\mathsf{H}} (a_{p} \lambda_{p} \mathbf{u}_{p} + \dots + a_{q} \lambda_{q} \mathbf{u}_{q})$$

$$= \mathbf{x}^{\mathsf{H}} (|a_{p}|^{2} \lambda_{p} + \dots + |a_{q}|^{2} \lambda_{q}).$$

Since $|a_p|^2 + \cdots + |a_q|^2 = 1$, the desired inequalities follow immediately.

Corollary

Let A be a Hermitian matrix, $\lambda_1 \ge \cdots \ge \lambda_n$ be its eigenvalues having the orthonormal eigenvectors $\mathbf{u}_1, \ldots, \mathbf{u}_n$, respectively. The following statements hold for a unit vector \mathbf{x} :

- if $\mathbf{x} \in \langle \mathbf{u}_1, \dots, \mathbf{u}_i \rangle$, then $\mathbf{x}^H A \mathbf{x} \ge \lambda_i$;
- if $\mathbf{x} \in \langle \mathbf{u}_1, \dots, \mathbf{u}_{i-1} \rangle^{\perp}$, then $\mathbf{x}^H A \mathbf{x} \leq \lambda_i$.

Theorem

(Rayleigh-Ritz Theorem) Let A be a Hermitian matrix and let $(\lambda_1, \mathbf{u}_1), \ldots, (\lambda_n, \mathbf{u}_n)$ be the eigenpairs of A, where $\lambda_1 \ge \cdots \ge \lambda_n$. If \mathbf{x} is a unit vector, we have $\lambda_n \le \mathbf{x}^H A \mathbf{x} \le \lambda_1$.

Proof.

This statement follows by observing that the subspace generated by $\mathbf{u}_1, \ldots, \mathbf{u}_n$ is the entire space \mathbb{C}^n .

The Courant-Fisher Theorem

Let \mathcal{S}_p^n be the collection of *p*-dimensional subspaces of \mathbb{C}^n . Note that $\mathcal{S}_0^n = \{\{\mathbf{0}_n\}\}\ \text{and}\ \mathcal{S}_n^n = \{\mathbb{C}^n\}.$

Theorem

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix having the eigenvalues $\lambda_1 \ge \cdots \ge \lambda_n$. We have

$$\lambda_{k} = \max_{U \in \mathcal{S}_{k}^{n}} \min\{\mathbf{x}^{H}A\mathbf{x} \mid \mathbf{x} \in U \text{ and } \| \mathbf{x} \|_{2} = 1\}$$
$$= \min_{U \in \mathcal{S}_{n-k+1}^{n}} \max\{\mathbf{x}^{H}A\mathbf{x} \mid \mathbf{x} \in U \text{ and } \| \mathbf{x} \|_{2} = 1\}$$

Proof

Let $A = V^{H} \text{diag}(\lambda_{1}, \dots, \lambda_{n})V$ be the factorization of A, where $V = (\mathbf{u}_{1} \cdots \mathbf{u}_{n})$ is a unitary matrix. If

$$U = \langle \mathbf{u}_1, \dots, \mathbf{u}_k \rangle \in \mathcal{S}_k^n$$
 and $W = \langle \mathbf{u}_k, \dots, \mathbf{u}_n \rangle \in \mathcal{S}_{n-k+1}^n$,

then there is a non-zero vector $\mathbf{x} \in U \cap W$ because dim(U) + dim(W) = n + 1; we can assume that $\| \mathbf{x} \|_2 = 1$. We have $\lambda_k \ge \mathbf{x}^H A \mathbf{x}$, and, therefore, for any $U \in S_k^n$, $\lambda_k \ge \min{\{\mathbf{x}^H A \mathbf{x} \mid \mathbf{x} \in U \text{ and } \| \mathbf{x} \|_2 = 1\}}$. This implies

$$\lambda_k \geqslant \max_{U \in \mathcal{S}_k^n} \min\{ \mathbf{x}^{\mathsf{H}} A \mathbf{x} \mid \mathbf{x} \in U \text{ and } \| \mathbf{x} \|_2 = 1 \}.$$

For a unit vector $\mathbf{x} \in \langle \mathbf{u}_1, \dots, \mathbf{u}_k \rangle \in S_k^n$ we have $\mathbf{x}^H A \mathbf{x} \ge \lambda_k$ and $\mathbf{u}_k^H A \mathbf{u}_k = \lambda_k$. Therefore, for $U = \langle \mathbf{u}_1, \dots, \mathbf{u}_k \rangle \in S_k^n$ we have $\min\{\mathbf{x}^H A \mathbf{x} \mid \mathbf{x} \in U, \| \mathbf{x} \|_2 = 1\} \ge \lambda_k$, so $\max_{U \in S_k^n} \min\{\mathbf{x}^H A \mathbf{x} \mid \mathbf{x} \in U, \| \mathbf{x} \|_2 = 1\} \ge \lambda_k$. The inequalities proved above yield

$$\lambda_k = \max_{U \in \mathcal{S}_k^n} \min \{ \mathbf{x}^{\mathsf{H}} A \mathbf{x} \mid \mathbf{x} \in U \text{ and } \parallel \mathbf{x} \parallel_2 = 1 \}.$$

