CS724: Topics in Algorithms Spectral Properties of Matrices - 1

Prof. Dan A. Simovici

University of Massachusetts Boston
February 3, 2014
(1) Eigenvalues and eigenvectors
(2) Variational Characterizations of Spectra
(3) Singular Values

Let $A \in \mathbb{C}^{n \times n}$ be a square matrix.

- An eigenpair of A is a pair $(\lambda, \mathbf{x}) \in \mathbb{C} \times\left(\mathbb{C}^{n}-\{\mathbf{0}\}\right)$ such that $A \mathbf{x}=\lambda \mathbf{x}$.
- We refer to λ is an eigenvalue and to \mathbf{x} is an eigenvector.
- The set of eigenvalues of A is the spectrum of A and will be denoted by $\operatorname{spec}(A)$.

If (λ, \mathbf{x}) is an eigenpair of A, the linear system $A \mathbf{x}=\lambda \mathbf{x}$ has a non-trivial solution in \mathbf{x}. An equivalent homogeneous system is $\left(\lambda I_{n}-A\right) \mathbf{x}=\mathbf{0}$ and this system has a non-trivial solution only if $\operatorname{det}\left(\lambda I_{n}-A\right)=0$.

Definition

The characteristic polynomial of the matrix A is the polynomial p_{A} defined by $p_{A}(\lambda)=\operatorname{det}\left(\lambda I_{n}-A\right)$ for $\lambda \in \mathbb{C}$.

Thus, the eigenvalues of A are the roots of the characteristic polynomial of A.

Lemma

Let $A=\left(\mathbf{a}_{1} \cdots \mathbf{a}_{n}\right) \in \mathbb{C}^{n}$ and let B be the matrix obtained from A by replacing the column \mathbf{a}_{j} by \mathbf{e}_{j}. Then, we have

$$
\operatorname{det}(B)=\operatorname{det}\left(A\left[\begin{array}{c}
1 \cdots j-1 j+1 \cdots n \\
1 \cdots j-1 j+1 \cdots n
\end{array}\right]\right) .
$$

If B is obtained from A by replacing the columns $\mathbf{a}_{j_{1}}, \ldots, \mathbf{a}_{j_{k}}$ by $\mathbf{e}_{j_{1}}, \ldots, \mathbf{e}_{j_{k}}$ and $\left\{i_{1}, \ldots, i_{p}\right\}=\{1, \ldots, n\}-\left\{j_{1}, \ldots, j_{k}\right\}$, then

$$
\operatorname{det}(B)=\operatorname{det}\left(A\left[\begin{array}{lll}
i_{1} & \cdots & i_{p} \tag{1}\\
i_{1} & \cdots & i_{p}
\end{array}\right]\right) .
$$

In other words, $\operatorname{det}(B)$ equals a principal p-minor of A.

Theorem

Let $A \in \mathbb{C}^{n \times n}$ be a matrix. Its characteristic polynomial p_{A} can be written as

$$
p_{A}(\lambda)=\sum_{k=0}^{n}(-1)^{k} a_{k} \lambda^{n-k}
$$

where a_{k} is the sum of the principal minors of order k of A.

Proof

$$
p_{A}(\lambda)=\operatorname{det}\left(\lambda I_{n}-A\right)=(-1)^{n} \operatorname{det}\left(A-\lambda I_{n}\right)
$$

can be written as a sum of 2^{n} determinants of matrices obtained by replacing each subset of the columns of A by the corresponding subset of columns of $-\lambda I_{n}$.
If the subset of columns of $-\lambda I_{n}$ involved are $-\lambda \mathbf{e}_{j_{1}}, \ldots,-\lambda \mathbf{e}_{j_{k}}$ the result of the substitution is $(-1)^{k} \lambda^{k} \operatorname{det}\left(A\left[\begin{array}{c}i_{1} \cdots i_{p} \\ i_{1} \cdots i_{p}\end{array}\right]\right)$, where $\left\{i_{1}, \ldots, i_{p}\right\}=\{1, \ldots, n\}-\left\{j_{1}, \ldots, j_{k}\right\}$. The total contribution of sets of k columns of $-\lambda I_{n}$ is $(-1)^{k} \lambda^{k} a_{n-k}$. Therefore,

$$
p_{A}(\lambda)=(-1)^{n} \sum_{k=0}^{n}(-1)^{k} \lambda^{k} a_{n-k} .
$$

Replacing k by $n-k$ as the summation index yields

Definition

Two matrices $A, B \in \mathbb{C}^{n \times n}$ are similar if there exists an invertible matrix $P \in \mathbb{C}^{n \times n}$ such that $B=P A P^{-1}$. This is denoted by $A \sim B$. If there exists a unitary matrix U such that $B=U A U^{-1}$, then A is unitarily similar to B. This is denoted by $A \sim_{u} B$. The matrices A, B are congruent if $B=S A S^{H}$ for some non-singular matrix S. This is denoted by $A \approx B$. If $A, B \in \mathbb{R}^{n \times n}$, we say that they are t-congruent if $B=S A S^{\prime}$ for some invertible matrix S; this is denoted by $A \approx_{t} B$.

Similar matrices have the same characteristic polynomial. Indeed, suppose that $B=P A P^{-1}$. We have

$$
\begin{aligned}
p_{B}(\lambda) & =\operatorname{det}\left(\lambda I_{n}-B\right)=\operatorname{det}\left(\lambda I_{n}-P A P^{-1}\right) \\
& =\operatorname{det}\left(\lambda P I_{n} P^{-1}-P A P^{-1}\right)=\operatorname{det}\left(P\left(\lambda I_{n}-A\right) P^{-1}\right) \\
& =\operatorname{det}(P) \operatorname{det}\left(\lambda I_{n}-A\right) \operatorname{det}\left(P^{-1}\right)=\operatorname{det}\left(\lambda I_{n}-A\right)=p_{A}(\lambda)
\end{aligned}
$$

because $\operatorname{det}(P) \operatorname{det}\left(P^{-1}\right)=1$. Thus, similar matrices have the same eigenvalues.

Example

Let A be the matrix

$$
A=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

We have

$$
p_{A}=\operatorname{det}\left(\lambda /_{2}-A\right)=(\lambda-\cos \theta)^{2}+\sin ^{2} \theta=\lambda^{2}-2 \lambda \cos \theta+1 .
$$

The roots of this polynomial are $\lambda_{1}=\cos \theta+i \sin \theta$ and $\lambda_{2}=\cos \theta-i \sin \theta$, so they are complex numbers. We regard A as a complex matrix with real entries. If we were to consider A as a real matrix, we would not be able to find real eigenvalues for A unless θ were equal to 0 .

Definition

The algebraic multiplicity of the eigenvalue λ of a matrix $A \in \mathbb{C}^{n \times n}$ is the multiplicity of λ as a root of the characteristic polynomial p_{A} of A. The algebraic multiplicity of λ is denoted by algm (A, λ). If algm $(A, \lambda)=1$ we say that λ is a simple eigenvalue.

Example

Let $A \in \mathbb{R}^{2 \times 2}$ be the matrix

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 2
\end{array}\right)
$$

The characteristic polynomial of A is

$$
p_{A}(\lambda)=\left|\begin{array}{cc}
\lambda & 1 \\
-1 & \lambda-2
\end{array}\right|=\lambda^{2}-2 \lambda+1 .
$$

Therefore, A has the eigenvalue 1 with $\operatorname{algm}(A, 1)=2$.

Theorem

The eigenvalues of Hermitian complex matrices are real numbers.

Proof.

