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ABSTRACT

The paper presents a method for pruning frequent itemsets
based on background knowledge represented by a Bayesian
network. The interestingness of an itemset is defined as the
absolute difference between its support estimated from data
and from the Bayesian network. Efficient algorithms are pre-
sented for finding interestingness of a collection of frequent
itemsets, and for finding all attribute sets with a given mini-
mum interestingness. Practical usefulness of the algorithms
and their efficiency have been verified experimentally.
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1. INTRODUCTION

Finding frequent itemsets and association rules in data-
base tables has been an active research area in recent years.
Unfortunately, the practical usefulness of the approach is
limited by huge number of patterns usually discovered. For
larger databases many thousands of association rules may
be produced when minimum support is low. This creates
a secondary data mining problem: after mining the data,
we are now compelled to mine the discovered patterns. The
problem has been addressed in literature mainly in the con-
text of association rules, where the two main approaches are
sorting rules based on some interestingness measure, and
pruning aiming at removing redundant rules.

Full review of such methods is beyond the scope of this
paper. Overviews of interestingness measures can be found
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for example in [3, 13, 11, 32], some of the papers on rule
pruning are [30, 31, 7, 14, 28, 16, 17, 33].

Many interestingness measures are based on the diver-
gence between true probability distributions and distribu-
tions obtained under the independence assumption. Prun-
ing methods are usually based on comparing the confidence
of a rule to the confidence of rules related to it.

The main drawback of those methods is that they tend
to generate rules that are either obvious or have already
been known by the user. This is to be expected, since the
most striking patterns which those methods select can also
easily be discovered using traditional methods or are known
directly from experience.

We believe that the proper way to address the problem
is to include users background knowledge in the process.
The patterns which diverge the most from that background
knowledge are deemed most interesting. Discovered patterns
can later be applied to improve the background knowledge
itself.

Many approaches to using background knowledge in ma-
chine learning are focused on using background knowledge
to speed up the hypothesis discovery process and not on dis-
covering interesting patterns. Those methods often assume
strict logical relationships, not probabilistic ones. Examples
are knowledge based neural networks (KBANNSs) and uses
of background knowledge in Inductive Logic Programming.
See Chapter 12 in [20] for an overview of those methods and
a list of further references.

Tuzhilin et. al. [23, 22, 29] worked on applying background
knowledge to finding interesting rules. In [29, 22] inter-
estingness measures are presented, which take into account
prior beliefs; in another paper [23], the authors present an
algorithm for selecting a minimum set of interesting rules
given background knowledge. The methods used in those
papers are local, that is, they don’t use a full joint probabil-
ity of the data. Instead, interestingness of a rule is evaluated
using rules in the background knowledge with the same con-
sequent. If no such knowledge is present for a given rule, the
rule is considered uninteresting. This makes it impossible to
take into account transitivity. Indeed, in the presence of the
background knowledge represented by the rules A = B and
B = (C, the rule A = C is uninteresting. However, this can-
not be discovered locally. See [25] for a detailed discussion
of advantages of global versus local methods. Some more
comparisons can be found in [18].



In this paper we present a method of finding interest-
ing patterns using background knowledge represented by a
Bayesian network. The main advantage of Bayesian net-
works is that they concisely represent full joint probability
distributions, and allow for practically feasible probabilistic
inference from that distribution [25, 15]. Other advantages
include the ability to represent causal relationships, easy to
understand graphical structure, as well as wide availability
of modelling tools. Bayesian networks are also easy to mod-
ify by adding or deleting edges.

We opt to compute interestingness of frequent itemsets
instead of association rules, agreeing with [7] that directions
of dependence should be decided by the user based on her
experience and not suggested by interestingness measures.
Our approach works by estimating supports of itemsets from
Bayesian networks and comparing thus estimated supports
with the data. Itemsets with strongly diverging supports
are considered interesting.

Further definitions of interestingness exploiting Bayesian
network’s structure are presented, as well as efficient meth-
ods for computing interestingness of large numbers of item-
sets and for finding all attribute sets with given minimum
interestingness.

There are some analogies between mining emerging pat-
terns [6] and our approach, the main differences being that
in our case a Bayesian network is used instead of a second
dataset, and that we use a different measure for comparing
supports. Due to those differences our problem requires a
different approach and a different set of algorithms.

2. DEFINITIONS AND NOTATION

Database attributes will be denoted with uppercase let-
ters A,B,C,..., domain of an attribute A will be denoted
by Dom(A). In this paper we are only concerned with cat-
egorical attributes, that is attributes with finite domains.

