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In this paper, we investigate the problem of clustering XML documents based on their
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1. Introduction

In the recent years, the Extended Markup Language (XML), due to its simple and
flexible text format, has been playing an increasingly vital role in the exchange of a
wide variety of data on the web and elsewhere. However, with this proliferation of
disparate XML sources, there has also been a growing need for the organization of
the documents produced by these sources according to their structural traits — a
process referred to as clustering in the data mining literature. Clustering methods
use the distances that estimate the similarity between document structures in terms
of the hierarchical relationships of their nodes. Most of the XML documents found
on the web, especially when they have been created from legacy HTML, do not
have an associated Document Type Descriptor (DTD). Hence the XML document
classifier has to rely on the structure of the instance document alone.

Clustering XML documents is useful for several reasons. Once a given set of
XML documents has been classified into groups containing structurally related doc-
uments, a DTD inference engine can assign a DTD to each group individually rather
than assigning one to the entire set of documents. Formulation and optimization
of queries on homogeneous XML data repositories is much easier and efficient than
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on repositories with structurally unrelated documents. Clustering XML documents
also helps solving the problem of recognizing different data sources that provide the
same kind of information.

Various techniques have been proposed for clustering XML documents based
on their structure. Long, Schwartz, and Soecklin1 view XML documents as trees,
and recursively compute the overall distance between two XML trees from the root
nodes to leaf nodes. They model the problem of computing the minimum distance
between two sets of elements as the worker-to-task-assignment problem, and use
the Munkres’ (aka Hungarian) algorithm to compute the minimum cost.

Liu, Wang, Hsu, and Herbert3 use principal component analysis (PCA) to clus-
ter documents with the same DTD. They extract features from documents, mod-
eled by ordered labeled trees, and transform the documents to vectors in a high-
dimensional Euclidean space based on the occurrences of the features in the docu-
ments. They then reduce the dimensionality of the vectors by principal component
analysis (PCA) and cluster the vectors in the reduced dimensional space.

Flesca, Manco, Masciari, Pontieri, and Pugliese4 represent the structure of an
XML document a time series. By analyzing the coefficients of the corresponding
Fourier transform it is possible to evaluate the degree of similarity between docu-
ments.

Another approach for evaluating structural dissimilarities between two trees in-
troduced by Chawathe, Rajaraman, Garcia-Molina, and Widom5 consists of finding
a “minimum-cost edit script” that transforms one data tree into another. A variant
of this approach is considered by Nierman and Jagadish,6 which introduces a met-
ric based on an “XML-aware” edit distance between ordered labeled trees. Costa,
Manco, Ortale, and Tagarelli7 propose algorithms that accomplish clustering by
comparing cluster representatives, which are XML documents subsuming the most
typical structural specifics of a set of XML documents.

Algorithms that calculate the tree edit distances between XML documents by
considering the structural summaries of the documents instead of the actual doc-
uments thus minimizing the processing requirements, are discussed by Dalamagas,
Cheng, Winkel, and Sellis.2

Lee, Yang, Hsu, and Yang8 introduce XClust, an integration strategy that in-
volves the clustering of DTDs. A matching algorithm based on the semantics, im-
mediate descendents and leaf-context similarity of DTD elements is developed.

Jianwu and Xiaoou9 present a structured link vector (SLVM) to take advan-
tage of the structure and link information in a semi-structured XML document for
better mining. They represent a document as a vector and the vectors’ elements
are determined by terms, document structure, and neighboring documents. Text
mining based on SLVM is described using K-means.

Yoon, Raghavan, and Chakilam10 describe a new bitmap indexing based tech-
nique to cluster XML documents. They define the similarity and popularity oper-
ations available in bitmap indexes and propose a method for partitioning a XML
document set.
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Bertino, Guerinni, Mesiti, Rivara, and Tavella11 propose a metric for quantifying
the structural similarity between an XML document and a DTD. This metric is then
employed for document classification and clustering. In the first case, the proposed
metric is used for selecting a DTD from the ones in the source, whose structure is
the most similar to that of the document. In the second case, the aim is to group
the documents according to their structural similarities.

Mesiti, Rosso, and Merlo12 propose a Bayesian approach to Word Sense Disam-
biguation (WSD) for the retrieval of XML documents.