For the second equality, let $U \in S_{n-k+1}^n$. If $W = \langle \mathbf{u}_1, \dots, \mathbf{u}_k \rangle$, there is a non-zero unit vector $\mathbf{x} \in U \cap W$ because $\dim(U) + \dim(W) \ge n+1$. We have $\mathbf{x}^H A \mathbf{x} \le \lambda_k$. Therefore, for any $U \in S_{n-k+1}^n$, $\lambda_k \ge \max{\mathbf{x}^H A \mathbf{x} \mid \mathbf{x} \in U}$ and $\|\mathbf{x}\|_2 = 1$. This implies $\lambda_k \ge \min_{U \in S_{n-k+1}^n} \max{\mathbf{x}^H A \mathbf{x} \mid \mathbf{x} \in U}$ and $\|\mathbf{x}\|_2 = 1$.

For a unit vector $\mathbf{x} \in \langle \mathbf{u}_k, \dots, \mathbf{u}_n \rangle \in S_{n-k+1}^n$ we have $\lambda_k \leq \mathbf{x}^H A \mathbf{x}$ and $\lambda_k = \mathbf{u}_k^H A \mathbf{u}_k$. Thus, $\lambda_k \leq \max\{\mathbf{x}^H A \mathbf{x} \mid \mathbf{x} \in U \text{ and } \| \mathbf{x} \|_2 = 1\}$. Consequently, $\lambda_k \leq \min_{U \in S_{n-k+1}^n} \max\{\mathbf{x}^H A \mathbf{x} \mid \mathbf{x} \in U \text{ and } \| \mathbf{x} \|_2 = 1\}$, which completes the proof of the second equality of the theorem.

An equivalent formulation of Courant-Fisher Theorem is given next.

Theorem

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix having the eigenvalues $\lambda_1 \ge \cdots \ge \lambda_n$. We have

$$\lambda_{k} = \max_{\mathbf{w}_{1},...,\mathbf{w}_{n-k}} \min\{\mathbf{x}^{H}A\mathbf{x} \mid \mathbf{x} \perp \mathbf{w}_{1},...,\mathbf{x} \perp \mathbf{w}_{n-k} \text{ and } \| \mathbf{x} \|_{2} = 1\}$$

=
$$\min_{\mathbf{w}_{1},...,\mathbf{w}_{k-1}} \max\{\mathbf{x}^{H}A\mathbf{x} \mid \mathbf{x} \perp \mathbf{w}_{1},...,\mathbf{x} \perp \mathbf{w}_{k-1} \text{ and } \| \mathbf{x} \|_{2} = 1\}.$$

Proof: The equalities of the Theorem follow from the Courant-Fisher theorem taking into account that if $U \in S_k^n$, then $U^{\perp} = \langle \mathbf{w}_1, \dots, \mathbf{w}_{n-k} \rangle$ for some vectors $\mathbf{w}_1, \dots, \mathbf{w}_n - k$, and if $U \in S_{n-k+1}^n$, then $U = \langle \mathbf{w}_1, \dots, \mathbf{w}_{k-1} \rangle$ for some vectors $\mathbf{w}_1, \dots, \mathbf{w}_k - 1$ in \mathbb{C}^n .

Ky Fan's Theorem

Theorem

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix such that $\operatorname{spec}(A) = \{\lambda_1, \ldots, \lambda_n\}$, where $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$. Also, let $V \in \mathbb{C}^{n \times n}$ be a matrix, $V = (\mathbf{v}_1, \ldots, \mathbf{v}_n)$ whose set of columns constitutes an orthonormal set of eigenvectors of A. For every $q \in \mathbb{N}$ such that $1 \leq q \leq n$, the sums

$$\sum_{i=1}^{q} \lambda_i = \lambda_1 + \dots + \lambda_q$$

and

$$\sum_{i=1}^{q} \lambda_{n+1-i} = \lambda_n + \lambda_{n-1} + \dots + \lambda_{n-(q-1)}$$

are the maximum and minimum of $\sum_{j=1}^{q} \mathbf{x}_{j}^{H} A \mathbf{x}_{j}$, respectively, where $\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{q}\}$ is an orthonormal set of vectors in \mathbb{C}^{n} . The maximum (minimum) is achieved when $\mathbf{x}_{1}, \ldots, \mathbf{x}_{q}$ are the first (last) columns of V.

Proof

Let $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$ be an orthonormal set of eigenvectors of A and let $\mathbf{x}_i = \sum_{k=1}^n b_{ki} \mathbf{v}_k$ be the expression of \mathbf{x}_i using the columns of V as a basis for $1 \leq i \leq n$. Since each \mathbf{x}_i is a unit vector we have

$$\|\mathbf{x}_{i}\|^{2} = \mathbf{x}_{i}^{\mathsf{H}}\mathbf{x}_{i} = \sum_{k=1}^{n} |b_{ki}|^{2} = 1$$

for $1 \leq i \leq n$. Also, note that

$$\mathbf{x}_{i}^{\mathsf{H}}\mathbf{v}_{r} = \left(\sum_{k=1}^{n} \overline{b_{ki}}\mathbf{v}_{k}^{\mathsf{H}}\right)\mathbf{v}_{r} = \overline{b_{ri}},$$

due to the orthonormality of the set of columns of V.

