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Let A ∈ Cn×n be a square matrix.
An eigenpair of A is a pair (λ, x) ∈ C× (Cn−{0}) such that Ax = λx.
We refer to λ is an eigenvalue and to x is an eigenvector.
The set of eigenvalues of A is the spectrum of A and will be denoted
by spec(A).
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If (λ, x) is an eigenpair of A, the linear system Ax = λx has a non-trivial
solution in x. An equivalent homogeneous system is (λIn − A)x = 0 and
this system has a non-trivial solution only if det(λIn − A) = 0.

Definition

The characteristic polynomial of the matrix A is the polynomial pA defined
by pA(λ) = det(λIn − A) for λ ∈ C.

Thus, the eigenvalues of A are the roots of the characteristic polynomial of
A.
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Lemma

Let A = (a1 · · · an) ∈ Cn and let B be the matrix obtained from A by
replacing the column aj by ej . Then, we have

det(B) = det

(
A

[
1 · · · j − 1 j + 1 · · · n
1 · · · j − 1 j + 1 · · · n

])
.

If B is obtained from A by replacing the columns aj1 , . . . , ajk by ej1 , . . . , ejk
and {i1, . . . , ip} = {1, . . . , n} − {j1, . . . , jk}, then

det(B) = det

(
A

[
i1 · · · ip
i1 · · · ip

])
. (1)

In other words, det(B) equals a principal p-minor of A.
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Theorem

Let A ∈ Cn×n be a matrix. Its characteristic polynomial pA can be written
as

pA(λ) =
n∑

k=0

(−1)kakλ
n−k ,

where ak is the sum of the principal minors of order k of A.
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Proof

pA(λ) = det(λIn − A) = (−1)n det(A− λIn)

can be written as a sum of 2n determinants of matrices obtained by
replacing each subset of the columns of A by the corresponding subset of
columns of −λIn.
If the subset of columns of −λIn involved are −λej1 , . . . ,−λejk the result

of the substitution is (−1)kλk det

(
A

[
i1 · · · ip
i1 · · · ip

])
, where

{i1, . . . , ip} = {1, . . . , n} − {j1, . . . , jk}. The total contribution of sets of k
columns of −λIn is (−1)kλkan−k . Therefore,

pA(λ) = (−1)n
n∑

k=0

(−1)kλkan−k .

Replacing k by n − k as the summation index yields

pA(λ) = (−1)n
n∑

k=0

(−1)n−kλn−kak =
n∑

k=0

(−1)kakλ
n−k .
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Definition

Two matrices A,B ∈ Cn×n are similar if there exists an invertible matrix
P ∈ Cn×n such that B = PAP−1. This is denoted by A ∼ B.
If there exists a unitary matrix U such that B = UAU−1, then A is
unitarily similar to B. This is denoted by A ∼u B.
The matrices A,B are congruent if B = SASH for some non-singular
matrix S . This is denoted by A ≈ B. If A,B ∈ Rn×n, we say that they are
t-congruent if B = SAS ′ for some invertible matrix S ; this is denoted by
A ≈t B.
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Similar matrices have the same characteristic polynomial. Indeed, suppose
that B = PAP−1. We have

pB(λ) = det(λIn − B) = det(λIn − PAP−1)

= det(λPInP
−1 − PAP−1) = det(P(λIn − A)P−1)

= det(P) det(λIn − A) det(P−1) = det(λIn − A) = pA(λ),

because det(P) det(P−1) = 1. Thus, similar matrices have the same
eigenvalues.
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Example

Let A be the matrix

A =

(
cos θ − sin θ
sin θ cos θ

)
.

We have

pA = det(λI2 − A) = (λ− cos θ)2 + sin2 θ = λ2 − 2λ cos θ + 1.

The roots of this polynomial are λ1 = cos θ + i sin θ and
λ2 = cos θ − i sin θ, so they are complex numbers.
We regard A as a complex matrix with real entries. If we were to consider
A as a real matrix, we would not be able to find real eigenvalues for A
unless θ were equal to 0.
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Definition

The algebraic multiplicity of the eigenvalue λ of a matrix A ∈ Cn×n is the
multiplicity of λ as a root of the characteristic polynomial pA of A.
The algebraic multiplicity of λ is denoted by algm(A, λ). If algm(A, λ) = 1
we say that λ is a simple eigenvalue.
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Example

Let A ∈ R2×2 be the matrix

A =

(
0 −1
1 2

)
The characteristic polynomial of A is

pA(λ) =

∣∣∣∣ λ 1
−1 λ− 2

∣∣∣∣ = λ2 − 2λ+ 1.