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix and let λ be an eigenvalue of A. We have $A \mathbf{x}=\lambda \mathbf{x}$ for some $\mathbf{x} \in \mathbb{C}^{n}-\left\{\mathbf{0}_{n}\right\}$, so $\mathbf{x}^{H} A^{H}=\bar{\lambda} \mathbf{x}^{H}$. Since $A^{H}=A$, we have

$$
\lambda \mathbf{x}^{H} \mathbf{x}=\mathbf{x}^{H} A \mathbf{x}=\mathbf{x}^{H} A^{H} \mathbf{x}=\bar{\lambda} \mathbf{x}^{H} \mathbf{x} .
$$

Since $\mathbf{x} \neq \mathbf{0}$ implies $\mathbf{x}^{H} \mathbf{x} \neq 0$, it follows that $\bar{\lambda}=\lambda$. Thus, λ is a real number.

Corollary

The eigenvalues of symmetric real matrices are real numbers.

Theorem

The eigenvectors of a complex Hermitian matrix corresponding to distinct eigenvalues are orthogonal to each other.

Proof: Let (λ, \mathbf{u}) and (μ, \mathbf{v}) be two eigenpairs of the Hermitian matrix $A \in \mathbb{C}^{n \times n}$, where $\lambda \neq \mu$. Since A is Hermitian, $\lambda, \mu \in \mathbb{R}$. Since $A \mathbf{u}=\lambda \mathbf{u}$ we have $\mathbf{v}^{\mathrm{H}} A \mathbf{u}=\lambda \mathbf{v}^{\mathrm{H}} \mathbf{u}$. The last equality can be written as $(A \mathbf{v})^{\mathrm{H}} \mathbf{u}=\lambda \mathbf{v}^{\mathrm{H}} \mathbf{u}$, or as $\mu \mathbf{v}^{H} \mathbf{u}=\lambda \mathbf{v}^{H} \mathbf{u}$. Since $\mu \neq \lambda, \mathbf{v}^{H} \mathbf{u}=0$, so \mathbf{u} and \mathbf{v} are orthogonal.

Corollary

The eigenvectors of a Hermitian matrix corresponding to distinct eigenvalues form a linearly independent set.

Theorem

(Schur's Triangularization Theorem) Let $A \in \mathbb{C}^{n \times n}$ be a square matrix. There exists an upper-triangular matrix $T \in \mathbb{C}^{n \times n}$ such that $A \sim_{u} T$. The diagonal elements of T are the eigenvalues of A; moreover, each eigenvalue λ of A occurs in the sequence of diagonal elements of T a number of algm (A, λ) times. The columns of U are unit eigenvectors of A.

Proof

The argument is by induction on n. The base case, $n=1$, is immediate. Suppose that the statement holds for matrices in $\mathbb{C}^{(n-1) \times(n-1)}$ and let $A \in \mathbb{C}^{n \times n}$. If (λ, \mathbf{x}) is an eigenpair of A with $\|\mathbf{x}\|_{2}=1$, let H_{v} be a Householder matrix that transforms \mathbf{x} into \mathbf{e}_{1}. Since we also have $H_{v} \mathbf{e}_{1}=\mathbf{x}, \mathbf{x}$ is the first column of H_{v} and we can write $H_{v}=(\mathbf{x} K)$, where $K \in \mathbb{C}^{n \times(n-1)}$. Consequently,

$$
H_{\mathrm{v}} A H_{\mathrm{v}}=H_{\mathrm{v}} A(\mathbf{x} K)=H_{\mathrm{v}}\left(\lambda \mathbf{x} H_{\mathrm{v}} A K\right)=\left(\lambda \mathbf{e}_{1} H_{\mathrm{v}} A K\right) .
$$

Proof (cont'd)

Since H_{v} is Hermitian and $H_{v}=(\mathbf{x} K)$, it follows that

$$
H_{v}^{H}=\binom{\mathbf{x}^{H}}{K^{H}}=H_{v} .
$$

Therefore,

$$
H_{\mathrm{v}} A H_{\mathrm{v}}=\left(\begin{array}{cc}
\lambda & \mathbf{x}^{\mathrm{H}} A K \\
\mathbf{0}_{n-1} & K^{H} A K
\end{array}\right) .
$$

Proof (cont'd)

Since $K^{H} A K \in \mathbb{C}^{(n-1) \times(n-1)}$, by the inductive hypothesis, there exists a unitary matrix W and an upper triangular matrix S such that $W^{H}\left(K^{H} A K\right) W=S$. Note that the matrix

$$
U=H_{v}\left(\begin{array}{cc}
1 & \mathbf{0}_{n-1}^{\prime} \\
\mathbf{0}_{n-1} & W
\end{array}\right)
$$

is unitary and

$$
U^{H} A U^{H}=\left(\begin{array}{cc}
\lambda & x^{H} A K W \\
\mathbf{0}_{n-1} & W^{H} K^{H} A K W
\end{array}\right)=\left(\begin{array}{cc}
\lambda & \mathbf{x}^{H} A K W \\
\mathbf{0}_{n-1} & S
\end{array}\right) .
$$

The last matrix is clearly upper triangular.

Proof (cont'd)

Since $A \sim_{u} T, A$ and T have the same characteristic polynomials and, therefore, the same eigenvalues, with identical multiplicities.
The factorization of A can be written as $A=U D U^{H}$ because $U^{-1}=U^{H}$. Since $A U=U D$, each column \mathbf{u}_{i} of U is an eigenvector of A that corresponds to the eigenvalue λ_{i} for $1 \leqslant i \leqslant n$.

Corollary

Let $A \in \mathbb{C}^{n \times n}$ and let f be a polynomial. If $\operatorname{spec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ (including multiplicities), then $\operatorname{spec}(f(A))=\left\{f\left(\lambda_{1}\right), \ldots, f\left(\lambda_{n}\right)\right\}$.

Proof: By Schur's Triangularization Theorem there exists a unitary matrix $U \in \mathbb{C}^{n \times n}$ and an upper-triangular matrix $T \in \mathbb{C}^{n \times n}$ such that $A=U T U^{H}$ and the diagonal elements of T are the eigenvalues of $A, \lambda_{1}, \ldots, \lambda_{n}$. Therefore $f(A)=U f(T) U^{\mathrm{H}}$ and the diagonal elements of $f(T)$ are $f\left(\lambda_{1}\right), \ldots, f\left(\lambda_{m}\right)$. Since $f(A) \sim_{u} f(T)$, we obtain the desired conclusion because two similar matrices have the same eigenvalues with the same algebraic multiplicities.

Definition

A matrix $A \in \mathbb{C}^{n \times n}$ is diagonalizable (unitarily diagonalizable) if there exists a diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ such that $A \sim D\left(A \sim_{u} D\right)$.

Theorem

A matrix $A \in \mathbb{C}^{n \times n}$ is diagonalizable if and only if there exists a linearly independent set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ of n eigenvectors of A.