Tagarelli and Greco13 address the problem of clustering XML documents ac-
cording to structure as well as content features. They propose a framework for
clustering semantically cohesive XML structures based on a transactional represen-
tation model.

In this paper, we propose a novel and efficient approach to the problem of clus-
tering XML documents. We model an XML document as a labeled rooted tree and
represent the rooted labeled paths — a sequence of nodes of the tree starting with
the root of the tree and ending with a leaf node — of the tree as a multiset, which
is a function mapping each path to its multiplicity, i.e., the number of occurrences
of the path within the tree. We extend the notion of symmetric difference of sets
to that of multisets, and we define metrics on multisets based on their symmetric
difference. Thus, given a set of XML documents, we can compute their pairwise
distance measures by first building a multiset representation for each of the doc-
ument, and by computing the distance measures between the multisets using the
distance metrics we have introduced. Once we have the distance matrix for the set
of documents, we can use one of the standard hierarchical clustering algorithms
to cluster the documents. Our approach is efficient; the time taken to build the
multiset representation for a document is O(k|V |), where k is the maximum level
of nesting in the document, and |V | is the number of elements in the document; the
time taken to compute the distance measure between two XML documents with
multiset representations M and P is O(size(M) + size(P )), where size(Q) is the
number of unique element names in the document with multiset representation Q.
Our solution works not only with XML documents that belong to strictly different
— differing at the root level onwards — classes, but also with documents that differ
only at levels that are farther away from the root.

The rest of this paper is organized as follows. Section 2 introduces the notion
of a multiset, defines various set-theoretic operations on multisets, and based on
these operations, defines a set of metrics on multisets. Section 3 describes how
the paths of a labeled rooted tree can be represented as a multiset. Section 4
defines measures of dissimilarity between labeled rooted trees given their multiset
representations. Section 5 provides the algorithms for building a multiset for a
labeled rooted tree, and for computing the distance measures between any two
such trees. Section 6 presents experimental results from running one of the popular
hierarchical clustering algorithms on real and synthesized data using the distance
measures we have introduced, and, finally, Section 7 concludes our work.
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2. Multisets

Multisets15 are generalizations of sets that capture the multiplicity of elements.

Definition 2.1. A multiset on a set X is a function M : X −→ N. The number
M(x) is the multiplicity of x in M . If M(x) > 0 we say that x is an element of M .

The set of multisets on a set X is denoted by M(X). The empty multiset on X

is the multiset ∅X defined by ∅X(x) = 0 for every x ∈ X .
The support set of the multiset M is the set

sset(M) = {x ∈ X |M(x) > 0}. (1)

If the set sset(M) is finite, then we say that the multiset M is finite. The cardinality
of the set sset(M) is the size of the multiset M , denoted by size(M).

We will denote a finite multiset M on X as a formal sum

M = m1x1 + · · ·+mkxk, (2)

where x1, . . . , xk are the distinct members of the set sset(M) and M(xi) = mi.
The union, intersection and symmetric difference of two multisets are defined

such that they generalize the usual set-theoretic operations. Let M,P be two
multisets on a set X . The union of M and P is the multiset M ∪ P such that
(M ∪ P )(x) = max{M(x), P (x)}; the intersection of M and P is the multiset
M ∩ P given by (M ∩ P )(x) = min{M(x), P (x)} for x ∈ X .

We define two extensions of the symmetric difference.

Definition 2.2. The weak symmetric difference of the multisets M and P on the
set X is the multiset M ⊕ P on X defined by (M ⊕ P )(x) = |M(x) − P (x)| for
every x ∈ X .

Note that unlike the usual symmetric difference of sets, this is not an associative
operation because, in general ||a− b| − c| 
= |a− |b− c|| (e.g., ||7− 5| − 3|= 1, while
|7− |5− 3|| = 5). We have

sset(M) ∪ sset(P ) ⊆ sset(M ⊕ P ) (3)

for every multiset M,P . This inclusion may be strict if M and P have at least one
common element with distinct multiplicities.

The strong symmetric difference M � P of multisets that we define next
preserves more properties of set difference. Let φ : N

2 −→ N be the func-
tion defined by φ(m, p) = 0 if m = p = 0 or m > 0 and p > 0, φ(m, p) =
max{m, p} if exactly one of m, p is positive, for m, p ∈ N.