Therefore, A has the eigenvalue 1 with algm(A, 1) = 2.
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Theorem

The eigenvalues of Hermitian complex matrices are real numbers.

Proof.

Let A ∈ Cn×n be a Hermitian matrix and let λ be an eigenvalue of A. We
have Ax = λx for some x ∈ Cn − {0n}, so xHAH = λxH. Since AH = A, we
have

λxHx = xHAx = xHAHx = λxHx.

Since x 6= 0 implies xHx 6= 0, it follows that λ = λ. Thus, λ is a real
number.
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Corollary

The eigenvalues of symmetric real matrices are real numbers.
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Theorem

The eigenvectors of a complex Hermitian matrix corresponding to distinct
eigenvalues are orthogonal to each other.

Proof: Let (λ,u) and (µ, v) be two eigenpairs of the Hermitian matrix
A ∈ Cn×n, where λ 6= µ. Since A is Hermitian, λ, µ ∈ R. Since Au = λu
we have vHAu = λvHu. The last equality can be written as (Av)Hu = λvHu,
or as µvHu = λvHu. Since µ 6= λ, vHu = 0, so u and v are orthogonal.
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Corollary

The eigenvectors of a Hermitian matrix corresponding to distinct
eigenvalues form a linearly independent set.
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Theorem

(Schur’s Triangularization Theorem) Let A ∈ Cn×n be a square matrix.
There exists an upper-triangular matrix T ∈ Cn×n such that A ∼u T .
The diagonal elements of T are the eigenvalues of A; moreover, each
eigenvalue λ of A occurs in the sequence of diagonal elements of T a
number of algm(A, λ) times. The columns of U are unit eigenvectors of A.
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Proof

The argument is by induction on n. The base case, n = 1, is immediate.
Suppose that the statement holds for matrices in C(n−1)×(n−1) and let
A ∈ Cn×n. If (λ, x) is an eigenpair of A with ‖ x ‖2= 1, let Hv be a
Householder matrix that transforms x into e1. Since we also have
Hve1 = x, x is the first column of Hv and we can write Hv = (x K ), where
K ∈ Cn×(n−1). Consequently,

HvAHv = HvA(x K ) = Hv(λx HvAK ) = (λe1 HvAK ).
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Proof (cont’d)

Since Hv is Hermitian and Hv = (x K ), it follows that

HH
v =

(
xH

KH

)
= Hv.

Therefore,

HvAHv =

(
λ xHAK

0n−1 KHAK

)
.
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Proof (cont’d)

Since KHAK ∈ C(n−1)×(n−1), by the inductive hypothesis, there exists a
unitary matrix W and an upper triangular matrix S such that
W H(KHAK )W = S . Note that the matrix

U = Hv

(
1 0′n−1

0n−1 W

)
is unitary and

UHAUH =

(
λ xHAKW

0n−1 W HKHAKW

)
=

(
λ xHAKW

0n−1 S

)
.

The last matrix is clearly upper triangular.

Prof. Dan A. Simovici (University of Massachusetts Boston)CS724: Topics in Algorithms Spectral Properties of Matrices - 1February 3, 2014 20 / 72



Proof (cont’d)

Since A ∼u T , A and T have the same characteristic polynomials and,
therefore, the same eigenvalues, with identical multiplicities.
The factorization of A can be written as A = UDUH because U−1 = UH.
Since AU = UD, each column ui of U is an eigenvector of A that
corresponds to the eigenvalue λi for 1 6 i 6 n.
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Corollary

Let A ∈ Cn×n and let f be a polynomial. If spec(A) = {λ1, . . . , λn}
(including multiplicities), then spec(f (A)) = {f (λ1), . . . , f (λn)}.

Proof: By Schur’s Triangularization Theorem there exists a unitary matrix
U ∈ Cn×n and an upper-triangular matrix T ∈ Cn×n such that A = UTUH

and the diagonal elements of T are the eigenvalues of A, λ1, . . . , λn.
Therefore f (A) = Uf (T )UH and the diagonal elements of f (T ) are
f (λ1), , . . . , f (λm). Since f (A) ∼u f (T ), we obtain the desired conclusion
because two similar matrices have the same eigenvalues with the same
algebraic multiplicities.
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Definition

A matrix A ∈ Cn×n is diagonalizable (unitarily diagonalizable) if there
exists a diagonal matrix D = diag(d1, . . . , dn) such that A ∼ D (A ∼u D).
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Theorem

A matrix A ∈ Cn×n is diagonalizable if and only if there exists a linearly
independent set {v1, . . . , vn} of n eigenvectors of A.
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Proof

Let A ∈ Cn×n such that there exists a set {v1, . . . , vn} of n eigenvectors of
A that is linearly independent and let P be the matrix (v1 v2 · · · vn) that
is clearly invertible. We have:

P−1AP = P−1(Av1 Av2 · · · Avn) = P−1(λ1v1 λ2v2 · · · λnvn)

= P−1P


λ1 0 · · · 0
0 λ2 · · · 0
...