Proof

Let $A \in \mathbb{C}^{n \times n}$ such that there exists a set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ of n eigenvectors of A that is linearly independent and let P be the matrix ($\mathbf{v}_{1} \mathbf{v}_{2} \cdots \mathbf{v}_{n}$) that is clearly invertible. We have:

$$
\left.\begin{array}{rl}
P^{-1} A P & =P^{-1}\left(A \mathbf{v}_{1} A \mathbf{v}_{2} \cdots\right.
\end{array} \cdots A \mathbf{v}_{n}\right)=P^{-1}\left(\lambda_{1} \mathbf{v}_{1} \lambda_{2} \mathbf{v}_{2} \cdots c c \mid \lambda_{n} \mathbf{v}_{n}\right) .
$$

Proof (cont'd)

Therefore, we have $A=P D P^{-1}$, where

$$
D=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)
$$

so $A \sim D$.
Conversely, suppose that A is diagonalizable, so $A P=P D$, where D is a diagonal matrix and P is an invertible matrix, and let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be the columns of the matrix P. We have $A \mathbf{v}_{i}=d_{i i} \mathbf{v}_{i}$ for $1 \leqslant i \leqslant n$, so each \mathbf{v}_{i} is an eigenvector of A. Since P is invertible, its columns are linear independent.

Corollary

If $A \in \mathbb{C}^{n \times n}$ is diagonalizable then the columns of any matrix P such that $D=P^{-1} A P$ is a diagonal matrix are eigenvectors of A. Furthermore, the diagonal entries of D are the eigenvalues that correspond to the columns of P.

Corollary

A matrix $A \in \mathbb{C}^{n \times n}$ is unitarily diagonalizable if and only if there exists a set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ of n orthonormal eigenvectors of A.

Theorem

Let A be a Hermitian matrix, $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n}$ be its eigenvalues having the orthonormal eigenvectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$, respectively. Define the subspace $M=\left\langle\mathbf{u}_{p}, \ldots, \mathbf{u}_{q}\right\rangle$, where $1 \leqslant p \leqslant q \leqslant n$. If $\mathbf{x} \in M$ and $\|\mathbf{x}\|_{2}=1$, we have $\lambda_{q} \leqslant \mathbf{x}^{H} A \mathbf{x} \leqslant \lambda_{p}$.

Proof

If \mathbf{x} is a unit vector in M, then $\mathbf{x}=a_{p} \mathbf{u}_{p}+\cdots+a_{q} \mathbf{u}_{q}$, so $\mathbf{x}^{H} \mathbf{u}_{i}=\overline{a_{i}}$ for $p \leqslant i \leqslant q$. Since $\|\mathbf{x}\|_{2}=1$, we have $\left|a_{p}\right|^{2}+\cdots+\left|a_{q}\right|^{2}=1$. This allows us to write:

$$
\begin{aligned}
\mathbf{x}^{\mathrm{H}} A \mathbf{x} & =\mathbf{x}^{\mathrm{H}}\left(a_{p} A \mathbf{u}_{p}+\cdots+a_{q} A \mathbf{u}_{q}\right) \\
& =\mathbf{x}^{\mathrm{H}}\left(a_{p} \lambda_{p} \mathbf{u}_{p}+\cdots+a_{q} \lambda_{q} \mathbf{u}_{q}\right) \\
& =\mathbf{x}^{\mathrm{H}}\left(\left|a_{p}\right|^{2} \lambda_{p}+\cdots+\left|a_{q}\right|^{2} \lambda_{q}\right) .
\end{aligned}
$$

Since $\left|a_{p}\right|^{2}+\cdots+\left|a_{q}\right|^{2}=1$, the desired inequalities follow immediately.

Corollary

Let A be a Hermitian matrix, $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n}$ be its eigenvalues having the orthonormal eigenvectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$, respectively. The following statements hold for a unit vector \mathbf{x} :

- if $\mathbf{x} \in\left\langle\mathbf{u}_{1}, \ldots, \mathbf{u}_{i}\right\rangle$, then $\mathbf{x}^{H} A \mathbf{x} \geqslant \lambda_{i}$;
- if $\mathbf{x} \in\left\langle\mathbf{u}_{1}, \ldots, \mathbf{u}_{i-1}\right\rangle^{\perp}$, then $\mathbf{x}^{H} A \mathbf{x} \leqslant \lambda_{i}$.

Theorem

(Rayleigh-Ritz Theorem) Let A be a Hermitian matrix and let $\left(\lambda_{1}, \mathbf{u}_{1}\right), \ldots,\left(\lambda_{n}, \mathbf{u}_{n}\right)$ be the eigenpairs of A, where $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n}$. If \mathbf{x} is a unit vector, we have $\lambda_{n} \leqslant \mathbf{x}^{H} A \mathbf{x} \leqslant \lambda_{1}$.

Proof.

This statement follows by observing that the subspace generated by $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ is the entire space \mathbb{C}^{n}.

The Courant-Fisher Theorem

Let \mathcal{S}_{p}^{n} be the collection of p-dimensional subspaces of \mathbb{C}^{n}. Note that $\mathcal{S}_{0}^{n}=\left\{\left\{\mathbf{0}_{n}\right\}\right\}$ and $\mathcal{S}_{n}^{n}=\left\{\mathbb{C}^{n}\right\}$.

Theorem
Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix having the eigenvalues $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n}$. We have

$$
\begin{aligned}
\lambda_{k} & =\max _{U \in \mathcal{S}_{k}^{n}} \min \left\{\mathbf{x}^{H} A \mathbf{x} \mid \mathbf{x} \in U \text { and }\|\mathbf{x}\|_{2}=1\right\} \\
& =\min _{U \in \mathcal{S}_{n-k+1}^{n}} \max \left\{\mathbf{x}^{H} A \mathbf{x} \mid \mathbf{x} \in U \text { and }\|\mathbf{x}\|_{2}=1\right\}
\end{aligned}
$$

Proof

Let $A=V^{H} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) V$ be the factorization of A, where $V=\left(\mathbf{u}_{1} \cdots \mathbf{u}_{n}\right)$ is a unitary matrix.
If

$$
U=\left\langle\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\rangle \in \mathcal{S}_{k}^{n} \text { and } W=\left\langle\mathbf{u}_{k}, \ldots, \mathbf{u}_{n}\right\rangle \in \mathcal{S}_{n-k+1}^{n},
$$

then there is a non-zero vector $\mathbf{x} \in U \cap W$ because $\operatorname{dim}(U)+\operatorname{dim}(W)=n+1$; we can assume that $\|\mathbf{x}\|_{2}=1$. We have $\lambda_{k} \geqslant \mathbf{x}^{H} A \mathbf{x}$, and, therefore, for any $U \in \mathcal{S}_{k}^{n}$, $\lambda_{k} \geqslant \min \left\{\mathbf{x}^{H} A \mathbf{x} \mid \mathbf{x} \in U\right.$ and $\left.\|\mathbf{x}\|_{2}=1\right\}$. This implies

$$
\lambda_{k} \geqslant \max _{U \in \mathcal{S}_{k}^{n}} \min \left\{\mathbf{x}^{H} A \mathbf{x} \mid \mathbf{x} \in U \text { and }\|\mathbf{x}\|_{2}=1\right\}
$$

Proof (cont'd)

For a unit vector $\mathbf{x} \in\left\langle\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\rangle \in \mathcal{S}_{k}^{n}$ we have $\mathbf{x}^{H} A \mathbf{x} \geqslant \lambda_{k}$ and $\mathbf{u}_{k}^{\mathrm{H}} A \mathbf{u}_{k}=\lambda_{k}$. Therefore, for $U=\left\langle\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\rangle \in \mathcal{S}_{k}^{n}$ we have $\min \left\{\mathbf{x}^{\mathrm{H}} A \mathbf{x} \mid \mathbf{x} \in U,\|\mathbf{x}\|_{2}=1\right\} \geqslant \lambda_{k}$, so $\max _{U \in \mathcal{S}_{k}^{n}} \min \left\{\mathbf{x}^{H} A \mathbf{x} \mid \mathbf{x} \in U,\|\mathbf{x}\|_{2}=1\right\} \geqslant \lambda_{k}$. The inequalities proved above yield

$$
\lambda_{k}=\max _{U \in \mathcal{S}_{k}^{n}} \min \left\{\mathbf{x}^{H} A \mathbf{x} \mid \mathbf{x} \in U \text { and }\|\mathbf{x}\|_{2}=1\right\}
$$