We have

$$\begin{aligned} \mathbf{x}_{i}^{\mathsf{H}} A \mathbf{x}_{i} &= \mathbf{x}_{i}^{\mathsf{H}} A \sum_{k=1}^{n} b_{ki} \mathbf{v}_{k} = \sum_{k=1}^{n} b_{ki} \mathbf{x}_{i}^{\mathsf{H}} A \mathbf{v}_{k} \\ &= \sum_{k=1}^{n} b_{ki} \mathbf{x}_{i}^{\mathsf{H}} \lambda_{k} \mathbf{v}_{k} = \sum_{k=1}^{n} \lambda_{k} b_{ki} \overline{b_{ki}} = \sum_{k=1}^{n} |b_{ki}|^{2} \lambda_{k} \\ &= \lambda_{q} \sum_{k=1}^{n} |b_{ki}|^{2} + \sum_{k=1}^{q} (\lambda_{k} - \lambda_{q}) |b_{ki}|^{2} + \sum_{k=q+1}^{n} (\lambda_{k} - \lambda_{q}) |b_{ki}|^{2} \\ &\leqslant \lambda_{q} + \sum_{k=1}^{q} (\lambda_{k} - \lambda_{q}) |b_{ki}|^{2}. \end{aligned}$$

The last inequality implies

$$\sum_{i=1}^{q} \mathbf{x}_{i}^{\mathsf{H}} A \mathbf{x}_{i} \leqslant q \lambda_{q} + \sum_{i=1}^{q} \sum_{k=1}^{q} (\lambda_{k} - \lambda_{q}) |b_{ki}|^{2} \cdot \sum_{\substack{\mathsf{WASS} \\ \mathsf{SUBASS} \\ \mathsf{S$$

Prof. Dan A. Simovici (University of MassaCS724: Topics in Algorithms Spectral Prop

Therefore,

$$\sum_{i=1}^{q} \lambda_i - \sum_{i=1}^{q} \mathbf{x}_i^{\mathsf{H}} A \mathbf{x}_i \ge \sum_{i=1}^{q} (\lambda_i - \lambda_q) \left(1 - \sum_{k=1}^{q} |b_{ki}|^2 \right).$$
(2)

We have $\sum_{k=1}^{q} |b_{ik}|^2 \leqslant \parallel \mathbf{x}_i \parallel^2 = 1$, so

$$\sum_{i=1}^{q} (\lambda_i - \lambda_q) \left(1 - \sum_{k=1}^{q} |b_{ki}|^2 \right) \ge 0.$$

The left member of Inequality 2 becomes 0 when $\mathbf{x}_i = \mathbf{v}_i$, so $\sum_{i=1}^{q} \mathbf{x}_i^{\mathsf{H}} A \mathbf{x}_i \leq \sum_{i=1}^{q} \lambda_i$. The maximum of $\sum_{i=1}^{q} \mathbf{x}_i^{\mathsf{H}} A \mathbf{x}_i$ is obtained when $\mathbf{x}_i = \mathbf{v}_i$ for $1 \leq i \leq q$, that is, when X consists of the first q columns of V. The argument for the minimum is similar.

Theorem

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix. If A is positive semidefinite, then all its eigenvalues are non-negative; if A is positive definite then its eigenvalues are positive.

Proof.

Since A is Hermitian all its eigenvalues are real numbers. Suppose that A is positive semidefinite, that is, $\mathbf{x}^{\mathsf{H}}A\mathbf{x} \ge 0$ for $\mathbf{x} \in \mathbb{C}^n$. If $\lambda \in \operatorname{spec}(A)$, then $A\mathbf{v} = \lambda \mathbf{v}$ for some eigenvector $\mathbf{v} \ne \mathbf{0}$. The positive semi-definiteness of A implies $\mathbf{v}^{\mathsf{H}}A\mathbf{v} = \lambda \mathbf{v}^{\mathsf{H}}\mathbf{v} = \lambda \| \mathbf{v} \|_2^2 \ge 0$, which implies $\lambda \ge 0$. It is easy to see that if A is positive definite, then $\lambda > 0$.

February 3, 2014

Theorem

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix. If A is positive semidefinite, then all its principal minors are non-negative real numbers. If A is positive definite then all its principal minors are positive real numbers.

Proof.

Since A is positive semidefinite, every sub-matrix $A\begin{bmatrix} i_1 & \cdots & i_k \\ i_1 & \cdots & i_k \end{bmatrix}$ is a Hermitian positive semidefinite matrix by Theorem ??, so every principal minor is a non-negative real number. The second part of the theorem is proven similarly.

February 3, 2014

Corollary

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix. The following statements are equivalent.

- A is positive semidefinite;
- all eigenvalues of A are non-negative numbers;
- there exists a Hermitian matrix $C \in \mathbb{C}^{n \times n}$ such that $C^2 = A$;
- A is the Gram matrix of a sequence of vectors, that is, A = B^HB for some B ∈ C^{n×n}.