... · · ·
...

0 0 · · · λn

 =


λ1 0 · · · 0
0 λ2 · · · 0
...

... · · ·
...

0 0 · · · λn

 .
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Proof (cont’d)

Therefore, we have A = PDP−1, where

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

... · · ·
...

0 0 · · · λn

 ,

so A ∼ D.
Conversely, suppose that A is diagonalizable, so AP = PD, where D is a
diagonal matrix and P is an invertible matrix, and let v1, . . . , vn be the
columns of the matrix P. We have Avi = diivi for 1 6 i 6 n, so each vi is
an eigenvector of A. Since P is invertible, its columns are linear
independent.
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Corollary

If A ∈ Cn×n is diagonalizable then the columns of any matrix P such that
D = P−1AP is a diagonal matrix are eigenvectors of A. Furthermore, the
diagonal entries of D are the eigenvalues that correspond to the columns
of P.
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Corollary

A matrix A ∈ Cn×n is unitarily diagonalizable if and only if there exists a
set {v1, . . . , vn} of n orthonormal eigenvectors of A.
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Theorem

Let A be a Hermitian matrix, λ1 > · · · > λn be its eigenvalues having the
orthonormal eigenvectors u1, . . . ,un, respectively.
Define the subspace M = 〈up, . . . ,uq〉, where 1 6 p 6 q 6 n. If x ∈ M
and ‖ x ‖2= 1, we have λq 6 xHAx 6 λp.
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Proof

If x is a unit vector in M, then x = apup + · · ·+ aquq, so xHui = ai for
p 6 i 6 q. Since ‖ x ‖2= 1, we have |ap|2 + · · ·+ |aq|2 = 1. This allows
us to write:

xHAx = xH(apAup + · · ·+ aqAuq)

= xH(apλpup + · · ·+ aqλquq)

= xH(|ap|2λp + · · ·+ |aq|2λq).

Since |ap|2 + · · ·+ |aq|2 = 1, the desired inequalities follow immediately.
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Corollary

Let A be a Hermitian matrix, λ1 > · · · > λn be its eigenvalues having the
orthonormal eigenvectors u1, . . . ,un, respectively. The following
statements hold for a unit vector x:

if x ∈ 〈u1, . . . ,ui 〉, then xHAx > λi ;
if x ∈ 〈u1, . . . ,ui−1〉⊥, then xHAx 6 λi .
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Theorem

(Rayleigh-Ritz Theorem) Let A be a Hermitian matrix and let
(λ1,u1), . . . , (λn,un) be the eigenpairs of A, where λ1 > · · · > λn. If x is
a unit vector, we have λn 6 xHAx 6 λ1.

Proof.

This statement follows by observing that the subspace generated by
u1, . . . ,un is the entire space Cn.
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The Courant-Fisher Theorem

Let Snp be the collection of p-dimensional subspaces of Cn. Note that
Sn0 = {{0n}} and Snn = {Cn}.

Theorem

Let A ∈ Cn×n be a Hermitian matrix having the eigenvalues
λ1 > · · · > λn. We have

λk = max
U∈Snk

min{xHAx | x ∈ U and ‖ x ‖2= 1}

= min
U∈Snn−k+1

max{xHAx | x ∈ U and ‖ x ‖2= 1}.
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Proof

Let A = V Hdiag(λ1, . . . , λn)V be the factorization of A, where
V = (u1 · · · un) is a unitary matrix.
If

U = 〈u1, . . . ,uk〉 ∈ Snk and W = 〈uk , . . . ,un〉 ∈ Snn−k+1,

then there is a non-zero vector x ∈ U ∩W because
dim(U) + dim(W ) = n + 1; we can assume that ‖ x ‖2= 1.
We have λk > xHAx, and, therefore, for any U ∈ Snk ,
λk > min{xHAx | x ∈ U and ‖ x ‖2= 1}. This implies

