
Support Vector Machines - I

Prof. Dan A. Simovici

UMB

1 / 27



Outline

1 Separable Sets

2 SVM - The Non-Separable Case

2 / 27



Separable Sets

History

Support vector machines (SVMs) were introduced in statistical
learning theory by V. N. Vapnik.

One of the intial success stories of SVMs was the handwritten digit
recognition. The results obtained with SVMs show superior
classification performance comparable with the best classifiers
developed in machine learning.

Although intended initially for classifying data where classes are
linearly separable, using techniques from functional analysis, SVMs
manage to successfuly classify data where classes are separated by
non-linear boundaries.
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Separable Sets

The distance between a point x0 ∈ Rn and a hyperplane Hw,a defined by
the equation w′x = a is given by:

d(Hw,a, x0) =
|w′x0 − a|
‖ w ‖

.

w

x

x0

x− x0 = λw

Hw,a
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Separable Sets

Data Samples

A data sample of size m is a sequence

s = ((x1, y1), . . . , (xm, ym)),

where x1, . . . , xm belong to Rn and yi ∈ {−1, 1} for 1 6 i 6 m. The
positive examples of s are those pairs (xi , yi ) such that yi = 1; the
remaining pairs are the negative examples.
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Separable Sets

The Task of a Linear Classifier

The task of a linear classifier is to construct a hyperplane Hw,a starting
from the sample s such that for each positive example (xi , 1) we have
xi ∈ H>0

w,a and for each negative example we have (xi ,−1) ∈ H<0
w,a. If s is a

linearly separable sample there are, in general, infinitely many hyperplanes
that can do the separation.

Hw,a

x2

x1

Positive example
Negative example

6 / 27



Separable Sets

Hyperplanes in Canonical Form

Definition

A hyperplane Hw′,a that does not pass through a point of the sample s is
in canonical form relative to s if

min
(x,y)∈S

|w′x− a| = 1.

We may always assume that the separating hyperplane is in canonical form
relative by s by rescaling the coefficients of the equation that define the
hyperplane (a and the components of w).
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Separable Sets

If the hyperplane w′x = a is in canonical form relative to the sample s,
then the distance to the hyperplane to the closest points in s (the margin
of the hyperplane) is the same, namely,

ρ = min
(x,y)∈S

|w′x− a|
‖ w ‖

=
1

‖ w ‖
.

Points that are closest to the separating hyperplane are referred to as
support vectors.
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Separable Sets

For a canonical separating hyperplane we have

|w′x− a| > 1

for any point (x, y) of the sample, and

|w′x− a| = 1

for every support point. The point (xi , yi ) is classified correctly if yi has
the same sign as w′xi − a, that is, yi (w

′xi − a) > 1.
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Separable Sets

Maximizing the margin is equivalent to minimizing ‖ w ‖ or, equivalently,
to minimizing 1

2 ‖ w ‖
2. Thus, if s is separable, the SVM problem is

equivalent to the following convex optimization problem:

minimize 1
2 ‖ w ‖

2

subject to yi (w
′xi − a) > 1 for 1 6 i 6 m.
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Separable Sets

Note that this objective function,

1

2
‖ w ‖2=

1

2
(w2

1 + · · ·+ w2
n )

is differentiable; furhermore, we have ∇
(
1
2 ‖ w ‖

2
)

= w and the Hessian
of this function is

H 1
2
‖w‖2 = In,

which shows that 1
2 ‖ w ‖

2 is a convex function of w.
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Separable Sets

The Lagrangian of the primal optimization problem

minimize 1
2 ‖ w ‖

2

subject to yi (w
′xi − a) > 1 for 1 6 i 6 m.

is

L(w, a,u) =
1

2
‖ w ‖2 −

m∑
i=1

ui
(
yi (w

′xi − a)− 1
)
,

where ui are the Lagrange multipliers for 1 6 i 6 m.
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Separable Sets

To compute the dual objective function g we impose the
Karush-Kuhn-Tucker optimality conditions on the Lagrangian L:

∂L

∂wj
= wj −

m∑
i=1

uiyi (xi )j = 0

∂L

∂a
=

m∑
i=1

uiyi = 0,

ui (yi (w
′xi + b)− 1) = 0 for all i ,

which imply

w =
m∑
i=1

uiyixi = 0,

m∑
i=1

uiyi = 0,

ui = 0 or yi (w
′xi − a) = 1 for 1 6 i 6 m.
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Separable Sets

w =
m∑
i=1

uiyixi = 0,

m∑
i=1

uiyi = 0,

ui = 0 or yi (w
′xi − a) = 1 for 1 6 i 6 m.

Conclusions:

The weight vector is a linear combination of the training vectors
x1, . . . , xm.

xi effectively occurs in the linear combination that defines the weight
vector only if ui 6= 0, that is, if xi is a support vector.
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Separable Sets

Since ui = 0 or yi (w
′xi − a) = 1 for all i , if ui 6= 0, then yi (w

′xi − a) = 1
for the support vectors; thus, all these vectors lie on the marginal
hyperplanes w′x− a = 1 or w′x− a = −1. If non-support vector are
removed the solution remains the same; however, while the solution of the
problem remains the same different choices may be possible for the
support vectors.
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Separable Sets

The dual probem can now be stated as follows:

maximize g(u) =
∑m

i=1 ui −
1
2

∑m
i=1

∑m
j=1 uiujyiyjx

′
ixj

subject to ui > 0 for 1 6 i 6 m and
∑m

i=1 uiyi = 0.

The dual objective function g(u) depends on the vector of Lagrange

multipliers u =

u1
...
um

. Constraints are affine, so the strong duality holds;

therefore, the primal and the dual problems are equivalent.
The solution u of the dual problem can be used directly to determine the
classifying function returned by the SVM as:

h(x) = sign(w′x− a) = sign

(
m∑
i=1

uiyi (x
′
ix)− a

)
.