Definition 2.3. The strong symmetric difference of the multisets M and P on the
set X is the multiset M � P on X defined by (M � P )(x) = φ (M(x), P (x)) for
every x ∈ X .
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Observe that φ(φ(m, p), q) > 0 if and only if φ(m,φ(p, q)) > 0, as it can be easily
verified by considering all possible cases of nullity ofm, p and q. Thus, sset((M�P )�
Q) = sset(M � (P � Q)) for every multiset M,P,Q, which extends the associative
property of set difference.

The distributivity of set intersection with respect to symmetric difference of sets
is preserved by the strong symmetric difference of multisets, as shown next.

Theorem 2.1. Let M,P,Q ∈ M(X) be three multisets on a set X . We have

M ∩ (P � Q) = (M ∩ P )� (M ∩Q) (4)

Proof. Let m = M(x), p = P (x), and q = Q(x). The statement follows by ana-
lyzing the eight cases, that occur depending whether each of these numbers is 0 or
greater than 0.

In general, we have M � P ≤ M ⊕ P for every multisets M,P .
Next, we use the weak and strong symmetric difference of two multisets M,P ∈

M(X) to define a metric on M(X), where X is a finite set.

Theorem 2.2. Let X be a finite set. The mapping δ⊕ :M(X)2 −→ R≥0 given by

δ⊕(M,P ) =
∑
x∈X

(M ⊕ P )(x)
(M ∪ P )(x)

(5)

where M,P ∈ M(X) are multisets on X , is a metric on M(X).

Proof. LetM,P be two finite multisets on a finite set X . If |X | = n, we can define
a metric on M(X) using the Minkowski metric on R

n as

δk(M,P ) =

(∑
x∈X

|M(x)− P (x)|k
) 1

k

(6)

where M,P ∈ M(X) are multisets on X and k ≥ 1. In particular, for k = 1 we
have the metric

δ1(M,P ) =
∑
x∈X

|M(x)− P (x)| =
∑
x∈X

(M ⊕ P )(x). (7)

It is easy to see that for any choice of a weighting function w : X −→ R≥0 the
following is a metric on the the set of multisets:

δ⊕(M,P ) =
∑
x∈X

w(x)|M(x) − P (x)|

=
∑
x∈X

w(x)(M ⊕ P )(x). (8)
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Thus,

δ⊕(M,P ) =
∑
x∈X

(M ⊕ P )(x)
(M ∪ P )(x)

, (9)

where w(x) = 1
(M∪P )(x) , is a metric.

Lemma 2.1. Let X be a set and let M,P be two multisets on X. Define ΨMP (x)
as

ΨMP (x) =

{
0 if M(x) = P (x) = 0
(M�P )(x)
(M∪P )(x) otherwise,

(10)

for x ∈ X. We have ΨMP (x) ∈ {0, 1} for every x ∈ X and

ΨMP (x) ≤ ΨMQ(x) + ΨQP (x) (11)

for every M,Q,P ∈ M(X) and x ∈ X.

Proof. The fact that ΨMP (x) ∈ {0, 1} for every x ∈ X is immediate.
Note that if M(x) = P (x) = 0 the inequality is clearly satisfied. This is also the

case if we have both M(x) > 0 and P (x) > 0 because in this case φ(M(x), P (x)) =
0.

Suppose, therefore that exactly one of the numbers M(x) or P (x), sayM(x), is
nonnegative, so ΨMP = 1. We have two cases to consider:

Case 1: Q(x) > 0. In this case, ΨMQ(x) = 0 and ΨQP (x) = 1, which means that
the inequality of the lemma is satisfied.

Case 2: Q(x) = 0. In this case, ΨMQ(x) = 1 and ΨQP (x) = 0, which means
again that the same inequality is satisfied.

Theorem 2.3. The mapping δ� :M(X)2 −→ R≥0 given by

δ�(M,P ) =
∑
x∈X

ΨMP (x) (12)

for M,P ∈ M(X) is a semi-metric on M(X).

Proof. This is an immediate consequence of Lemma 2.1

3. The Multiset of Paths of a Labeled Rooted Tree

A tree is a connected acyclic graph T = (V,E); a rooted tree is a pair (T , v0), where
v0 is a vertex called the root.