λk > max
U∈Snk

min{xHAx | x ∈ U and ‖ x ‖2= 1}.
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Proof (cont’d)

For a unit vector x ∈ 〈u1, . . . ,uk〉 ∈ Snk we have xHAx > λk and
uH
kAuk = λk . Therefore, for U = 〈u1, . . . ,uk〉 ∈ Snk we have

min{xHAx | x ∈ U, ‖ x ‖2= 1} > λk , so
maxU∈Snk min{xHAx | x ∈ U, ‖ x ‖2= 1} > λk . The inequalities proved
above yield

λk = max
U∈Snk

min{xHAx | x ∈ U and ‖ x ‖2= 1}.
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Proof (cont’d)

For the second equality, let U ∈ Snn−k+1. If W = 〈u1, . . . ,uk〉, there is a
non-zero unit vector x ∈ U ∩W because dim(U) + dim(W ) > n + 1. We
have xHAx 6 λk . Therefore, for any U ∈ Snn−k+1,
λk > max{xHAx | x ∈ U and ‖ x ‖2= 1}. This implies
λk > minU∈Snn−k+1

max{xHAx | x ∈ U and ‖ x ‖2= 1}.
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Proof (cont’d)

For a unit vector x ∈ 〈uk , . . . ,un〉 ∈ Snn−k+1 we have λk 6 xHAx and
λk = uH

kAuk . Thus, λk 6 max{xHAx | x ∈ U and ‖ x ‖2= 1}.
Consequently, λk 6 minU∈Snn−k+1

max{xHAx | x ∈ U and ‖ x ‖2= 1},
which completes the proof of the second equality of the theorem.
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An equivalent formulation of Courant-Fisher Theorem is given next.

Theorem

Let A ∈ Cn×n be a Hermitian matrix having the eigenvalues
λ1 > · · · > λn. We have

λk = max
w1,...,wn−k

min{xHAx | x ⊥ w1, . . . , x ⊥ wn−k and ‖ x ‖2= 1}

= min
w1,...,wk−1

max{xHAx | x ⊥ w1, . . . , x ⊥ wk−1 and ‖ x ‖2= 1}.

Proof: The equalities of the Theorem follow from the Courant-Fisher
theorem taking into account that if U ∈ Snk , then U⊥ = 〈w1, . . . ,wn−k〉
for some vectors w1, . . . ,wn − k, and if U ∈ Snn−k+1, then
U = 〈w1, . . .wk−1〉 for some vectors w1, . . . ,wk − 1 in Cn.
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Ky Fan’s Theorem

Theorem

Let A ∈ Cn×n be a Hermitian matrix such that spec(A) = {λ1, . . . , λn},
where λ1 > λ2 > · · · > λn. Also, let V ∈ Cn×n be a matrix,
V = (v1, . . . , vn) whose set of columns constitutes an orthonormal set of
eigenvectors of A. For every q ∈ N such that 1 6 q 6 n, the sums

q∑
i=1

λi = λ1 + · · ·+ λq

and
q∑

i=1

λn+1−i = λn + λn−1 + · · ·+ λn−(q−1)

are the maximum and minimum of
∑q

j=1 x
H
j Axj , respectively, where

{x1, . . . , xq} is an orthonormal set of vectors in Cn. The maximum
(minimum) is achieved when x1, . . . , xq are the first (last) columns of V .
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Proof

Let {x1, . . . , xn} be an orthonormal set of eigenvectors of A and let
xi =

∑n
k=1 bkivk be the expression of xi using the columns of V as a basis

for 1 6 i 6 n. Since each xi is a unit vector we have

‖ xi ‖2= xH
i xi =

n∑
k=1

|bki |2 = 1

for 1 6 i 6 n. Also, note that

xH
i vr =

(
n∑

k=1

bkiv
H
k

)
vr = bri ,

due to the orthonormality of the set of columns of V .
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Proof (cont’d)
We have

xH
i Axi = xH

i A
n∑

k=1

bkivk =
n∑

k=1

bkix
H
i Avk

=
n∑

k=1

bkix
H
i λkvk =

n∑
k=1

λkbkibki =
n∑

k=1

|bki |2λk

= λq

n∑
k=1

|bki |2 +

q∑
k=1

(λk − λq)|bki |2 +
n∑

k=q+1

(λk − λq)|bki |2

6 λq +

q∑
k=1

(λk − λq)|bki |2.