Proof (cont'd)

For the second equality, let $U \in \mathcal{S}_{n-k+1}^{n}$. If $W=\left\langle\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\rangle$, there is a non-zero unit vector $\mathbf{x} \in U \cap W$ because $\operatorname{dim}(U)+\operatorname{dim}(W) \geqslant n+1$. We have $\mathbf{x}^{H} A \mathbf{x} \leqslant \lambda_{k}$. Therefore, for any $U \in \mathcal{S}_{n-k+1}^{n}$, $\lambda_{k} \geqslant \max \left\{\mathbf{x}^{H} A \mathbf{x} \mid \mathbf{x} \in U\right.$ and $\left.\|\mathbf{x}\|_{2}=1\right\}$. This implies $\lambda_{k} \geqslant \min _{U \in \mathcal{S}_{n-k+1}^{n}} \max \left\{\mathbf{x}^{H} A \mathbf{x} \mid \mathbf{x} \in U\right.$ and $\left.\|\mathbf{x}\|_{2}=1\right\}$.

Proof (cont'd)

For a unit vector $\mathbf{x} \in\left\langle\mathbf{u}_{k}, \ldots, \mathbf{u}_{n}\right\rangle \in \mathcal{S}_{n-k+1}^{n}$ we have $\lambda_{k} \leqslant \mathbf{x}^{H} A \mathbf{x}$ and $\lambda_{k}=\mathbf{u}_{k}^{H} A \mathbf{u}_{k}$. Thus, $\lambda_{k} \leqslant \max \left\{\mathbf{x}^{H} A \mathbf{x} \mid \mathbf{x} \in U\right.$ and $\left.\|\mathbf{x}\|_{2}=1\right\}$. Consequently, $\lambda_{k} \leqslant \min _{U \in \mathcal{S}_{n-k+1}^{n}} \max \left\{\mathbf{x}^{H} A \mathbf{x} \mid \mathbf{x} \in U\right.$ and $\left.\|\mathbf{x}\|_{2}=1\right\}$, which completes the proof of the second equality of the theorem.

An equivalent formulation of Courant-Fisher Theorem is given next.

Theorem

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix having the eigenvalues $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n}$. We have

$$
\begin{aligned}
\lambda_{k} & =\max _{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n-k}} \min \left\{\mathbf{x}^{H} A \mathbf{x} \mid \mathbf{x} \perp \mathbf{w}_{1}, \ldots, \mathbf{x} \perp \mathbf{w}_{n-k} \text { and }\|\mathbf{x}\|_{2}=1\right\} \\
& =\min _{\mathbf{w}_{1}, \ldots, \mathbf{w}_{k-1}} \max \left\{\mathbf{x}^{H} A \mathbf{x} \mid \mathbf{x} \perp \mathbf{w}_{1}, \ldots, \mathbf{x} \perp \mathbf{w}_{k-1} \text { and }\|\mathbf{x}\|_{2}=1\right\} .
\end{aligned}
$$

Proof: The equalities of the Theorem follow from the Courant-Fisher theorem taking into account that if $U \in \mathcal{S}_{k}^{n}$, then $U^{\perp}=\left\langle\mathbf{w}_{1}, \ldots, \mathbf{w}_{n-k}\right\rangle$ for some vectors $\mathbf{w}_{1}, \ldots, \mathbf{w} n-k$, and if $U \in \mathcal{S}_{n-k+1}^{n}$, then $U=\left\langle\mathbf{w}_{1}, \ldots \mathbf{w}_{k-1}\right\rangle$ for some vectors $\mathbf{w}_{1}, \ldots, \mathbf{w} k-1$ in \mathbb{C}^{n}.

Ky Fan's Theorem

Theorem

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix such that $\operatorname{spec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$, where $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}$. Also, let $V \in \mathbb{C}^{n \times n}$ be a matrix, $V=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ whose set of columns constitutes an orthonormal set of eigenvectors of A. For every $q \in \mathbb{N}$ such that $1 \leqslant q \leqslant n$, the sums

$$
\sum_{i=1}^{q} \lambda_{i}=\lambda_{1}+\cdots+\lambda_{q}
$$

and

$$
\sum_{i=1}^{q} \lambda_{n+1-i}=\lambda_{n}+\lambda_{n-1}+\cdots+\lambda_{n-(q-1)}
$$

are the maximum and minimum of $\sum_{j=1}^{q} \mathbf{x}_{j}^{H} A \mathbf{x}_{j}$, respectively, where $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{q}\right\}$ is an orthonormal set of vectors in \mathbb{C}^{n}. The maximum (minimum) is achieved when $\mathbf{x}_{1}, \ldots, \mathbf{x}_{q}$ are the first (last) columns of V.

Proof

Let $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ be an orthonormal set of eigenvectors of A and let $\mathbf{x}_{i}=\sum_{k=1}^{n} b_{k i} \mathbf{v}_{k}$ be the expression of \mathbf{x}_{i} using the columns of V as a basis for $1 \leqslant i \leqslant n$. Since each \mathbf{x}_{i} is a unit vector we have

$$
\left\|\mathbf{x}_{i}\right\|^{2}=\mathbf{x}_{i}^{\mu} \mathbf{x}_{i}=\sum_{k=1}^{n}\left|b_{k i}\right|^{2}=1
$$

for $1 \leqslant i \leqslant n$. Also, note that

$$
\mathbf{x}_{i}^{H} \mathbf{v}_{r}=\left(\sum_{k=1}^{n} \overline{b_{k i}} \mathbf{v}_{k}^{H}\right) \mathbf{v}_{r}=\overline{b_{r i}},
$$

due to the orthonormality of the set of columns of V.

Proof (cont'd)

We have

$$
\begin{aligned}
\mathbf{x}_{i}^{H} A \mathbf{x}_{i} & =\mathbf{x}_{i}^{H} A \sum_{k=1}^{n} b_{k i} \mathbf{v}_{k}=\sum_{k=1}^{n} b_{k i} \mathbf{x}_{i}^{H} A \mathbf{v}_{k} \\
& =\sum_{k=1}^{n} b_{k i} \mathbf{x}_{i}^{H} \lambda_{k} \mathbf{v}_{k}=\sum_{k=1}^{n} \lambda_{k} b_{k i} \overline{b_{k i}}=\sum_{k=1}^{n}\left|b_{k i}\right|^{2} \lambda_{k} \\
& =\lambda_{q} \sum_{k=1}^{n}\left|b_{k i}\right|^{2}+\sum_{k=1}^{q}\left(\lambda_{k}-\lambda_{q}\right)\left|b_{k i}\right|^{2}+\sum_{k=q+1}^{n}\left(\lambda_{k}-\lambda_{q}\right)\left|b_{k i}\right|^{2} \\
& \leqslant \lambda_{q}+\sum_{k=1}^{q}\left(\lambda_{k}-\lambda_{q}\right)\left|b_{k i}\right|^{2}
\end{aligned}
$$

The last inequality implies

$$
\sum_{i=1}^{q} \mathbf{x}_{i}^{H} A \mathbf{x}_{i} \leqslant q \lambda_{q}+\sum_{i=1}^{q} \sum_{k=1}^{q}\left(\lambda_{k}-\lambda_{q}\right)\left|b_{k i}\right|^{2} \cdot \mathscr{C}_{\substack{\text { UMAss } \\ \text { Boston }}}
$$