A labeled rooted tree is a 4-tuple (T , v0, l, L), where (T , v0) is a rooted tree,
l : V −→ L is a function, and L is a set whose elements are referred to as labels ;
l(v) is the label of the vertex v.

The set of finite sequences of elements of a set E is denoted by seq(E). A
rooted labeled path in a labeled rooted tree (T , v0, l, L) is a sequence of labels l =
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(a0, a1, . . . , an) ∈ seq(L) such that there exists a path (v0, v1, . . . , vn) in T and
l(vi) = ai for 0 ≤ i ≤ n. Clearly, for each vertex v of the rooted tree (T , v0) there
exists a unique path that starts with v0 and ends with v and for any such vertex
there is a rooted labeled path that ends with l(v).

Unlike the usual practice in graph theory, we define the length of the rooted
path l = (a0, a1, . . . , an) simply as the length n + 1 of the sequence and denote it
as �(l).

For a multiset M = m1p1 + · · · + mkpk of sequences of elements of L and a
sequence r we define the multiset rM as

rM = m1rp1 + · · ·+mkrpk, (13)

where rpi is the sequence obtained by concatenating r and pi.
The multiset of rooted labeled paths of a labeled rooted tree (T , v0, l, L), denoted

by RLP(T , v0, l, L), is a multiset of sequences of labels. This set can be defined
recursively as follows:

(1) If T = ({v0}, ∅) and l(v0) = a, then RLP(T , v0, l, L) = 1(a).
(2) Suppose that the immediate descendants of v0 in T are v1, . . . , vm, and the

subtrees of T having the roots in v1, . . . , vm are T1, . . . , Tm, respectively. Then,

RLP(T , v0, l, L) = 1(a) +
m∑
i=1

aRLP(Ti, vi, l, L). (14)

Example 3.1. Consider the labeled rooted trees shown in Figure 1. Their respec-
tive multisets of rooted labeled paths are given by
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c c cc d e c d e c e d

Fig. 1. Examples of labeled rooted trees.

A characterization of multisets of paths of labeled rooted trees is given next.
Recall that a sequence u is a prefix of a sequence v if v can be written as v = uw
for some sequence w. Further, u is a proper prefix of v if u is a prefix of v and
u 
= v.
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Table 1. Multisets of the rooted labeled paths for the

trees in Fig. 1.

Tree Multiset of Rooted Labeled Paths

R1 1(a) + 1(a, b)

R2 1(a) + 2(a, b)

R3 1(a) + 3(a, b)

R4 1(a) + 1(a, b) + 2(a, b, c)

R5 1(a) + 1(a, b) + 1(a, b, c) + 1(a, b, d)

R6 1(a) + 1(a, b) + 1(a, b, c) + 1(a, b, e)

R7 1(a) + 1(a, b) + 1(a, b, c) + 1(a, b, d) + 1(a, b, e)

R8 1(a) + 1(a, b) + 1(a, b, c) + 1(a, b, e) + 1(a, b, d)

Theorem 3.1. Let L be a set. A finite multiset of sequencesM over seq(L) is the
multiset of paths of a labeled rooted tree if and only if the following conditions are
satisfied:

(1) there exists a sequence (a) with M((a)) = 1 that is a proper prefix of every
sequence p such that M(p) > 0;

(2) for every prefix r of a sequence p such that M(p) > 0 we have M(r) > 0.

Proof. Suppose that the conditions of the theorem are satisfied. We must show
the existence of a labeled rooted tree R = (T , v0, l, L) such that RLP(R) =M .

The vertices of T will be indexed by sequences p ∈ seq(L) such that M(p) > 0
and the root of the tree will be the sequence v(a). Note that the first condition
implies that the sequence (a) is the unique sequence with this property.

Suppose that p,q are two distinct sequences in seq(L) such that p is a prefix
of q and M(q) > 0. If p is a sequence of maximal length having these properties,
then q = pa for some a ∈ L. Indeed, if this is not the case, then there exists a
sequence r such that r is a prefix of q and p is a prefix of r and we have both
r 
= q and r 
= p. By the second condition of the theorem we have M(r) > 0;
since |r| > |p| this contradicts the maximality of the length of p. We will consider
a pair (vp, vq) as an edge in T and all edges of this graph will have this form.
Note that this argument implies that for every vertex vq there is a unique path
that begins with v(a) and ends with vq. Thus, T is indeed a tree. The function l is
given by l(vq) = a, where a is the last symbol of the sequence q. This completes
the definition of R.