The last inequality implies

q∑
i=1

xH
i Axi 6 qλq +

q∑
i=1

q∑
k=1

(λk − λq)|bki |2.
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Proof (cont’d)

Therefore,

q∑
i=1

λi −
q∑

i=1

xH
i Axi >

q∑
i=1

(λi − λq)

(
1−

q∑
k=1

|bki |2
)
. (2)

We have
∑q

k=1 |bik |
2 6‖ xi ‖2= 1, so

q∑
i=1

(λi − λq)

(
1−

q∑
k=1

|bki |2
)

> 0.

The left member of Inequality 2 becomes 0 when xi = vi , so∑q
i=1 x

H
i Axi 6

∑q
i=1 λi . The maximum of

∑q
i=1 x

H
i Axi is obtained when

xi = vi for 1 6 i 6 q, that is, when X consists of the first q columns of V .
The argument for the minimum is similar.
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Theorem

Let A ∈ Cn×n be a Hermitian matrix. If A is positive semidefinite, then all
its eigenvalues are non-negative; if A is positive definite then its
eigenvalues are positive.

Proof.

Since A is Hermitian all its eigenvalues are real numbers. Suppose that A
is positive semidefinite, that is, xHAx > 0 for x ∈ Cn. If λ ∈ spec(A), then
Av = λv for some eigenvector v 6= 0. The positive semi-definiteness of A
implies vHAv = λvHv = λ ‖ v ‖22> 0, which implies λ > 0. It is easy to see
that if A is positive definite, then λ > 0.
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Theorem

Let A ∈ Cn×n be a Hermitian matrix. If A is positive semidefinite, then all
its principal minors are non-negative real numbers. If A is positive definite
then all its principal minors are positive real numbers.

Proof.

Since A is positive semidefinite, every sub-matrix A

[
i1 · · · ik
i1 · · · ik

]
is a

Hermitian positive semidefinite matrix by Theorem ??, so every principal
minor is a non-negative real number. The second part of the theorem is
proven similarly.
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Corollary

Let A ∈ Cn×n be a Hermitian matrix. The following statements are
equivalent.

A is positive semidefinite;
all eigenvalues of A are non-negative numbers;
there exists a Hermitian matrix C ∈ Cn×n such that C 2 = A;
A is the Gram matrix of a sequence of vectors, that is, A = BHB for
some B ∈ Cn×n.
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Definition

Let A ∈ Cm×n be a matrix. A singular triplet of A is a triplet (σ,u, v) such
that σ ∈ R>0, u ∈ Cn, v ∈ Cm, Au = σv and AHv = σu.
The number σ is a singular value of A, u is a left singular vector and v is a
right singular vector.
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For a singular triplet (σ,u, v) of A we have

AHAu = σAHv = σ2u and AAHv = σAu = σ2v.

Therefore, σ2 is both an eigenvalue of AAH and an eigenvalue of AHA.
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Example

Let A be the real matrix

A =

(
cosα sinα
cosβ sinβ

)
.

We have det(A) = sin(β − α), so the eigenvalues of A′A are the roots of
the equation λ2 − 2λ+ sin2(β − α) = 0, that is, λ1 = 1 + cos(β − α) and
λ2 = 1− cos(β − α). Therefore, the singular values of A are

σ1 =
√

2
∣∣∣ cos β−α2

∣∣∣ and σ2 =
√

2
∣∣∣ sin β−α

2

∣∣∣.
It is easy to see that a unit left singular vector that corresponds to the
eigenvalue 1 + cos(β − α) is

u =

(
cos α+β2
sin α+β

2

)
,

which corresponds to the average direction of the rows of A.
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The eigenvalues of a positive semi-definite matrix are non-negative
numbers. Since both AAH and AHA are positive semi-definite matrices
for A ∈ Cm×n, the spectra of these matrices consist of non-negative
numbers λ1, . . . , λn.
AAH and AHA have the same rank r and therefore, the same number
r of non-zero eigenvalues λ1, . . . , λr .
The singular values of A have the form

√
λ1 > · · · >

√
λr .

Notation: σi =
√
λi for 1 6 i 6 r and will assume that

σ1 > · · · > σr > 0.
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Theorem

Let A ∈ Cn×n be a matrix having the singular values σ1 > · · · > σn. If λ is
an eigenvalue value of A, then σn 6 |λ| 6 σ1.

Proof.