Definition

Let $A \in \mathbb{C}^{m \times n}$ be a matrix. A *singular triplet* of A is a triplet $(\sigma, \mathbf{u}, \mathbf{v})$ such that $\sigma \in \mathbb{R}_{>0}$, $\mathbf{u} \in \mathbb{C}^{n}$, $\mathbf{v} \in \mathbb{C}^{m}$, $A\mathbf{u} = \sigma\mathbf{v}$ and $A^{\mathsf{H}}\mathbf{v} = \sigma\mathbf{u}$. The number σ is a *singular value* of A, \mathbf{u} is a *left singular vector* and \mathbf{v} is a *right singular vector*.

For a singular triplet $(\sigma, \mathbf{u}, \mathbf{v})$ of A we have

$$A^{H}A\mathbf{u} = \sigma A^{H}\mathbf{v} = \sigma^{2}\mathbf{u}$$
 and $AA^{H}\mathbf{v} = \sigma A\mathbf{u} = \sigma^{2}\mathbf{v}$.

Therefore, σ^2 is both an eigenvalue of AA^{H} and an eigenvalue of $A^{H}A$.

Example

Let A be the real matrix

$$A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \cos \beta & \sin \beta \end{pmatrix}.$$

We have det(A) = sin($\beta - \alpha$), so the eigenvalues of A'A are the roots of the equation $\lambda^2 - 2\lambda + \sin^2(\beta - \alpha) = 0$, that is, $\lambda_1 = 1 + \cos(\beta - \alpha)$ and $\lambda_2 = 1 - \cos(\beta - \alpha)$. Therefore, the singular values of A are $\sigma_1 = \sqrt{2} \left| \cos \frac{\beta - \alpha}{2} \right|$ and $\sigma_2 = \sqrt{2} \left| \sin \frac{\beta - \alpha}{2} \right|$. It is easy to see that a unit left singular vector that corresponds to the eigenvalue $1 + \cos(\beta - \alpha)$ is

$$\mathbf{u} = \begin{pmatrix} \cos \frac{\alpha + \beta}{2} \\ \sin \frac{\alpha + \beta}{2} \end{pmatrix},$$

which corresponds to the average direction of the rows of A.

Prof. Dan A. Simovici (University of Massa CS724: Topics in Algorithms Spectral Prop

・ロト ・同ト ・ヨト ・ヨト

- The eigenvalues of a positive semi-definite matrix are non-negative numbers. Since both AA^H and A^HA are positive semi-definite matrices for A ∈ C^{m×n}, the spectra of these matrices consist of non-negative numbers λ₁,...,λ_n.
- AA^{H} and $A^{H}A$ have the same rank r and therefore, the same number r of non-zero eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$.
- The singular values of A have the form $\sqrt{\lambda_1} \ge \cdots \ge \sqrt{\lambda_r}$.

Notation: $\sigma_i = \sqrt{\lambda_i}$ for $1 \le i \le r$ and will assume that $\sigma_1 \ge \cdots \ge \sigma_r > 0$.

Theorem

Let $A \in \mathbb{C}^{n \times n}$ be a matrix having the singular values $\sigma_1 \ge \cdots \ge \sigma_n$. If λ is an eigenvalue value of A, then $\sigma_n \le |\lambda| \le \sigma_1$.

Proof.

Let **u** be an unit eigenvector for the eigenvalue λ . Since $A\mathbf{u} = \lambda \mathbf{u}$ it follows that $(A^{\mathsf{H}}A\mathbf{u}, \mathbf{u}) = (A\mathbf{u}, A\mathbf{u}) = \overline{\lambda}\lambda(\mathbf{u}, \mathbf{u}) = \overline{\lambda}\lambda = |\lambda|^2$. The matrix $A^{\mathsf{H}}A$ is Hermitian and its largest and smallest eigenvalues are σ_1^2 and σ_n^2 , respectively. Thus, $\sigma_n \leq |\lambda| \leq \sigma_1$.

The SVD Theorem

Theorem

If $A \in \mathbb{C}^{m \times n}$ is a matrix and rank(A) = r, then A can be factored as $A = UDV^{H}$, where $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary matrices, and $D = diag(\sigma_1, \ldots, \sigma_r, 0, \ldots, 0) \in \mathbb{R}^{m \times n}$, where $\sigma_1 \ge \ldots \ge \sigma_r$ are real positive numbers.

Proof

The square matrix $A^{H}A \in \mathbb{C}^{n \times n}$ has the same rank r as the matrix A and is positive semidefinite. Therefore, there are r positive eigenvalues of this matrix, denoted by $\sigma_1^2, \ldots, \sigma_r^2$, where $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$. Let $\mathbf{v}_1, \ldots, \mathbf{v}_r$ be the corresponding pairwise orthogonal unit eigenvectors in \mathbb{C}^n .