We need to verify now that RLP(R) =M . The argument is by induction on the
number n of vertices of the underlying tree of R.

The basis step, n = 1, is immediate. Suppose that the equality holds for trees
with fewer than n vertices and let T be the underlying tree of R. Let T1, . . . , Tm
be the immediate subtrees of R and let R1, . . . ,Rm be the corresponding labeled
rooted trees, Ri = (Ti, v(ai), li, L). Let Ki be the multiset of labeled rooted paths of
Ri. If we construct the rooted labeled tree for Ki as we did above for M , then RKi
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coincides with Ri. Thus, by inductive hypothesis, RLP(Ri) = RLP(RKi) = Ki.
Since M = (a) +

∑m
i=1(a)Ki = (a) +

∑m
i=1(a)RLP(Ri), we have M = RLP(R).

Necessity of the conditions can be easily shown and we omit the argument.

4. Metric Space of Labeled Rooted Trees

We introduce a dissimilarity measure between labeled rooted trees having a set of
labels L using the multisets of rooted labeled paths and a metric defined on the
class of these multisets that uses a weight function.

Definition 4.1. LetR = {T , v0, l, L} andR′ = {T ′, v′0, l
′, L} be two rooted labeled

trees.
The weak dissimilarity between R and R′ is the number

d⊕(R,R′) =
∑
k∈N

2−(k+1)|L|−k ·
∑ (RLP(R)⊕ RLP(R′))(p)

(RLP(R) ∪ RLP(R′))(p)
, (15)

and the strong dissimilarity between R and R′ is defined by

d�(R,R′) =
∑
k∈N

2−(k+1)|L|−k ·
∑

ΨRLP(R),RLP(R′)(p) (16)

where p ∈ seq(L) and �(p) = k.

It is clear that the weak and strong dissimilarity measures are semi-metrics
on the class of labeled rooted trees. In other words, d
(R,R) = 0, d
(R,R′) =
d
(R′,R), and d
(R,R′′) ≤ d
(R,R′) + d
(R′,R′′) for every R,R′,R′′, where  is
the ⊕ or � operation. However, if d
(R,R′) = 0 then R,R′ can differ relative to
the order of descendants of a vertex. Note that d
(R,R′) ∈ [0, 1].

Example 4.1. The weak and strong dissimilarity measures between the labeled
rooted trees R1, . . . ,R8 displayed in Fig. 1 are shown below.

A well-formed XML document, disregarding the IDREFS, can be represented as a
labeled rooted tree, with the document element forming the root of the tree, and
its sub-elements forming the other vertices. Attributes of an element can be treated
as being the element’s children, and hence also as vertices of the tree. Consider the
following XML document:

<books>

<book year="1910">
<title>Principia Mathematica</title>

<author>Alfred North Whitehead</author>

<author>Bertrand Russell</author>

<publisher>Cambridge University Press</publisher>

</book>

</books>
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The above XML document can be modeled as the labeled rooted tree (T , v0, l, L),
where (T , v0) is a rooted tree, T = (V,E) is a connected acyclic graph with the set of
vertices V = {v0, v1, v2, v3, v4, v5, v6} and the set of edges E = {(v0, v1), (v1, v2), (v1,

v3), (v1, v4), (v1, v5), (v1, v6)}, and l : V −→ L is a function such that l(v0) =
books, l(v1) = book, l(v2) = year, l(v3) = title, l(v4) = l(v5) = author and l(v6) =
publisher. Note how we pay no attention to the content of an XML document; we
are concerned here only with the document’s structure.