Let u be an unit eigenvector for the eigenvalue λ. Since Au = λu it
follows that (AHAu,u) = (Au,Au) = λλ(u,u) = λλ = |λ|2. The matrix
AHA is Hermitian and its largest and smallest eigenvalues are σ21 and σ2n,
respectively. Thus, σn 6 |λ| 6 σ1.
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The SVD Theorem

Theorem

If A ∈ Cm×n is a matrix and rank(A) = r , then A can be factored as
A = UDV H, where U ∈ Cm×m and V ∈ Cn×n are unitary matrices, and
D = diag(σ1, . . . , σr , 0, . . . , 0) ∈ Rm×n, where σ1 > . . . > σr are real
positive numbers.
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Proof

The square matrix AHA ∈ Cn×n has the same rank r as the matrix A and
is positive semidefinite. Therefore, there are r positive eigenvalues of this
matrix, denoted by σ21, . . . , σ

2
r , where σ1 > σ2 > · · · > σr > 0. Let

v1, . . . , vr be the corresponding pairwise orthogonal unit eigenvectors in
Cn.
We have AHAvi = σ2i vi for 1 6 i 6 r . Define V = (v1 · · · vr vr+1 · · · vn)
by completing the set {v1, . . . , vr} to an orthogonal basis

{v1, . . . , vr , vr+1, . . . , vn}

for Cn. If V1 = (v1 · · · vr ) and V2 = (vr+1 · · · vn), we can write
V = (V1 V2).
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Proof (cont’d)

The equalities involving the eigenvectors can now be written as
AHAV1 = V1E

2, where E = diag(σ1, . . . , σr ).
Define U1 = AV1E

−1 ∈ Cm×r . We have UH
1 = E−1V H

1 A
H, so

UH
1U1 = E−1V H

1 A
HAV1E

−1 = E−1V H
1 V1E

2E−1 = Ir ,

which shows that the columns of U1 are pairwise orthogonal unit vectors.
Consequently, UH

1AV1E
−1 = Ir , so UH

1AV1 = E .
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Proof (cont’d)

If U1 = (u1 · · · ,ur ), let U2 = (ur+1, . . . ,um) be the matrix whose
columns constitute the extension of the set {u1 · · · ,ur} to an orthogonal
basis of Cm.
Define U ∈ Cm×m as U = (U1 U2). Note that

UHAV =

(
UH
1

UH
2

)
A(V1 V2) =

(
UH
1AV1 UH

1AV2

UH
2AV1 UH

2AV2

)
=

(
UH
1AV1 UH

1AV2

UH
2AV1 UH

2AV2

)
=

(
UH
1AV1 O
O O

)
=

(
E O
O O

)
,

which is the desired decomposition.
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Corollary

Let A ∈ Cm×n be a matrix such that rank(A) = r . If σ1 > . . . > σr are
non-zero singular values, then

A = σ1u1v
H
1 + · · ·+ σrurv

H
r , (3)

where (σi ,ui , vi ) are singular triplets of A for 1 6 i 6 r .
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The value of a unitarily invariant norm of a matrix depends only on its
singular values.

Corollary

Let A ∈ Cm×n be a matrix and let A = UDV H be the singular value
decomposition of A. If ‖ · ‖ is a unitarily invariant norm, then

‖ A ‖=‖ D ‖=‖ diag(σ1, . . . , σr , 0, . . . , 0) ‖ .

Proof.

This statement follows because the matrices U ∈ Cm×m and V ∈ Cn×n are
unitary.
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||| · |||2 and ‖ · ‖F are unitarily invariant. Therefore, the Frobenius norm can
be written as

‖ A ‖F=

√√√√ r∑
i=1

σ2r .

and |||A|||2 = σ1.
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Theorem

Let A and B be two matrices in Cm×n. If A ∼u B, then they have the
same singular values.

Proof.

Suppose that A ∼u B, that is, A = W H
1 BW2 for some unitary matrices W1

and W2. If A has the SVD A = UHdiag(σ1, . . . , σr , 0, . . . , 0)V , then

B = W1AW
H
2 = (W1U

H)diag(σ1, . . . , σr , 0, . . . , 0)(VW H
2 ).

Since W1U
H and VW H

2 are both unitary matrices, it follows that the
singular values of B are the same as the singular values of A.
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Let v ∈ Cn be an eigenvector of the matrix AHA that corresponds to a
non-zero, positive eigenvalue σ2, that is, AHAv = σ2v.
Define u = 1

σAv. We have Av = σu. Also,

AHu = AH

(
1

σ
Av

)
= σv.