Proof (cont'd)

Therefore,

$$
\begin{equation*}
\sum_{i=1}^{q} \lambda_{i}-\sum_{i=1}^{q} \mathbf{x}_{i}^{H} A \mathbf{x}_{i} \geqslant \sum_{i=1}^{q}\left(\lambda_{i}-\lambda_{q}\right)\left(1-\sum_{k=1}^{q}\left|b_{k i}\right|^{2}\right) . \tag{2}
\end{equation*}
$$

We have $\sum_{k=1}^{q}\left|b_{i k}\right|^{2} \leqslant\left\|\mathbf{x}_{i}\right\|^{2}=1$, so

$$
\sum_{i=1}^{q}\left(\lambda_{i}-\lambda_{q}\right)\left(1-\sum_{k=1}^{q}\left|b_{k i}\right|^{2}\right) \geqslant 0 .
$$

The left member of Inequality 2 becomes 0 when $\mathbf{x}_{i}=\mathbf{v}_{i}$, so $\sum_{i=1}^{q} \mathbf{x}_{i}^{H} A \mathbf{x}_{i} \leqslant \sum_{i=1}^{q} \lambda_{i}$. The maximum of $\sum_{i=1}^{q} \mathbf{x}_{i}^{H} A \mathbf{x}_{i}$ is obtained when $\mathbf{x}_{i}=\mathbf{v}_{i}$ for $1 \leqslant i \leqslant q$, that is, when X consists of the first q columns of V. The argument for the minimum is similar.

Theorem

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix. If A is positive semidefinite, then all its eigenvalues are non-negative; if A is positive definite then its eigenvalues are positive.

Proof.

Since A is Hermitian all its eigenvalues are real numbers. Suppose that A is positive semidefinite, that is, $\mathbf{x}^{H} A \mathbf{x} \geqslant 0$ for $\mathbf{x} \in \mathbb{C}^{n}$. If $\lambda \in \operatorname{spec}(A)$, then $A \mathbf{v}=\lambda \mathbf{v}$ for some eigenvector $\mathbf{v} \neq \mathbf{0}$. The positive semi-definiteness of A implies $\mathbf{v}^{H} A \mathbf{v}=\lambda \mathbf{v}^{H} \mathbf{v}=\lambda\|\mathbf{v}\|_{2}^{2} \geqslant 0$, which implies $\lambda \geqslant 0$. It is easy to see that if A is positive definite, then $\lambda>0$.

Theorem

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix. If A is positive semidefinite, then all its principal minors are non-negative real numbers. If A is positive definite then all its principal minors are positive real numbers.

Proof.

Since A is positive semidefinite, every sub-matrix $A\left[\begin{array}{lll}i_{1} & \cdots & i_{k} \\ i_{1} & \cdots & i_{k}\end{array}\right]$ is a Hermitian positive semidefinite matrix by Theorem ??, so every principal minor is a non-negative real number. The second part of the theorem is proven similarly.

Corollary

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix. The following statements are equivalent.

- A is positive semidefinite;
- all eigenvalues of A are non-negative numbers;
- there exists a Hermitian matrix $C \in \mathbb{C}^{n \times n}$ such that $C^{2}=A$;
- A is the Gram matrix of a sequence of vectors, that is, $A=B^{H} B$ for some $B \in \mathbb{C}^{n \times n}$.

Definition

Let $A \in \mathbb{C}^{m \times n}$ be a matrix. A singular triplet of A is a triplet $(\sigma, \mathbf{u}, \mathbf{v})$ such that $\sigma \in \mathbb{R}_{>0}, \mathbf{u} \in \mathbb{C}^{n}, \mathbf{v} \in \mathbb{C}^{m}, A \mathbf{u}=\sigma \mathbf{v}$ and $A^{H} \mathbf{v}=\sigma \mathbf{u}$. The number σ is a singular value of A, \mathbf{u} is a left singular vector and \mathbf{v} is a right singular vector.

For a singular triplet $(\sigma, \mathbf{u}, \mathbf{v})$ of A we have

$$
A^{H} A \mathbf{u}=\sigma A^{H} \mathbf{v}=\sigma^{2} \mathbf{u} \text { and } A A^{H} \mathbf{v}=\sigma A \mathbf{u}=\sigma^{2} \mathbf{v} .
$$

Therefore, σ^{2} is both an eigenvalue of $A A^{\mathrm{H}}$ and an eigenvalue of $A^{\mathrm{H}} A$.

Example

Let A be the real matrix

$$
A=\left(\begin{array}{cc}
\cos \alpha & \sin \alpha \\
\cos \beta & \sin \beta
\end{array}\right)
$$

We have $\operatorname{det}(A)=\sin (\beta-\alpha)$, so the eigenvalues of $A^{\prime} A$ are the roots of the equation $\lambda^{2}-2 \lambda+\sin ^{2}(\beta-\alpha)=0$, that is, $\lambda_{1}=1+\cos (\beta-\alpha)$ and $\lambda_{2}=1-\cos (\beta-\alpha)$. Therefore, the singular values of A are $\sigma_{1}=\sqrt{2}\left|\cos \frac{\beta-\alpha}{2}\right|$ and $\sigma_{2}=\sqrt{2}\left|\sin \frac{\beta-\alpha}{2}\right|$.
It is easy to see that a unit left singular vector that corresponds to the eigenvalue $1+\cos (\beta-\alpha)$ is

$$
\mathbf{u}=\binom{\cos \frac{\alpha+\beta}{2}}{\sin \frac{\alpha+\beta}{2}}
$$

which corresponds to the average direction of the rows of A.

- The eigenvalues of a positive semi-definite matrix are non-negative numbers. Since both $A A^{\mathrm{H}}$ and $A^{\mathrm{H}} A$ are positive semi-definite matrices for $A \in \mathbb{C}^{m \times n}$, the spectra of these matrices consist of non-negative numbers $\lambda_{1}, \ldots, \lambda_{n}$.
- $A A^{\mathrm{H}}$ and $A^{\mathrm{H}} A$ have the same rank r and therefore, the same number r of non-zero eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$.
- The singular values of A have the form $\sqrt{\lambda_{1}} \geqslant \cdots \geqslant \sqrt{\lambda_{r}}$.

Notation: $\sigma_{i}=\sqrt{\lambda_{i}}$ for $1 \leqslant i \leqslant r$ and will assume that $\sigma_{1} \geqslant \cdots \geqslant \sigma_{r}>0$.

Theorem

Let $A \in \mathbb{C}^{n \times n}$ be a matrix having the singular values $\sigma_{1} \geqslant \cdots \geqslant \sigma_{n}$. If λ is an eigenvalue value of A, then $\sigma_{n} \leqslant|\lambda| \leqslant \sigma_{1}$.

Proof.

Let \mathbf{u} be an unit eigenvector for the eigenvalue λ. Since $A \mathbf{u}=\lambda \mathbf{u}$ it follows that $\left(A^{\mathrm{H}} A \mathbf{u}, \mathbf{u}\right)=(A \mathbf{u}, A \mathbf{u})=\bar{\lambda} \lambda(\mathbf{u}, \mathbf{u})=\bar{\lambda} \lambda=|\lambda|^{2}$. The matrix $A^{\mathrm{H}} A$ is Hermitian and its largest and smallest eigenvalues are σ_{1}^{2} and σ_{n}^{2}, respectively. Thus, $\sigma_{n} \leqslant|\lambda| \leqslant \sigma_{1}$.