Table 2. Weak and strong dissimilarity measures.

d⊕ R1 R2 R3 R4 R5 R6 R7 R8

R1 0 0.12 0.17 0.12 0.12 0.12 0.12 0.12

R2 0.12 0 0.08 0.25 0.25 0.25 0.25 0.25

R3 0.17 0.08 0 0.29 0.29 0.29 0.29 0.29

R4 0.12 0.25 0.29 0 0.09 0.09 0.10 0.10

R5 0.12 0.25 0.29 0.09 0 0.08 0.04 0.04

R6 0.12 0.25 0.29 0.09 0.08 0 0.04 0.04

R7 0.12 0.25 0.29 0.10 0.04 0.04 0 0

R8 0.12 0.25 0.29 0.10 0.04 0.04 0 0

d� R1 R2 R3 R4 R5 R6 R7 R8

R1 0 0 0 0.12 0.12 0.12 0.12 0.12

R2 0 0 0 0.12 0.12 0.12 0.12 0.12

R3 0 0 0 0.12 0.12 0.12 0.12 0.12

R4 0.12 0.12 0.12 0 0.06 0.06 0.08 0.08

R5 0.12 0.12 0.12 0.06 0 0.08 0.04 0.04

R6 0.12 0.12 0.12 0.06 0.08 0 0.04 0.04

R7 0.12 0.12 0.12 0.08 0.04 0.04 0 0

R8 0.12 0.12 0.12 0.08 0.04 0.04 0 0

The multiset of rooted labeled paths for the labeled rooted tree represent-
ing an XML document can be constructed using the buildMultiset procedure
discussed in Section 5. The multiset for the above mentioned document can be
expressed as the formal sum 1(books) + 1(books, book) + 1(books, book, year) +
1(books, book, title) + 2(books, book, author) + 1(books, book, publisher). Once we
have constructed the multisets for any two XML documents, we can use the
computeWeakDistance and computeStrongDistance procedures, also discussed in
Section 5, to compute a measure of dissimilarity between the documents.

5. Algorithms

We first present the algorithm for building the multiset for a labeled rooted
tree. The algorithm does a depth-first traversal of the tree in order to build the
multiset.
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Algorithm 1: buildMultiset
input : Labeled rooted tree R = {T , v0, l, L}
output: The multiset for R
Multiset multiset

Stack nodeStack, sequenceStack

Sequence s

s.add(l(v0))
sequenceStack.push(s)
multiset.addSequence(s)
nodeStack.push(v0)
while nodeStack is not empty do

Node topNode ⇐ nodeStack.peek()
Node unvisitedChild⇐ unvisited child of topNode

if unvisitedChild is not null then
Sequence topSequence ⇐ sequenceStack.peek()
Sequence newTopSequence ⇐ topSequence.copy()
newTopSequence.add(l(unvisitedChild))
sequenceStack.push(newTopSequence)
multiset.addSequence(newTopSequence)
nodeStack.push(unvisitedChild)

else
sequenceStack.pop()
nodeStack.pop()

return multiset

The above algorithm runs in O(k|V |) time, where k is the length of the longest
rooted labeled path in R, and |V | is the number of vertices in T .

The algorithms for computing the weak and strong dissimilarity measures be-
tween two labeled rooted trees given their multiset representations are discussed
next.
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Algorithm 2: computeWeakDistance
input : Multisets M,P

output: The weak distance d⊕(M,P )
distance ⇐ 0.0
Q ⇐ sset(M) ∪ sset(P )
Map elementCount

foreach q ∈ Q do
count ⇐ elementCount.get(�(q))
if count is null then

elementCount.put(�(q), 1)

else
elementCount.put(�(q), count+ 1)

foreach q ∈ Q do
m ⇐ M.multiplicity(q)
p ⇐ P.multiplicity(q)
d ⇐ |m−p|

max{m,p}
distance ⇐ distance+ d

elementCount.get(�(q))×2(�(q)+1)

return distance

Algorithm 3: computeStrongDistance
input : Multisets M,P

output: The strong distance d�(M,P )
distance ⇐ 0.0
Q ⇐ sset(M) ∪ sset(P )
Map elementCount

foreach q ∈ Q do
count ⇐ elementCount.get(�(q))
if count is null then

elementCount.put(�(q), 1)

else
elementCount.put(�(q), count+ 1)

foreach q ∈ Q do
m ⇐ M.multiplicity(q)
p ⇐ P.multiplicity(q)
ψ ⇐ 1
if m = 0 and p = 0 or m > 0 and p > 0 then

ψ ⇐ 0
distance ⇐ distance+ ψ

elementCount.get(�(q))×2(�(q)+1)

return distance

Both computeWeakDistance and computeStrongDistance algorithms run in
O(size(M) + size(P )) time, where M and P are multisets.
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6. Experimental Results