This implies AAHu = σ2u, so u is an eigenvector of AAH that corresponds
to the same eigenvalue σ2.
Conversely, if u ∈ Cm is an eigenvector of the matrix AAH that corresponds
to a non-zero, positive eigenvalue σ2, we have AAHu = σ2u. Thus, if
v = 1

σAu we have Av = σu and v is an eigenvector of AHA for the
eigenvalue σ2.
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The Courant-Fisher Theorem allows the formulation of a similar result for
singular values.

Theorem

Let A ∈ Cm×n be a matrix such that σ1 > σ2 > · · · > σr is the
non-increasing sequence of singular values of A. For 1 6 k 6 r we have

σk = min
dim(S)=n−k+1

max{‖ Ax ‖2 | x ∈ S and ‖ x ‖2= 1}

σk = max
dim(T )=k

min{‖ Ax ‖2 | x ∈ T and ‖ x ‖2= 1},

where S and T range over subspaces of Cn.
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Proof

We give the argument only for the second equality of the theorem; the
first can be shown in a similar manner.
We saw that σk equals the square root of kth largest absolute value of the
eigenvalue |λk | of the matrix AHA. By Courant-Fisher Theorem, we have

λk = max
dim(T )=k

min
x
{xHAHAx | x ∈ T and ‖ x ‖2= 1}

= max
dim(T )=k

min
x
{‖ Ax ‖22 | x ∈ T and ‖ x ‖2= 1},

which implies the second equality of the theorem.
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Corollary

The smallest singular value of a matrix A ∈ Cm×n equals

min{‖ Ax ‖2 | x ∈ Cn and ‖ x ‖2= 1}.

The largest singular value of a matrix A ∈ Cm×n equals

max{‖ Ax ‖2 | x ∈ Cn and ‖ x ‖2= 1}.
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The SVD allows us to find the best approximation of of a matrix by a
matrices of limited rank.

Lemma

Let A = σ1u1vH
1 + · · ·+ σrurvH

r be the SVD of a matrix A ∈ Rm×n, where
σ1 > · · · > σr > 0. For every k , 1 6 k 6 r the matrix
B(k) =

∑k
i=1 σiuiv

H
i has rank k .

Proof.

The null space of the matrix B(k) consists of those vectors x such that
B(k)x =

∑k
i=1 σiuiv

H
i x = 0. The linear independence of the vectors ui

and the fact that σi > 0 for 1 6 i 6 r implies the equalities vH
i x = 0 for

1 6 i 6 k. Thus, x ∈ 〈v1, . . . , vk〉⊥ and, since v1, . . . , vk are linearly
independent it follows that dim(NullSp(B(k)) = n − k , which implies
rank(B(k)) = k for 1 6 k 6 r .
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Theorem

(Eckhart-Young Theorem) Let A ∈ Cm×n be a matrix whose sequence
of non-zero singular values is (σ1, . . . , σr ). Assume that σ1 > · · · > σr > 0
and that A can be written as

A = σ1u1v
H
1 + · · ·+ σrurv

H
r .

Let B(k) ∈ Cm×n be the matrix defined by

B(k) =
k∑

i=1

σiuiv
H
i .

If rk = inf{|||A− X |||2 | X ∈ Cm×n and rank(X ) 6 k}, then

|||A− B(k)|||2 = rk = σk+1,

for 1 6 k 6 r , where σr+1 = 0 and B(k) is the best approximation of A
among the matrices of rank no larger than k in the sense of the norm ||| · |||2.
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Proof

Observe that

A− B(k) =
r∑

i=k+1

σiuiv
H
i ,

and the largest singular value of the matrix
∑r

i=k+1 σiuiv
H
i is σk+1. Since

σk+1 is the largest singular value of A− B(k) we have
|||A− B(k)|||2 = σk+1 for 1 6 k 6 r .
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Proof (cont’d)

We prove now that for every matrix X ∈ Cm×n such that rank(X ) 6 k , we
have |||A− X |||2 > σk+1.
Since dim(NullSp(X )) = n − rank(X ), it follows that
dim(NullSp(X )) > n − k . If T is the subspace of Rn spanned by
v1, . . . , vk+1, we have dim(T ) = k + 1. Since
dim(NullSp(X )) + dim(T ) > n, the intersection of these subspaces
contains a unit non-zero vector x.
We have x = a1v1 + · · · akvk + ak+1vk+1 because x ∈ T . The
orthogonality of v1, . . . , vk , vk+1 implies ‖ x ‖22=

∑k+1
i=1 |ai |2 = 1.
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Since x ∈ NullSp(X ), we have Xx = 0, so

(A− X )x = Ax =
k+1∑
i=1

aiAvi =
k+1∑
i=1

aiσiui .