We have $A^{\mathsf{H}}A\mathbf{v}_i = \sigma_i^2\mathbf{v}_i$ for $1 \leq i \leq r$. Define $V = (\mathbf{v}_1 \cdots \mathbf{v}_r \mathbf{v}_{r+1} \cdots \mathbf{v}_n)$ by completing the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ to an orthogonal basis

$$\{\mathbf{v}_1,\ldots,\mathbf{v}_r,\mathbf{v}_{r+1},\ldots,\mathbf{v}_n\}$$

for \mathbb{C}^n . If $V_1 = (\mathbf{v}_1 \cdots \mathbf{v}_r)$ and $V_2 = (\mathbf{v}_{r+1} \cdots \mathbf{v}_n)$, we can write $V = (V_1 \ V_2)$.

The equalities involving the eigenvectors can now be written as $A^{H}AV_{1} = V_{1}E^{2}$, where $E = \text{diag}(\sigma_{1}, \ldots, \sigma_{r})$. Define $U_{1} = AV_{1}E^{-1} \in \mathbb{C}^{m \times r}$. We have $U_{1}^{H} = E^{-1}V_{1}^{H}A^{H}$, so

$$U_1^{\mathsf{H}}U_1 = E^{-1}V_1^{\mathsf{H}}A^{\mathsf{H}}AV_1E^{-1} = E^{-1}V_1^{\mathsf{H}}V_1E^2E^{-1} = I_r,$$

which shows that the columns of U_1 are pairwise orthogonal unit vectors. Consequently, $U_1^{H}AV_1E^{-1} = I_r$, so $U_1^{H}AV_1 = E$.

If $U_1 = (\mathbf{u}_1 \cdots, \mathbf{u}_r)$, let $U_2 = (\mathbf{u}_{r+1}, \dots, \mathbf{u}_m)$ be the matrix whose columns constitute the extension of the set $\{\mathbf{u}_1 \cdots, \mathbf{u}_r\}$ to an orthogonal basis of \mathbb{C}^m .

Define $U \in \mathbb{C}^{m \times m}$ as $U = (U_1 \ U_2)$. Note that

$$U^{\mathsf{H}}AV = \begin{pmatrix} U_{1}^{\mathsf{H}} \\ U_{2}^{\mathsf{H}} \end{pmatrix} A(V_{1} V_{2}) = \begin{pmatrix} U_{1}^{\mathsf{H}}AV_{1} & U_{1}^{\mathsf{H}}AV_{2} \\ U_{2}^{\mathsf{H}}AV_{1} & U_{2}^{\mathsf{H}}AV_{2} \end{pmatrix}$$
$$= \begin{pmatrix} U_{1}^{\mathsf{H}}AV_{1} & U_{1}^{\mathsf{H}}AV_{2} \\ U_{2}^{\mathsf{H}}AV_{1} & U_{2}^{\mathsf{H}}AV_{2} \end{pmatrix} = \begin{pmatrix} U_{1}^{\mathsf{H}}AV_{1} & O \\ O & O \end{pmatrix} = \begin{pmatrix} E & O \\ O & O \end{pmatrix},$$

which is the desired decomposition.

Corollary

Let $A \in \mathbb{C}^{m \times n}$ be a matrix such that rank(A) = r. If $\sigma_1 \ge ... \ge \sigma_r$ are non-zero singular values, then

$$A = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^H + \dots + \sigma_r \mathbf{u}_r \mathbf{v}_r^H, \qquad (3)$$

where $(\sigma_i, \mathbf{u}_i, \mathbf{v}_i)$ are singular triplets of A for $1 \leq i \leq r$.

The value of a unitarily invariant norm of a matrix depends only on its singular values.

Corollary

Let $A \in \mathbb{C}^{m \times n}$ be a matrix and let $A = UDV^{H}$ be the singular value decomposition of A. If $\|\cdot\|$ is a unitarily invariant norm, then

$$|| A || = || D || = || diag(\sigma_1, ..., \sigma_r, 0, ..., 0) ||$$
.

Proof.

This statement follows because the matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary.

 $\|\!|\!| \cdot \|\!|_2$ and $\|\!|\!| \cdot \|_F$ are unitarily invariant. Therefore, the Frobenius norm can be written as

$$\|A\|_{\mathcal{F}} = \sqrt{\sum_{i=1}^r \sigma_r^2}.$$

and $|||A|||_2 = \sigma_1$.

Theorem

Let A and B be two matrices in $\mathbb{C}^{m \times n}$. If $A \sim_u B$, then they have the same singular values.

Proof.

Suppose that $A \sim_u B$, that is, $A = W_1^H B W_2$ for some unitary matrices W_1 and W_2 . If A has the SVD $A = U^H \text{diag}(\sigma_1, \ldots, \sigma_r, 0, \ldots, 0)V$, then

$$B = W_1 A W_2^{\scriptscriptstyle \mathsf{H}} = (W_1 U^{\scriptscriptstyle \mathsf{H}}) \mathsf{diag}(\sigma_1, \dots, \sigma_r, 0, \dots, 0) (V W_2^{\scriptscriptstyle \mathsf{H}}).$$

Since $W_1 U^{H}$ and VW_2^{H} are both unitary matrices, it follows that the singular values of *B* are the same as the singular values of *A*.