Sets of attributes will be denoted with uppercase letters
I,J,.... We often use database notation for representing
sets of attributes, i.e. I = A1 A, ... Ay instead of the set the-
oretical notation {Ai, As,..., Ar}. Domain of an attribute
set ] = A1As... Ay is defined as

Dom(I) = Dom(A:) x Dom(A3) X ... x Dom(Ag).

Values from domains of attributes and attribute sets are de-
noted with corresponding lowercase boldface letters, e.g. i €
Dom(I).

Let Pr denote a joint probability distribution of the at-
tribute set I. Similarly let P;; be a distribution of I con-
ditioned on J. When used in arithmetic operations such
distributions will be treated as functions of attributes in I
and I U J respectively, with values in the interval [0, 1]. For
example Pr(i) denotes the probability that I =i.

Let P; be a probability distribution, and let J C I. De-
note by PI“ the marginalization of Pr onto J, that is

P =3Py, (1)

Vi

where the summation is over the domains of all variables
from I'\ J.

Probability distributions estimated from data will be de-
noted by adding a hat symbol, e.g. Pr.

An itemset is a pair (I,1), where I is an attribute set and

i € Dom(I). The support of an itemset (I,i) is defined as
supp(/, i) = Pr (i),

where the probability is estimated from some dataset. An
itemset is called frequent if its support is greater than or
equal to some user defined threshold minsupp. Finding all
frequent itemsets in a given database table is a well known
datamining problem [1].

A Bayesian network BN over a set of attributes H =
Ai... A, is a directed acyclic graph BN = (V,E) with
the set of vertices V. = {Va,,...,Va,} corresponding to
attributes of H, and a set of edges E C V x V, where each
vertex Va; has associated a conditional probability distribu-
tion Py, |par;, Where par; = {A; : (Va,;,Va;) € E} is the set
of attributes corresponding to parents of Vy; in G. See [25,
15] for a detailed discussion of Bayesian networks.

A Bayesian network BN over H uniquely defines a joint
probability distribution

n
BN
PH = HPA,-\pari
i=1

of H. For I C H the distribution over I marginalized from
PEY will be denoted by PN

PPy = (P,?N)“.

3. INTERESTINGNESSOFANATTRIBUTE
SET WITH RESPECT TO A BAYESIAN
NETWORK

Let us first define the support of an itemset (I,i) in a
Bayesian network BN as

supppy (1,i) = PP (i).

Let BN be a Bayesian network over an attribute set H,
and let (I,i) be an itemset such that I C H. The interest-
ingness of the itemset (I,1i) with respect to BN is defined
as

Ien(1,i) = |supp(L,i) —suppgy (1,1)]

that is, the absolute difference between the support of the
itemset estimated from data, and the estimate of this sup-
port made from the Bayesian network BN. In the remaining
part of the paper we assume that interestingness is always
computed with respect to a Bayesian network BN and the
subscript is omitted.

An itemset is e-interesting if its interestingness is greater
than or equal to some user specified threshold e.

A frequent interesting itemset represents a frequently oc-
curring (due to minimum support requirement) pattern in
the database whose probability is significantly different from
what it is believed to be based on the Bayesian network
model.

An alternative would be to use supp(Z,i)/suppgy (I,1)
as the measure of interestingness [6]. We decided to use
absolute difference instead of a quotient since we found it to
be more robust, especially when both supports are small.

One could think of applying our approach to association
rules with the difference in confidences as a measure of inter-
estingness but, as mentioned in the Introduction, we think
that patterns which do not suggest a direction of influence
are more appropriate.



Since in Bayesian networks dependencies are modelled us-
ing attributes not itemsets, it will often be easier to talk
about interesting attribute sets, especially when the discov-
ered interesting patterns are to be used to update the back-
ground knowledge.

DEFINITION 3.1. Let I be an attribute set. The interest-
ingness of I is defined as

I(I)= (1,1 2
()= max (L), (2)
analogously, I is e-interesting if Z(I) > e. 0

An alternative approach would be to use generalizations
of Bayesian networks allowing dependencies to vary for dif-
ferent values of attributes, see [27], and deal with itemset
interestingness directly.

3.1 Extensionsto the Definition of Inter esting-
ness

Even though applying the above definition and sorting
attribute sets on their interestingness works well in practice,
there might still be a large number of patterns retained,
especially if the background knowledge is not well developed
and large number of attribute sets have high interestingness
values. This motivates the following two definitions.

DEFINITION 3.2. An attribute set I is hierarchically e-
interesting if it is e-interesting and none of its proper subsets
18 e-interesting. 0

The idea is to prevent large attribute sets from becoming
interesting when the true cause of them being interesting
lies in their subsets.