We wrote a program called MUDXML,16 an acronym of Multiset Distance for
XML, that implements the algorithms discussed in Section 5. MUDXML processes
the XML documents contained in the directory specified as input, computes their
pairwise (weak and strong) distance measures, and prints the distance matrix to
standard output. We used MUDXML to cluster three data sets. The first, namely
“Niagara”,17 comprised of randomly picked XML documents belonging to three dis-
tinct classes: department, astronomy, and club. The second, namely “Sigmod”,19

comprised of randomly picked XML documents belonging to three distinct classes:
index terms, proceedings, ordinary issue. The third, namely “Synthesized”, com-
prised of XML documents generated from three DTDs a by ToXGene.20 The table
below summarizes the contents of the data sets used:

Table 3. Summary of data sets.

Dataset Class (# of Documents)

Niagara
Department (17)
Astronomy (16)
Club (12)

Sigmod
Index Terms (16)
Proceedings (16)
Ordinary Issue (16)

Synthesized
Book Catalog 1 (15)
Book Catalog 2 (15)
Book Catalog 3 (15)

For each of the above data sets, we computed the distance matrix using our
program. In order to cluster the documents based these distance matrices, we used
the hclust function from the cluster package of the statistical computing software
“R”.18 We employed the “average” hierarchical clustering algorithm. Figures 2, 3,
4, and 5 show the dendrogram plots for the “Niagara” and “Synthesized” data sets
respectively, with the rectangular regions highlighting the clusters. Both weak and
strong distance measures perform very well in classifying the “Niagara” data set,
since the documents belonging to the different classes in this data set have rooted
labeled paths that approximately have the same multiplicities. The weak distance
measure does somewhat poorly on the “Synthesized” data set, since the rooted
labeled paths in the documents belonging to this data set have a wide range of
multiplicities. The strong distance measure does extremely well on this data set,
since each rooted labeled path in the documents belonging to the data set has a
non-zero multiplicity.

aThe DTDs, representing catalogs of books, were very similar, differing only at levels farther away
from the root
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We used the silhouette14 method for evaluating the quality of clusters produced.
We again used “R” for this purpose. The following table shows the average silhou-
ette coefficients for the three data sets, along with the value of kb:

Table 4. Average silhouette measures for data sets used.

Dataset Distance Average sihouette k

Niagara Weak 0.94 3
Niagara Strong 0.98 3
Sigmod Weak 0.97 3
Sigmod Strong 0.99 3
Synthesized Weak 0.51 3
Synthesized Strong 1.00 3

The documents belonging to the different classes in the “Niagara” and “Sigmod”
data sets are have rooted labeled paths that are almost equally represented, i.e.,
they have approximately equal multiplicities. Hence the weak and strong distance
measures, as indicated by the average silhouette coefficients, are very successful in
classifying these documents. On the other hand, the documents belonging to the
“Synthesized” data set have rooted labeled paths with widely varying multiplicities.
Hence the weak distance measure classifies them poorly. Since each rooted labeled
path has a non-zero multiplicity, the strong distance measure does perfectly, i.e.,
has silhouette coefficient equal to 1.

From the dendrogram plots and from the silhouette coefficients for the data
sets, we can infer that for XML documents belonging to strictly different classes
(“Niagara” and “Sigmod” in our experiment), both the weak and strong distance
measures yield “pure” clusters, i.e., the average silhouette coefficient ≈ 1. When the
XML documents differ only at levels farther away from the root, if all the rooted
labeled paths are equally represented in the documents, i.e., they have approxi-
mately equal multiplicities, the weak distance measure would yield “pure” clusters.
With such documents, the strong distance measure would yield extremely “pure”
clusters as long as the rooted labeled paths have non-zero multiplicities.

7. Conclusions and Future Work

In this work, we presented a novel approach to the problem of clustering XML
documents based on their structure. We modeled an XML document as a labeled
rooted tree and represented it as a multiset mapping the rooted labeled paths in the
tree to the corresponding multiplicities. We defined distance measures on labeled
rooted trees based on the symmetric difference of their multisets. We presented

bOne of the parameters of the pam (Partitioning Around Medoids) function in “R” that specifies
the number of clusters to look for. The value specified is the one that resulted the maximum
silhouette coefficient.
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algorithms to build a multiset given a labeled rooted tree, and to compute the weak
and strong distance measures given two multisets. We applied these algorithms to
both real and synthetic data sets. Clusterings that are formed based on the distances
introduced in this paper separate well the documents that are structurally different
at various depths.