The SVD Theorem

Theorem
If $A \in \mathbb{C}^{m \times n}$ is a matrix and $\operatorname{rank}(A)=r$, then A can be factored as $A=U D V^{H}$, where $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary matrices, and $D=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}, 0, \ldots, 0\right) \in \mathbb{R}^{m \times n}$, where $\sigma_{1} \geqslant \ldots \geqslant \sigma_{r}$ are real positive numbers.

Proof

The square matrix $A^{H} A \in \mathbb{C}^{n \times n}$ has the same rank r as the matrix A and is positive semidefinite. Therefore, there are r positive eigenvalues of this matrix, denoted by $\sigma_{1}^{2}, \ldots, \sigma_{r}^{2}$, where $\sigma_{1} \geqslant \sigma_{2} \geqslant \cdots \geqslant \sigma_{r}>0$. Let
$\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ be the corresponding pairwise orthogonal unit eigenvectors in \mathbb{C}^{n}.
We have $A^{\mathrm{H}} A \mathbf{v}_{i}=\sigma_{i}^{2} \mathbf{v}_{i}$ for $1 \leqslant i \leqslant r$. Define $V=\left(\mathbf{v}_{1} \cdots \mathbf{v}_{r} \mathbf{v}_{r+1} \cdots \mathbf{v}_{n}\right)$ by completing the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ to an orthogonal basis

$$
\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}, \mathbf{v}_{r+1}, \ldots, \mathbf{v}_{n}\right\}
$$

for \mathbb{C}^{n}. If $V_{1}=\left(\mathbf{v}_{1} \cdots \mathbf{v}_{r}\right)$ and $V_{2}=\left(\mathbf{v}_{r+1} \cdots \mathbf{v}_{n}\right)$, we can write $V=\left(V_{1} V_{2}\right)$.

Proof (cont'd)

The equalities involving the eigenvectors can now be written as $A^{H} A V_{1}=V_{1} E^{2}$, where $E=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right)$. Define $U_{1}=A V_{1} E^{-1} \in \mathbb{C}^{m \times r}$. We have $U_{1}^{\mathrm{H}}=E^{-1} V_{1}^{\mathrm{H}} A^{\mathrm{H}}$, so

$$
U_{1}^{H} U_{1}=E^{-1} V_{1}^{H} A^{H} A V_{1} E^{-1}=E^{-1} V_{1}^{H} V_{1} E^{2} E^{-1}=I_{r}
$$

which shows that the columns of U_{1} are pairwise orthogonal unit vectors. Consequently, $U_{1}^{H} A V_{1} E^{-1}=I_{r}$, so $U_{1}^{H} A V_{1}=E$.

Proof (cont'd)

If $U_{1}=\left(\mathbf{u}_{1} \cdots, \mathbf{u}_{r}\right)$, let $U_{2}=\left(\mathbf{u}_{r+1}, \ldots, \mathbf{u}_{m}\right)$ be the matrix whose columns constitute the extension of the set $\left\{\mathbf{u}_{1} \cdots, \mathbf{u}_{r}\right\}$ to an orthogonal basis of \mathbb{C}^{m}.
Define $U \in \mathbb{C}^{m \times m}$ as $U=\left(U_{1} U_{2}\right)$. Note that

$$
\begin{aligned}
U^{H} A V & =\binom{U_{1}^{H}}{U_{2}^{H}} A\left(V_{1} V_{2}\right)=\left(\begin{array}{ll}
U_{1}^{H} A V_{1} & U_{1}^{H} A V_{2} \\
U_{2}^{H} A V_{1} & U_{2}^{H} A V_{2}
\end{array}\right) \\
& =\left(\begin{array}{ll}
U_{1}^{H} A V_{1} & U_{1}^{H} A V_{2} \\
U_{2}^{H} A V_{1} & U_{2}^{H} A V_{2}
\end{array}\right)=\left(\begin{array}{cc}
U_{1}^{H} A V_{1} & O \\
O & O
\end{array}\right)=\left(\begin{array}{ll}
E & O \\
O & O
\end{array}\right),
\end{aligned}
$$

which is the desired decomposition.

Corollary

Let $A \in \mathbb{C}^{m \times n}$ be a matrix such that $\operatorname{rank}(A)=r$. If $\sigma_{1} \geqslant \ldots \geqslant \sigma_{r}$ are non-zero singular values, then

$$
\begin{equation*}
A=\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{H}+\cdots+\sigma_{r} \mathbf{u}_{r} \mathbf{v}_{r}^{H} \tag{3}
\end{equation*}
$$

where $\left(\sigma_{i}, \mathbf{u}_{i}, \mathbf{v}_{i}\right)$ are singular triplets of A for $1 \leqslant i \leqslant r$.

The value of a unitarily invariant norm of a matrix depends only on its singular values.

Corollary

Let $A \in \mathbb{C}^{m \times n}$ be a matrix and let $A=U D V^{H}$ be the singular value decomposition of A. If $\|\cdot\|$ is a unitarily invariant norm, then

$$
\|A\|=\|D\|=\left\|\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}, 0, \ldots, 0\right)\right\|
$$

Proof.

This statement follows because the matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary.
$\left\|\left\|\|_{2} \text { and }\right\| \cdot\right\|_{F}$ are unitarily invariant. Therefore, the Frobenius norm can be written as

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{r} \sigma_{r}^{2}}
$$

and $\|A\|_{2}=\sigma_{1}$.

Theorem

Let A and B be two matrices in $\mathbb{C}^{m \times n}$. If $A \sim_{u} B$, then they have the same singular values.

Proof.

Suppose that $A \sim_{u} B$, that is, $A=W_{1}^{H} B W_{2}$ for some unitary matrices W_{1} and W_{2}. If A has the $\operatorname{SVD} A=U^{\mathrm{H}} \operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}, 0, \ldots, 0\right) V$, then

$$
B=W_{1} A W_{2}^{H}=\left(W_{1} U^{H}\right) \operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}, 0, \ldots, 0\right)\left(V W_{2}^{H}\right) .
$$

Since $W_{1} U^{H}$ and $V W_{2}^{\mathrm{H}}$ are both unitary matrices, it follows that the singular values of B are the same as the singular values of A.

Let $\mathbf{v} \in \mathbb{C}^{n}$ be an eigenvector of the matrix $A^{H} A$ that corresponds to a non-zero, positive eigenvalue σ^{2}, that is, $A^{\mathrm{H}} A \mathbf{v}=\sigma^{2} \mathbf{v}$.
Define $\mathbf{u}=\frac{1}{\sigma} A \mathbf{v}$. We have $A \mathbf{v}=\sigma \mathbf{u}$. Also,

$$
A^{\mathrm{H}} \mathbf{u}=A^{\mathrm{H}}\left(\frac{1}{\sigma} A \mathbf{v}\right)=\sigma \mathbf{v} .
$$

This implies $A A^{H} \mathbf{u}=\sigma^{2} \mathbf{u}$, so \mathbf{u} is an eigenvector of $A A^{H}$ that corresponds to the same eigenvalue σ^{2}.
Conversely, if $\mathbf{u} \in \mathbb{C}^{m}$ is an eigenvector of the matrix $A A^{H}$ that corresponds to a non-zero, positive eigenvalue σ^{2}, we have $A A^{\mathrm{H}} \mathbf{u}=\sigma^{2} \mathbf{u}$. Thus, if $\mathbf{v}=\frac{1}{\sigma} A \mathbf{u}$ we have $A \mathbf{v}=\sigma \mathbf{u}$ and \mathbf{v} is an eigenvector of $A^{\mathrm{H}} A$ for the eigenvalue σ^{2}.