Thus, we have

|||(A− X )x|||22 =
k+1∑
i=1

|σiai |2 > σ2k+1

k+1∑
i=1

|ai |2 = σ2k+1,

because u1, . . . ,uk are also orthonormal. This implies
|||A− X |||2 > σk+1 = |||A− B(k)|||2.
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It is interesting to observe that the matrix B(k) provides an optimal
approximation of A not only with respect to ||| · |||2 but also relative to the
Frobenius norm.

Theorem

B(k) is the best approximation of A among matrices of rank no larger
than k in the sense of the Frobenius norm.

Prof. Dan A. Simovici (University of Massachusetts Boston)CS724: Topics in Algorithms Spectral Properties of Matrices - 1February 3, 2014 68 / 72



Proof

Note that ‖ A− B(k) ‖2F=‖ A ‖2F −
∑k

i=1 σ
2
i . Let X be a matrix of rank

k , which can be written as X =
∑k

i=1 xiy
H
i . Without loss of generality we

may assume that the vectors x1, . . . , xk are orthonormal. If this is not the
case, we can use the Gram-Schmidt algorithm to express then as linear
combinations of orthonormal vectors, replace these expressions in∑k

i=1 xiy
H
i and rearrange the terms. Now, the Frobenius norm of A− X

can be written as

‖ A− X ‖2F = trace

(A− k∑
i=1

xiy
H

)H(
A−

k∑
i=1

xiy
H

)
= trace

(
AHA +

k∑
i=1

(yi − AHxi )(yi − AHxi )
H −

k∑
i=1

AHxix
H
i A

)
.
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Taking into account that
∑k

i=1(yi − AHxi )(yi − AHxi )
H is a real

non-negative number and that
∑k

i=1 A
Hxix

H
i A =‖ Axi ‖2F we have

‖ A− X ‖2F ≥ trace

(
AHA−

k∑
i=1

AHxix
H
i A

)
=‖ A ‖2F −trace

(
k∑

i=1

AHxix
H
i A

)
.

Let A = Udiag(σ1, . . . , σn)V H be the singular value decomposition of A. If
V = (V1 V2), where V1 has k columns v1, . . . , vk , D1 = diag(σ1, . . . , σk)
and D2 = diag(σk+1, . . . , σn), then

AHA = VDHUHUDV H = (V1 V2)

(
D2
1 O

O D2
2

)(
V H
1

V H
2

)
= V1D

2
1V

H
1 + V2D

2
2V

H
2 .

and AHA = VD2V H.
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Proof (cont’d)

These equalities allow us to write:

‖ Axi ‖2F = trace(xH
i A

HAxi )

= trace
(
xH
i V1D

2
1V

H
1 xi + xH

i V2D
2
2V

H
2 xi
)

= ‖ D1V
H
1 xi ‖2F + ‖ D2V

H
2 xi ‖2F

= σ2k +
(
‖ D1V

H
1 xi ‖2F −σ2k ‖ V H

1 xi ‖2F
)

−
(
σ2k ‖ V H

2 xi ‖2F − ‖ D2V
H
2 xi ‖2F )

)
− σ2k(1− ‖ V Hxi ‖).

Since ‖ V Hxi ‖1F= 1 (because xi is an unit vector and V is an unitary
matrix) and σ2k ‖ V H

2 xi ‖2F − ‖ D2V
H
2 xi ‖2F> 0, it follows that

‖ Axi ‖2F6 σ2k +
(
‖ D1V

H
1 xi ‖2F −σ2k ‖ V H

1 xi ‖2F
)
.
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Proof (cont’d)

Consequently,

k∑
i=1

‖ Axi ‖2F 6 kσ2k +
k∑

i=1

(
‖ D1V

H
1 xi ‖2F −σ2k ‖ V H

1 xi ‖2F
)

= kσ2k +
k∑

i=1

k∑
j=1

(σ2j − σ2k)|vH
j xi |2

=
k∑

j=1

(
σ2k + (σ2j − σ2k)

k∑
i=1

|vjxi |2
)

6
k∑

j=1

(σ2k + (σ2j − σ2k)) =
k∑

j=1

σ2j ,

which concludes the argument.

Prof. Dan A. Simovici (University of Massachusetts Boston)CS724: Topics in Algorithms Spectral Properties of Matrices - 1February 3, 2014 72 / 72


	Eigenvalues and eigenvectors
	Variational Characterizations of Spectra
	Singular Values