Let $\mathbf{v} \in \mathbb{C}^n$ be an eigenvector of the matrix $A^{\mathsf{H}}A$ that corresponds to a non-zero, positive eigenvalue σ^2 , that is, $A^{\mathsf{H}}A\mathbf{v} = \sigma^2\mathbf{v}$. Define $\mathbf{u} = \frac{1}{\sigma}A\mathbf{v}$. We have $A\mathbf{v} = \sigma\mathbf{u}$. Also,

$$A^{\mathsf{H}}\mathbf{u} = A^{\mathsf{H}}\left(\frac{1}{\sigma}A\mathbf{v}\right) = \sigma\mathbf{v}.$$

This implies $AA^{H}\mathbf{u} = \sigma^{2}\mathbf{u}$, so \mathbf{u} is an eigenvector of AA^{H} that corresponds to the same eigenvalue σ^{2} .

Conversely, if $\mathbf{u} \in \mathbb{C}^m$ is an eigenvector of the matrix AA^{H} that corresponds to a non-zero, positive eigenvalue σ^2 , we have $AA^{\mathsf{H}}\mathbf{u} = \sigma^2\mathbf{u}$. Thus, if $\mathbf{v} = \frac{1}{\sigma}A\mathbf{u}$ we have $A\mathbf{v} = \sigma\mathbf{u}$ and \mathbf{v} is an eigenvector of $A^{\mathsf{H}}A$ for the eigenvalue σ^2 .

The Courant-Fisher Theorem allows the formulation of a similar result for singular values.

Theorem

Let $A \in \mathbb{C}^{m \times n}$ be a matrix such that $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r$ is the non-increasing sequence of singular values of A. For $1 \le k \le r$ we have

$$\sigma_k = \min_{\dim(S)=n-k+1} \max\{ \| A\mathbf{x} \|_2 | \mathbf{x} \in S \text{ and } \| \mathbf{x} \|_2 = 1 \}$$

$$\sigma_k = \max_{\dim(T)=k} \min\{ \| A\mathbf{x} \|_2 | \mathbf{x} \in T \text{ and } \| \mathbf{x} \|_2 = 1 \},$$

where S and T range over subspaces of \mathbb{C}^n .

February 3, 2014

Proof

We give the argument only for the second equality of the theorem; the first can be shown in a similar manner.

We saw that σ_k equals the square root of k^{th} largest absolute value of the eigenvalue $|\lambda_k|$ of the matrix $A^{\text{H}}A$. By Courant-Fisher Theorem, we have

$$\begin{split} \lambda_k &= \max_{\dim(\mathcal{T})=k} \min_{\mathbf{x}} \{ \mathbf{x}^{\mathsf{H}} A^{\mathsf{H}} A \mathbf{x} \mid \mathbf{x} \in \mathcal{T} \text{ and } \| \mathbf{x} \|_2 = 1 \} \\ &= \max_{\dim(\mathcal{T})=k} \min_{\mathbf{x}} \{ \| A \mathbf{x} \|_2^2 \mid \mathbf{x} \in \mathcal{T} \text{ and } \| \mathbf{x} \|_2 = 1 \}, \end{split}$$

which implies the second equality of the theorem.

February 3, 2014

Corollary

The smallest singular value of a matrix $A \in \mathbb{C}^{m \times n}$ equals $\min\{ || A\mathbf{x} ||_2 | \mathbf{x} \in \mathbb{C}^n \text{ and } || \mathbf{x} ||_2 = 1 \}.$ The largest singular value of a matrix $A \in \mathbb{C}^{m \times n}$ equals $\max\{ || A\mathbf{x} ||_2 | \mathbf{x} \in \mathbb{C}^n \text{ and } || \mathbf{x} ||_2 = 1 \}.$

The SVD allows us to find the best approximation of of a matrix by a matrices of limited rank.

Lemma

Let $A = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^H + \dots + \sigma_r \mathbf{u}_r \mathbf{v}_r^H$ be the SVD of a matrix $A \in \mathbb{R}^{m \times n}$, where $\sigma_1 \ge \dots \ge \sigma_r > 0$. For every $k, 1 \le k \le r$ the matrix $B(k) = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^H$ has rank k.

Proof.

The null space of the matrix B(k) consists of those vectors **x** such that $B(k)\mathbf{x} = \sum_{i=1}^{k} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\mathsf{H}} \mathbf{x} = \mathbf{0}$. The linear independence of the vectors \mathbf{u}_i and the fact that $\sigma_i > 0$ for $1 \leq i \leq r$ implies the equalities $\mathbf{v}_i^{\mathsf{H}} \mathbf{x} = \mathbf{0}$ for $1 \leq i \leq k$. Thus, $\mathbf{x} \in \langle \mathbf{v}_1, \dots, \mathbf{v}_k \rangle^{\perp}$ and, since $\mathbf{v}_1, \dots, \mathbf{v}_k$ are linearly independent it follows that dim(NullSp(B(k)) = n - k, which implies rank(B(k)) = k for $1 \leq k \leq r$.