Our future research in the domain of XML document classification will span
two areas, both involving the semantics of the documents. Firstly, although XML
documents have proper structures, differently annotated XML documents, owing
to subjective definitions of markup tags, may encode related semantics. Classifi-
cation of such documents requires finding the relatedness of tags. Secondly, XML
documents with the same structure could be semantically unrelated. For example,
two RSS news feeds that have the same structure could be completely different
in terms of their content; one might be on politics while the other might be on
medicine. Classifying such documents invariably involves looking at the content of
the document.

References

1. J. Long, D. Schwartz, and S. Soecklin. An XML Distance Measure. In Proceedings of
the International Conference on Data Mining (DMIN), 2005.

2. T. Dalamagas, T. Cheng, K. Winkel, and T. Sellis. Clustering XML Documents by
Structure. In Proceedings of the Hellenic Conference on Artificial Intelligence (SETN),
pages 112–121, 2004.

3. J. Liu, J.T.L. Wang, W.Hsu, K.G. Herbert. XML Clustering by Principal Component
Analysis. In Proceedings of International Conference on Tools in Artificial Intelligence,
pages 658–662, 2004.

4. S. Flesca, G. Manco, E. Masciari, L. Pontieri, and A. Pugliese. Detecting Structural
Similarities between XML Documents. In Proceedings of the International Workshop
on the Web and Databases (WebDB), 2002.

5. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom. Change detection
in hierarchically structured information. In In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 493–504, 1996.

6. A. Nierman and H. Jagadish. Evaluating Structural Similarity in XML Documents.
In Proceedings of the International Workshop on the Web and Databases (WebDB),
2002.

7. G. Costa, G. Manco, R. Ortale, and A. Tagarelli. A Tree-Based Approach to Clus-
tering XML Documents by Structure. In Proceedings of the Conference on Principles
and Practice of Knowledge Discovery in Databases (PKDD), 2004.

8. M.L. Lee, L.H. Yang, W. Hsu, X. Yang. XClust: clustering XML schemas for effective
integration. In Proceedings of the eleventh international conference on Information
and knowledge management (CIKM), pages 292–299, 2002.

9. Y. Jianwu and C. Xiaoou. A Semi-Structured Document Model for Text Mining.
Journal of Computer Science and Technology, pages 603–610, 2002.

10. J. Yoon, V. Raghavan and Venu Chakilam. BitCube: A Three Dimensional Bitmap
Indexing for XML Documents. In Proceedings of the Thirteenth International Con-
ference on Scientific and Statistical Database Management, pages 241-254, 2001.

11. E. Bertino, G. Guerrini, M. Mesiti, I. Rivara, C. Tavella. Measuring the Structural
Similarity among XML Documents and DTDs, 2001.



September 29, 2008 16:17 WSPC-IJAIT 00426

1022 S. Iyer & D. A. Simovici

12. M. Mesiti, P. Rosso, and M. Merlo. A Bayesian Approach to WSD for the Retrieval
of XML Documents. In In Proceedings of JOTRI, pages 11–18, 2002.

13. A. Tagarelli and Sergio Greco. Toward Semantic XML Clustering. In Proceedings of
the Sixth International Conference on Data Mining, pages 188-199, 2006.

14. L. Kaufman and P. Rousseeuw. Finding Groups in Data - An Introduction to Cluster
Analysis. J. Wiley, New York, 1990.

15. A. Syropoulos. Mathematics of multisets. InMultiset Processing: Mathematical, Com-
puter Science, and Molecular Computing points of view, Lecture Notes in Computer
Science 2235, pages 347–358. Springer-Verlag.

16. http://www.cs.umb.edu/˜swamir/programs/mudxml.zip.
17. http://www.cs.wisc.edu/niagara/data.html.
18. Available at: http://www.r-project.org/index.html.
19. http://www.sigmod.org/record/xml/.
20. http://www.cs.toronto.edu/tox/toxgene/.