The Courant-Fisher Theorem allows the formulation of a similar result for singular values.

Theorem

Let $A \in \mathbb{C}^{m \times n}$ be a matrix such that $\sigma_{1} \geqslant \sigma_{2} \geqslant \cdots \geqslant \sigma_{r}$ is the non-increasing sequence of singular values of A. For $1 \leqslant k \leqslant r$ we have

$$
\begin{aligned}
& \sigma_{k}=\min _{\operatorname{dim}(S)=n-k+1} \max \left\{\|A \mathbf{x}\|_{2} \mid \mathbf{x} \in S \text { and }\|\mathbf{x}\|_{2}=1\right\} \\
& \sigma_{k}=\max _{\operatorname{dim}(T)=k} \min \left\{\|A \mathbf{x}\|_{2} \mid \mathbf{x} \in T \text { and }\|\mathbf{x}\|_{2}=1\right\},
\end{aligned}
$$

where S and T range over subspaces of \mathbb{C}^{n}.

Proof

We give the argument only for the second equality of the theorem; the first can be shown in a similar manner.
We saw that σ_{k} equals the square root of $k^{\text {th }}$ largest absolute value of the eigenvalue $\left|\lambda_{k}\right|$ of the matrix $A^{H} A$. By Courant-Fisher Theorem, we have

$$
\begin{aligned}
\lambda_{k} & =\max _{\operatorname{dim}(T)=k} \min _{\mathbf{x}}\left\{\mathbf{x}^{H} A^{H} A \mathbf{x} \mid \mathbf{x} \in T \text { and }\|\mathbf{x}\|_{2}=1\right\} \\
& =\max _{\operatorname{dim}(T)=k} \min _{\mathbf{x}}\left\{\|A \mathbf{x}\|_{2}^{2} \mid \mathbf{x} \in T \text { and }\|\mathbf{x}\|_{2}=1\right\}
\end{aligned}
$$

which implies the second equality of the theorem.

Corollary

The smallest singular value of a matrix $A \in \mathbb{C}^{m \times n}$ equals

$$
\min \left\{\|A \mathbf{x}\|_{2} \mid \mathbf{x} \in \mathbb{C}^{n} \text { and }\|\mathbf{x}\|_{2}=1\right\}
$$

The largest singular value of a matrix $A \in \mathbb{C}^{m \times n}$ equals

$$
\max \left\{\|A \mathbf{x}\|_{2} \mid \mathbf{x} \in \mathbb{C}^{n} \text { and }\|\mathbf{x}\|_{2}=1\right\}
$$

The SVD allows us to find the best approximation of of a matrix by a matrices of limited rank.

Lemma

Let $A=\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{H}+\cdots+\sigma_{r} \mathbf{u}_{r} \mathbf{v}_{r}^{H}$ be the SVD of a matrix $A \in \mathbb{R}^{m \times n}$, where $\sigma_{1} \geqslant \cdots \geqslant \sigma_{r}>0$. For every $k, 1 \leqslant k \leqslant r$ the matrix $B(k)=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{H}$ has rank k.

Proof.

The null space of the matrix $B(k)$ consists of those vectors \mathbf{x} such that $B(k) \mathbf{x}=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{H} \mathbf{x}=\mathbf{0}$. The linear independence of the vectors \mathbf{u}_{i} and the fact that $\sigma_{i}>0$ for $1 \leqslant i \leqslant r$ implies the equalities $\mathbf{v}_{i}^{\mathrm{H}} \mathbf{x}=\mathbf{0}$ for $1 \leqslant i \leqslant k$. Thus, $\mathbf{x} \in\left\langle\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\rangle^{\perp}$ and, since $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are linearly independent it follows that $\operatorname{dim}(\operatorname{NullSp}(B(k))=n-k$, which implies $\operatorname{rank}(B(k))=k$ for $1 \leqslant k \leqslant r$.

Theorem

(Eckhart-Young Theorem) Let $A \in \mathbb{C}^{m \times n}$ be a matrix whose sequence of non-zero singular values is $\left(\sigma_{1}, \ldots, \sigma_{r}\right)$. Assume that $\sigma_{1} \geqslant \cdots \geqslant \sigma_{r}>0$ and that A can be written as

$$
A=\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{H}+\cdots+\sigma_{r} \mathbf{u}_{r} \mathbf{v}_{r}^{H}
$$

Let $B(k) \in \mathbb{C}^{m \times n}$ be the matrix defined by

$$
B(k)=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{H} .
$$

If $r_{k}=\inf \left\{\|A-X\|_{2} \mid X \in \mathbb{C}^{m \times n}\right.$ and $\left.\operatorname{rank}(X) \leqslant k\right\}$, then

$$
\|A-B(k)\|_{2}=r_{k}=\sigma_{k+1}
$$

for $1 \leqslant k \leqslant r$, where $\sigma_{r+1}=0$ and $B(k)$ is the best approximation of A among the matrices of rank no larger than k in the sense of the norm $\|\cdot\|_{2}$.

Proof

Observe that

$$
A-B(k)=\sum_{i=k+1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\mathrm{H}}
$$

and the largest singular value of the matrix $\sum_{i=k+1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{H}$ is σ_{k+1}. Since σ_{k+1} is the largest singular value of $A-B(k)$ we have $\|A-B(k)\|_{2}=\sigma_{k+1}$ for $1 \leqslant k \leqslant r$.

Proof (cont'd)

We prove now that for every matrix $X \in \mathbb{C}^{m \times n}$ such that $\operatorname{rank}(X) \leqslant k$, we have $\|A-X\|_{2} \geqslant \sigma_{k+1}$.
Since $\operatorname{dim}(\operatorname{Null} \operatorname{sp}(X))=n-\operatorname{rank}(X)$, it follows that $\operatorname{dim}(\operatorname{NullSp}(X)) \geqslant n-k$. If T is the subspace of \mathbb{R}^{n} spanned by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k+1}$, we have $\operatorname{dim}(T)=k+1$. Since $\operatorname{dim}(\operatorname{NullSp}(X))+\operatorname{dim}(T)>n$, the intersection of these subspaces contains a unit non-zero vector x . We have $\mathbf{x}=a_{1} \mathbf{v}_{1}+\cdots a_{k} \mathbf{v}_{k}+a_{k+1} \mathbf{v}_{k+1}$ because $\mathbf{x} \in T$. The orthogonality of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{v}_{k+1}$ implies $\|\mathbf{x}\|_{2}^{2}=\sum_{i=1}^{k+1}\left|a_{i}\right|^{2}=1$.

Since $\mathbf{x} \in \operatorname{NullSp}(X)$, we have $X \mathbf{x}=\mathbf{0}$, so

$$
(A-X) \mathbf{x}=A \mathbf{x}=\sum_{i=1}^{k+1} a_{i} A \mathbf{v}_{i}=\sum_{i=1}^{k+1} a_{i} \sigma_{i} \mathbf{u}_{i}
$$

Thus, we have

$$
\|(A-X) \mathbf{x}\|_{2}^{2}=\sum_{i=1}^{k+1}\left|\sigma_{i} a_{i}\right|^{2} \geqslant \sigma_{k+1}^{2} \sum_{i=1}^{k+1}\left|a_{i}\right|^{2}=\sigma_{k+1}^{2},
$$

because $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ are also orthonormal. This implies $\|A-X\|_{2} \geqslant \sigma_{k+1}=\|A-B(k)\|_{2}$.