There is also another problem with Definition 3.1. Con-
sider a Bayesian network

A— B

where nodes A and B have respective probability distribu-
tions Pa and Pp 4 attached. Suppose also that A is e-
interesting. In this case even if Pg|4 is the same as 133| As
attribute sets B and AB may be considered e-interesting.
Below we present a definition of interestingness aiming at
preventing such situations.

A vertex V is an ancestor of a vertex W in a directed graph
G if there is a directed path from V to W in G. The set of
ancestors of a vertex V in a graph G is denoted by anc(V).
Moreover, let us denote by anc(I) the set of all ancestor
attributes in BN of an attribute set I. More formally:

anc(I) = {A; ¢ I:Va, € anc(Va;) in BN, for some A; € I}.

DEFINITION 3.3. An atiribute set I is topologically
e-interesting if it is e-interesting, and there is no attribute
set J such that

1. J Canc(I)UI, and
2.I1¢J, and
8. J s e-interesting.

0

The intention here is to prevent interesting attribute sets
from causing all their successors in the Bayesian network
(and the supersets of their successors) to become interesting
in a cascading fashion.

To see why condition 2 is necessary consider a Bayesian
network

A+~ X—> B

Suppose that there is a dependency between A and B in data
which makes AB e-interesting. Now however ABX may
also become interesting, (even if P4 x and Pg|x are correct
in the network) and cause AB to be pruned. Condition 2
prevents AB from being pruned and ABX from becoming
interesting.

Notice that topological interestingness is stricter than hi-
erarchical interestingness. Indeed if J C I is e-interesting,
then it satisfies all the above conditions, and makes I not
topologically e-interesting.

4. ALGORITHMS FOR FINDING INTER-
ESTING ITEMSETS AND ATTRIBUTE
SETS

In this section we present algorithms using the definition
of interestingness introduced in the previous section to select
interesting itemsets or attribute sets. We begin by describ-
ing a procedure for computing marginal distributions for a
large collection of attribute sets from a Bayesian network.

4.1 Computing a Large Number of Mar ginal
Distrib utions from a BayesianNetwork

Computing the interestingness of a large number of fre-
quent itemsets requires the computation of a large number of
marginal distributions from a Bayesian network. The prob-
lem has been addressed in literature mainly in the context
of finding marginals for every attribute [25, 15], while here
we have to find marginals for multiple, overlapping sets of
attributes. The approach taken in this paper is outlined
below.

The problem of computing marginal distributions from a
Bayesian network is known to be NP-hard, nevertheless in
most cases the network structure can be exploited to speed
up the computations.

Here we use exact methods for computing the marginals.
Approximate methods like Gibbs sampling are an interesting
topic for future work.

Best known approaches to exact marginalizations are join
trees [12] and bucket elimination [5]. We chose bucket elim-
ination method which is easier to implement and according
to [5] as efficient as join tree based methods. Also, join
trees are mainly useful for computing marginals for single
attributes, and not for sets of attributes.

The bucket elimination method, which is based on the dis-
tributive law, proceeds by first choosing a variable ordering
and then applying distributive law repeatedly to simplify the
summation. For example suppose that a joint distribution
of a Bayesian network over H = ABC is expressed as

BN
Pypc = Pa - Ppja - Pgya,
and we want to find P2Y. We need to compute the sum

>N Pa-Ppa-Poa
B C

which can be rewritten as

Py - Z Pga

beDom(B)

Z Pcia

ce€Dom(C)



Assuming that domains of all attributes have size 3, com-
puting the first sum directly requires 12 additions and 18
multiplications, while the second sum requires only 4 addi-
tions and 6 multiplications.

The expression is interpreted as a tree of buckets, each
bucket is either a single probability distribution, or a sum
over a single attribute taken over a product of its child buck-
ets in the tree. In the example above a special root bucket
without summation could be introduced for completeness.

In most cases the method significantly reduces the time
complexity of the problem. An important problem is choos-
ing the right variable ordering. Unfortunately that problem
is itself NP-hard. We thus adopt a heuristic which orders
variables according to the decreasing number of factors in
the product depending on each variable. A detailed discus-
sion of the method can be found in [5].

Although bucket elimination can be used to obtain sup-
ports of itemsets directly (i.e. Pr(i)), we use it to obtain
complete marginal distributions. This way we can directly
apply marginalization to obtain distributions for subsets of
I (see below).

Since bucket elimination is performed repeatedly we use
memoization to speed it up, as suggested in [21]. We re-
member each partial sum and reuse it if possible. In the
example above ZbeDom(B) Pgi4, EceDom(C) Pga, and the
computed PZY would have been remembered.

Another method of obtaining a marginal distribution Pr
is marginalizing it from P; where I C J using Equation (1),
provided that Py is already known. If |J \ I| is small, this
procedure is almost always more efficient than bucket elim-
ination, so whenever some P; is computed by bucket elimi-
nation, distributions of all subsets of I are computed using
Equation (1).