Theorem

(Eckhart-Young Theorem) Let $A \in \mathbb{C}^{m \times n}$ be a matrix whose sequence of non-zero singular values is $(\sigma_1, \ldots, \sigma_r)$. Assume that $\sigma_1 \ge \cdots \ge \sigma_r > 0$ and that A can be written as

$$A = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^H + \dots + \sigma_r \mathbf{u}_r \mathbf{v}_r^H.$$

Let $B(k) \in \mathbb{C}^{m \times n}$ be the matrix defined by

$$B(k) = \sum_{i=1}^{k} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\mathsf{H}}.$$

If $r_k = \inf\{||A - X||_2 \mid X \in \mathbb{C}^{m \times n} \text{ and } rank(X) \leq k\}$, then

$$|||A-B(k)|||_2=r_k=\sigma_{k+1},$$

for $1 \leq k \leq r$, where $\sigma_{r+1} = 0$ and B(k) is the best approximation of A among the matrices of rank no larger than k in the sense of the norm $||| \cdot ||_2$.

Proof

Observe that

$$A-B(k)=\sum_{i=k+1}^r\sigma_i\mathbf{u}_i\mathbf{v}_i^{\mathsf{H}},$$

and the largest singular value of the matrix $\sum_{i=k+1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\mathsf{H}}$ is σ_{k+1} . Since σ_{k+1} is the largest singular value of A - B(k) we have $||A - B(k)||_2 = \sigma_{k+1}$ for $1 \leq k \leq r$.

We prove now that for every matrix $X \in \mathbb{C}^{m \times n}$ such that $rank(X) \leq k$, we have $|||A - X|||_2 \geq \sigma_{k+1}$. Since dim(NullSp(X)) = n - rank(X), it follows that dim $(NullSp(X)) \geq n - k$. If T is the subspace of \mathbb{R}^n spanned by $\mathbf{v}_1, \ldots, \mathbf{v}_{k+1}$, we have dim(T) = k + 1. Since dim $(NullSp(X)) + \dim(T) > n$, the intersection of these subspaces contains a unit non-zero vector \mathbf{x} . We have $\mathbf{x} = a_1\mathbf{v}_1 + \cdots + a_k\mathbf{v}_k + a_{k+1}\mathbf{v}_{k+1}$ because $\mathbf{x} \in T$. The

orthogonality of $\mathbf{v}_1, \dots, \mathbf{v}_k, \mathbf{v}_{k+1}$ implies $\|\mathbf{x}\|_2^2 = \sum_{i=1}^{k+1} |a_i|^2 = 1$.

Since $\mathbf{x} \in \text{NullSp}(X)$, we have $X\mathbf{x} = \mathbf{0}$, so

$$(A-X)\mathbf{x} = A\mathbf{x} = \sum_{i=1}^{k+1} a_i A \mathbf{v}_i = \sum_{i=1}^{k+1} a_i \sigma_i \mathbf{u}_i.$$

Thus, we have

$$|||(A-X)\mathbf{x}|||_{2}^{2} = \sum_{i=1}^{k+1} |\sigma_{i}a_{i}|^{2} \ge \sigma_{k+1}^{2} \sum_{i=1}^{k+1} |a_{i}|^{2} = \sigma_{k+1}^{2},$$

because $\mathbf{u}_1, \dots, \mathbf{u}_k$ are also orthonormal. This implies $\| \| A - X \|_2 \ge \sigma_{k+1} = \| \| A - B(k) \|_2$.

It is interesting to observe that the matrix B(k) provides an optimal approximation of A not only with respect to $\|\cdot\|_2$ but also relative to the Frobenius norm.

Theorem

B(k) is the best approximation of A among matrices of rank no larger than k in the sense of the Frobenius norm.

Proof

Note that $||A - B(k)||_F^2 = ||A||_F^2 - \sum_{i=1}^k \sigma_i^2$. Let X be a matrix of rank k, which can be written as $X = \sum_{i=1}^k \mathbf{x}_i \mathbf{y}_i^H$. Without loss of generality we may assume that the vectors $\mathbf{x}_1, \ldots, \mathbf{x}_k$ are orthonormal. If this is not the case, we can use the Gram-Schmidt algorithm to express then as linear combinations of orthonormal vectors, replace these expressions in $\sum_{i=1}^k \mathbf{x}_i \mathbf{y}_i^H$ and rearrange the terms. Now, the Frobenius norm of A - X can be written as

$$\|A - X\|_{F}^{2} = trace\left(\left(A - \sum_{i=1}^{k} \mathbf{x}_{i} \mathbf{y}^{H}\right)^{H} \left(A - \sum_{i=1}^{k} \mathbf{x}_{i} \mathbf{y}^{H}\right)\right)$$
$$= trace\left(A^{H}A + \sum_{i=1}^{k} (\mathbf{y}_{i} - A^{H} \mathbf{x}_{i})(\mathbf{y}_{i} - A^{H} \mathbf{x}_{i})^{H} - \sum_{i=1}^{k} A^{H} \mathbf{x}_{i} \mathbf{x}_{i}^{H}A\right)$$