It is interesting to observe that the matrix $B(k)$ provides an optimal approximation of A not only with respect to $\|\cdot\|_{2}$ but also relative to the Frobenius norm.

Theorem
$B(k)$ is the best approximation of A among matrices of rank no larger than k in the sense of the Frobenius norm.

Proof

Note that $\|A-B(k)\|_{F}^{2}=\|A\|_{F}^{2}-\sum_{i=1}^{k} \sigma_{i}^{2}$. Let X be a matrix of rank k, which can be written as $X=\sum_{i=1}^{k} \mathbf{x}_{i} \mathbf{y}_{j}^{\mathrm{H}}$. Without loss of generality we may assume that the vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ are orthonormal. If this is not the case, we can use the Gram-Schmidt algorithm to express then as linear combinations of orthonormal vectors, replace these expressions in $\sum_{i=1}^{k} \mathbf{x}_{i} \mathbf{y}_{i}^{H}$ and rearrange the terms. Now, the Frobenius norm of $A-X$ can be written as

$$
\begin{aligned}
\|A-X\|_{F}^{2} & =\operatorname{trace}\left(\left(A-\sum_{i=1}^{k} \mathbf{x}_{i} \mathbf{y}^{H}\right)^{H}\left(A-\sum_{i=1}^{k} \mathbf{x}_{i} \mathbf{y}^{H}\right)\right) \\
& =\operatorname{trace}\left(A^{H} A+\sum_{i=1}^{k}\left(\mathbf{y}_{i}-A^{\mathrm{H}} \mathbf{x}_{i}\right)\left(\mathbf{y}_{i}-A^{\mathrm{H}} \mathbf{x}_{i}\right)^{\mathrm{H}}-\sum_{i=1}^{k} A^{\mathrm{H}} \mathbf{x}_{i} \mathbf{x}_{i}^{\mathrm{H}} A\right)
\end{aligned}
$$

Taking into account that $\sum_{i=1}^{k}\left(\mathbf{y}_{i}-A^{\mathrm{H}} \mathbf{x}_{i}\right)\left(\mathbf{y}_{i}-A^{\mathrm{H}} \mathbf{x}_{i}\right)^{\mathrm{H}}$ is a real non-negative number and that $\sum_{i=1}^{k} A^{H} \mathbf{x}_{i} \mathbf{x}_{i}^{H} A=\left\|A \mathbf{x}_{i}\right\|_{F}^{2}$ we have
$\|A-X\|_{F}^{2} \geq \operatorname{trace}\left(A^{H} A-\sum_{i=1}^{k} A^{H} \mathbf{x}_{i} \mathbf{x}_{i}^{H} A\right)=\|A\|_{F}^{2}-\operatorname{trace}\left(\sum_{i=1}^{k} A^{H} \mathbf{x}_{i} \mathbf{x}_{i}^{H}\right.$
Let $A=U \operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right) V^{H}$ be the singular value decomposition of A. If $V=\left(V_{1} V_{2}\right)$, where V_{1} has k columns $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, D_{1}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}\right)$ and $D_{2}=\operatorname{diag}\left(\sigma_{k+1}, \ldots, \sigma_{n}\right)$, then

$$
\begin{aligned}
A^{\mathrm{H}} A & =V D^{\mathrm{H}} U^{\mathrm{H}} U D V^{\mathrm{H}}=\left(\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right)\left(\begin{array}{cc}
D_{1}^{2} & O \\
O & D_{2}^{2}
\end{array}\right)\binom{V_{1}^{\mathrm{H}}}{V_{2}^{\mathrm{H}}} \\
& =V_{1} D_{1}^{2} V_{1}^{\mathrm{H}}+V_{2} D_{2}^{2} V_{2}^{\mathrm{H}} .
\end{aligned}
$$

and $A^{H} A=V D^{2} V^{H}$.

Proof (cont'd)

These equalities allow us to write:

$$
\begin{aligned}
\left\|A \mathbf{x}_{i}\right\|_{F}^{2}= & \operatorname{trace}\left(\mathbf{x}_{i}^{H} A^{H} A \mathbf{x}_{i}\right) \\
= & \operatorname{trace}\left(\mathbf{x}_{i}^{H} V_{1} D_{1}^{2} V_{1}^{H} \mathbf{x}_{i}+\mathbf{x}_{i}^{H} V_{2} D_{2}^{2} V_{2}^{H} \mathbf{x}_{i}\right) \\
= & \left\|D_{1} V_{1}^{H} \mathbf{x}_{i}\right\|_{F}^{2}+\left\|D_{2} V_{2}^{H} \mathbf{x}_{i}\right\|_{F}^{2} \\
= & \sigma_{k}^{2}+\left(\left\|D_{1} V_{1}^{H} \mathbf{x}_{i}\right\|_{F}^{2}-\sigma_{k}^{2}\left\|V_{1}^{H} \mathbf{x}_{i}\right\|_{F}^{2}\right) \\
& \left.-\left(\sigma_{k}^{2}\left\|V_{2}^{H} \mathbf{x}_{i}\right\|_{F}^{2}-\left\|D_{2} V_{2}^{H} \mathbf{x}_{i}\right\|_{F}^{2}\right)\right)-\sigma_{k}^{2}\left(1-\left\|V^{H} \mathbf{x}_{i}\right\|\right) .
\end{aligned}
$$

Since $\left\|V^{H} \mathbf{x}_{i}\right\|_{F}^{1}=1$ (because \mathbf{x}_{i} is an unit vector and V is an unitary matrix) and $\sigma_{k}^{2}\left\|V_{2}^{H} \mathbf{x}_{i}\right\|_{F}^{2}-\left\|D_{2} V_{2}^{H} \mathbf{x}_{i}\right\|_{F}^{2} \geqslant 0$, it follows that

$$
\left\|A \mathbf{x}_{i}\right\|_{F}^{2} \leqslant \sigma_{k}^{2}+\left(\left\|D_{1} V_{1}^{H} \mathbf{x}_{i}\right\|_{F}^{2}-\sigma_{k}^{2}\left\|V_{1}^{H} \mathbf{x}_{i}\right\|_{F}^{2}\right)
$$

Proof (cont'd)

Consequently,

$$
\begin{aligned}
\sum_{i=1}^{k}\left\|A \mathbf{x}_{i}\right\|_{F}^{2} & \leqslant k \sigma_{k}^{2}+\sum_{i=1}^{k}\left(\left\|D_{1} V_{1}^{H} \mathbf{x}_{i}\right\|_{F}^{2}-\sigma_{k}^{2}\left\|V_{1}^{H} \mathbf{x}_{i}\right\|_{F}^{2}\right) \\
& =k \sigma_{k}^{2}+\sum_{i=1}^{k} \sum_{j=1}^{k}\left(\sigma_{j}^{2}-\sigma_{k}^{2}\right)\left|\mathbf{v}_{j}^{H} \mathbf{x}_{i}\right|^{2} \\
& =\sum_{j=1}^{k}\left(\sigma_{k}^{2}+\left(\sigma_{j}^{2}-\sigma_{k}^{2}\right) \sum_{i=1}^{k}\left|\mathbf{v}_{j} \mathbf{x}_{i}\right|^{2}\right) \\
& \leqslant \sum_{j=1}^{k}\left(\sigma_{k}^{2}+\left(\sigma_{j}^{2}-\sigma_{k}^{2}\right)\right)=\sum_{j=1}^{k} \sigma_{j}^{2}
\end{aligned}
$$

which concludes the argument.