16 / 27



Separable Sets

Since support vectors lie on the marginal hyperplanes, for every support
vector xi we have w′xi − a = yi , so

a =
m∑
j=1

ujyj(x
′
jx)− yi .
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SVM - The Non-Separable Case

If data is not separable the conditions yi (w
′xi − a) > 1 cannot all hold (for

1 6 i 6 m). Instead, we impose a relaxed version, namely

yi (w
′xi − a) > 1− ξi ,

where ξi are new variables known as slack variables.
A slack variable ξi measures the amount by which xi violates the desired
inequality yi (w

′xi + b) > 1.
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SVM - The Non-Separable Case

Objects missclassified and slack variables

y

x

w′x− a = 1

w′x− a = 0

w′x− a = −1

ξi

ξi
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SVM - The Non-Separable Case

Outliers

A vector xi is an outlier if xi is not positioned correctly on the side of
the appropriate hyperplane.

A vector xi with 0 < yi (w
′xi − a) < 1 is still an outlier even if it is

correctly classified by the hyperplane w′x− a = 0 but is misplaced
relative to the shifted separating hyperplane.

If we omit the outliers the data is correctly separated by the
hyperplane w′x− a = 0 with a soft margin ρ = 1

‖w‖ .

The total slack due to outliers can be estimated as
∑m

i=1 ξi . We seek
a hyperplane with a large margin (even though this may lead to more
outliers).
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SVM - The Non-Separable Case

The optimization problem for the non-separable data is:

minimize 1
2 ‖ w ‖

2 +C
∑m

i=1 ξi
subject to yi (w

′xi − a) > 1− ξi and ξi > 0 for 1 6 i 6 m.

The parameter C is determined in the process of cross-validation.
This is a convex optimization problem with affine constraints. As in the
separable case constraints are affine and thus, qualified, the objective
function and the affine constraints are convex and differentiable, so the
KKT conditions apply.
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SVM - The Non-Separable Case

If ui > 0 are Lagrange multipliers associated with the constraints
yi (w

′xi − a) > 1− ξi and vi > 0 for 1 6 i 6 m are Lagrange multipliers
associated with the non-negativity constraints of the slack variables for
1 6 i 6 m, then the Lagrangian is defined as:

L(w, a, ξ1, . . . , ξm,u, v) = 1
2 ‖ w ‖

2 +C
∑m

i=1 ξi
−
∑m

i=1 ui [yi (w
′xi − a)− 1 + ξi ]

−
∑n

i=1 viξi .

where v is the vector whose components are vi .
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SVM - The Non-Separable Case

Karush-Kahn-Tucker Conditions

The KKT conditions are:

KKT Condition Consequence

∇wL = w−
∑m

i=1 uiyixi = 0 w =
∑m

i=1 uiyixi
∇aL =

∑m
i=1 uiyi = 0

∑m
i=1 uiyi = 0

∇ξiL = C − ui − vi = 0 ui + vi = C
for 1 6 i 6 m for 1 6 i 6 m

ui [yi (w
′xi − a)− 1 + ξi ] = 0 ui = 0 or yi (w

′xi − a) = 1− ξi
for 1 6 i 6 m for 1 6 i 6 m

viξi = 0 vi = 0 or ξi = 0
for 1 6 i 6 m for 1 6 i 6 m
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SVM - The Non-Separable Case

Consequences of KKT:

w is a linear combination of the training vectors x1, . . . , xm, where xi
appears in the combination only if ui 6= 0;

if ui 6= 0, then yi (w
′xi − a) = 1− ξi ;

if ξi = 0, then yi (w
′xi − a) = 1 and xi lies on marginal hyperplane as

in the separable case; otherwise, xi is an outlier;

if xi is an outlier, vi = 0 and ui = C or xi is located on the marginal
hyperplane.

w is unique; the support vectors are not.
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SVM - The Non-Separable Case

The objective function of the dual problem is obtained by substituting w
and incorporating the consequences of the KKT conditions:

g(u, v)
= 1

2 ‖ w ‖
2 +C

∑m
i=1 ξi −

∑m
i=1 uiξi −

∑m
i=1 viξi

−
∑m

i=1 ui [yi (w
′xi − a)− 1]

= 1
2 ‖ w ‖

2 +
∑m

i=1(C − ui − vi )ξi −
∑m

i=1 ui [yi (w
′xi − a)− 1]

= 1
2

∣∣∣∣∣∣∑m
i=1 uiyixi

∣∣∣∣∣∣2 −∑m
i=1

∑m
j=1 uiujyiyjx

′
ixj

+
∑m

i=1 uiyia +
∑m

i=1 ui
=

∑m
i=1 ui −

1
2

∑m
i=1

∑m
j=1 uiujyiyjx

′
ixj .
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SVM - The Non-Separable Case

Note that g depends only on u and we have:

g(u) =
m∑
i=1

ui −
1

2

m∑
i=1

m∑
j=1

uiujyiyjx
′
ixj .

has exactly the same form as in the separable case. Also, observe that
0 6 ui 6 C for 1 6 i 6 m because both ui and vi are non-negative and
ui + vi = C .
The dual optimization problem for the non-separable case becomes:

maximize
∑m

i=1 ui −
1
2uiujyiyjx

′
ixj

subject to 0 6 ui 6 C and
∑m

i=1 uiyi = 0
for 1 6 i 6 m.
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SVM - The Non-Separable Case

The objective function is concave and differentiable and the solution can
be used to determine the separating hyperplane. As in the separable case,
the hyperplane depends only on the inner products between the vectors
and not directly on the vectors themselves.
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