February 3, 2014 69 / 72

Taking into account that $\sum_{i=1}^{k} (\mathbf{y}_{i} - A^{\mathsf{H}}\mathbf{x}_{i})(\mathbf{y}_{i} - A^{\mathsf{H}}\mathbf{x}_{i})^{\mathsf{H}}$ is a real non-negative number and that $\sum_{i=1}^{k} A^{\mathsf{H}}\mathbf{x}_{i}\mathbf{x}_{i}^{\mathsf{H}}A = ||A\mathbf{x}_{i}||_{F}^{2}$ we have

$$||A - X||_F^2 \geq trace\left(A^{\mathsf{H}}A - \sum_{i=1}^k A^{\mathsf{H}}\mathbf{x}_i\mathbf{x}_i^{\mathsf{H}}A\right) = ||A||_F^2 - trace\left(\sum_{i=1}^k A^{\mathsf{H}}\mathbf{x}_i\mathbf{x}_i^{\mathsf{H}}A\right)$$

Let $A = U \operatorname{diag}(\sigma_1, \ldots, \sigma_n) V^{\mathsf{H}}$ be the singular value decomposition of A. If $V = (V_1 \ V_2)$, where V_1 has k columns $\mathbf{v}_1, \ldots, \mathbf{v}_k$, $D_1 = \operatorname{diag}(\sigma_1, \ldots, \sigma_k)$ and $D_2 = \operatorname{diag}(\sigma_{k+1}, \ldots, \sigma_n)$, then

$$\begin{aligned} A^{\mathsf{H}}A &= VD^{\mathsf{H}}U^{\mathsf{H}}UDV^{\mathsf{H}} = (V_1 \ V_2) \begin{pmatrix} D_1^2 & O \\ O & D_2^2 \end{pmatrix} \begin{pmatrix} V_1^{\mathsf{H}} \\ V_2^{\mathsf{H}} \end{pmatrix} \\ &= V_1D_1^2V_1^{\mathsf{H}} + V_2D_2^2V_2^{\mathsf{H}}. \end{aligned}$$

and $A^{H}A = VD^2V^{H}$.

These equalities allow us to write:

$$\| A\mathbf{x}_{i} \|_{F}^{2} = trace(\mathbf{x}_{i}^{H}A^{H}A\mathbf{x}_{i})$$

$$= trace(\mathbf{x}_{i}^{H}V_{1}D_{1}^{2}V_{1}^{H}\mathbf{x}_{i} + \mathbf{x}_{i}^{H}V_{2}D_{2}^{2}V_{2}^{H}\mathbf{x}_{i})$$

$$= \| D_{1}V_{1}^{H}\mathbf{x}_{i} \|_{F}^{2} + \| D_{2}V_{2}^{H}\mathbf{x}_{i} \|_{F}^{2}$$

$$= \sigma_{k}^{2} + (\| D_{1}V_{1}^{H}\mathbf{x}_{i} \|_{F}^{2} - \sigma_{k}^{2} \| V_{1}^{H}\mathbf{x}_{i} \|_{F}^{2})$$

$$- (\sigma_{k}^{2} \| V_{2}^{H}\mathbf{x}_{i} \|_{F}^{2} - \| D_{2}V_{2}^{H}\mathbf{x}_{i} \|_{F}^{2})) - \sigma_{k}^{2}(1 - \| V^{H}\mathbf{x}_{i} \|).$$

Since $|| V^{H}\mathbf{x}_{i} ||_{F}^{1} = 1$ (because \mathbf{x}_{i} is an unit vector and V is an unitary matrix) and $\sigma_{k}^{2} || V_{2}^{H}\mathbf{x}_{i} ||_{F}^{2} - || D_{2}V_{2}^{H}\mathbf{x}_{i} ||_{F}^{2} \ge 0$, it follows that

$$\| A\mathbf{x}_i \|_F^2 \leqslant \sigma_k^2 + \left(\| D_1 V_1^{\mathsf{H}} \mathbf{x}_i \|_F^2 - \sigma_k^2 \| V_1^{\mathsf{H}} \mathbf{x}_i \|_F^2 \right).$$

Consequently,

$$\begin{split} \sum_{i=1}^{k} \| A\mathbf{x}_{i} \|_{F}^{2} &\leq k\sigma_{k}^{2} + \sum_{i=1}^{k} \left(\| D_{1}V_{1}^{\mathsf{H}}\mathbf{x}_{i} \|_{F}^{2} - \sigma_{k}^{2} \| V_{1}^{\mathsf{H}}\mathbf{x}_{i} \|_{F}^{2} \right) \\ &= k\sigma_{k}^{2} + \sum_{i=1}^{k} \sum_{j=1}^{k} (\sigma_{j}^{2} - \sigma_{k}^{2}) |\mathbf{v}_{j}^{\mathsf{H}}\mathbf{x}_{i}|^{2} \\ &= \sum_{j=1}^{k} \left(\sigma_{k}^{2} + (\sigma_{j}^{2} - \sigma_{k}^{2}) \sum_{i=1}^{k} |\mathbf{v}_{j}\mathbf{x}_{i}|^{2} \right) \\ &\leqslant \sum_{j=1}^{k} (\sigma_{k}^{2} + (\sigma_{j}^{2} - \sigma_{k}^{2})) = \sum_{j=1}^{k} \sigma_{j}^{2}, \end{split}$$

which concludes the argument.

< 1 →

э