DEFINITION 4.1. Let C be a collection of attribute sets.
The positive border of C [19], denoted by Bd™(C), is the
collection of those sets from C which have no proper superset
inC:

Bdt(C) = {I € C: there is no J € C such that I C J}.
0

It is clear from the discussion above that we only need to
use bucket elimination to compute distributions of itemsets
in the positive border. We are going to go further than this;
we will use bucket elimination to obtain supersets of sets
in the positive border, and then use Equation (1) to obtain
marginals even for sets in the positive border. Experiments
show that this approach can give substantial savings, espe-
cially when many overlapping attribute sets from the posi-
tive border can be covered by a single set only slightly larger
then the covered ones.

The algorithm for selecting the marginal distribution to
compute is motivated by the algorithm from [9] for com-
puting views that should be materialized for OLAP query
processing. Bucket elimination corresponds to creating a
materialized view, and marginalizing thus obtained distri-
bution to answering OLAP queries.

We first need to define costs of marginalization and bucket
elimination. In our case the cost is defined as the total
number of additions and multiplications used to compute
the marginal distribution.

The cost of marginalizing Py from Py, J C I using Equa-

tion (1) is
cost(P}”) = | Dom(J)| - (| Dom(I \ J)| — 1).

It follows from the fact that each value of P}’ requires
adding | Dom(I \ J)| values from Pr.

The cost of bucket elimination can be computed cheaply
without actually executing the procedure. Each bucket is
either an explicitly given probability distribution, or com-
putes a sum over a single variable of a product of functions
(computed in buckets contained in it) explicitly represented
as multidimensional tables, see [5] for details. If the bucket
is an explicitly given probability distribution, the cost is of
course 0.

Consider now a bucket b containing child buckets b1, ..., b,
yielding functions fi, ..., f» respectively. Let Var(f;) the set
of attributes on which f; depends.

Let f = f1- fo--- fn denote the product of all factors in
b. We have Var(f) = Uj_; Var(f;), and since each value
of f requires n — 1 multiplications, computing f requires
| Dom(Var(f))| - (n — 1) multiplications. Let A, be the at-
tribute over which summation in b takes place. Computing
the sum will require | Dom(Var(f)\ {A4s})|- (| Dom(A4s)|—1)
additions.

So the total cost of computing the function in bucket b
(including costs of computing its children) is thus

cost(b) = Zcost(bi) + | Dom(Var(f))| - (n — 1)

+ | Dom(Var(f) \ {4s})| - (| Dom(As)[ —1).

The cost of computing PPN through bucket elimination,
denoted costsr (PFY), is the cost of the root bucket of the
summation used to compute PP,

Let C be a collection of attribute sets. The gain of using
bucket elimination to find P2Y for some I while computing
interestingness of attribute sets from C can be expressed as:

gain(I) = —costee(PPY) +

Z [costBE(PJBN) — cost(PIBN“)] .
JeBdt(C),JCI

An attribute set to which bucket elimination will be applied
is found using a greedy procedure by adding in each itera-
tion the attribute giving the highest increase of gain. The
complete algorithm is presented in Figure 1.

4.2 Computing The Interestingnessof a Col-
lection of Itemsets

First we present an algorithm for computing interesting-
ness of all itemsets in a given collection. Its a simple appli-
cation of the algorithm in Figure 1. It is useful if we have
a collection of itemsets (e.g. frequent itemsets) and want to
select those which are the most interesting. The algorithm
is given below

Input: collection of itemsets /IC, supports of all itemsets in
K, Bayesian network BN
Output: interestingness of all itemsets in K.

1. €« {I:(I,i) € K for some i € Dom([I)}
2. compute PPY for all I € C using algorithm in Figure 1

3. compute interestingness of all itemsets in K using dis-
tributions computed in step 2



Input: collection of attribute sets C, Bayesian network BN

Output: distributions PPN for all T € C

1. § + Bd*(C)
2. while S # 0:
3 I + an attribute set from S.
4 for Ain H\ I:
5 compute gain(I U {A})
6. pick A* for which the gain in Step 5 was maximal
7 if gain(I U {A*}) > gain(I):
8 I+ T1U{A*}
9 goto 4
10. compute P2Y from BN using bucket elimination
11. compute P,BNH for all J € §,J C I using Equa-
tion (1)
12. remove from S all attribute sets included in I

13. compute PPN for all J € C\ Bd*(C) using Equa-
tion (1)

Figure 1: Algorithm for computing a large number
of marginal distributions from a Bayesian network.

4.3 Finding All Attrib ute Setswith GivenMin-
imum Interestingness

In this section we will present an algorithm for finding all
attribute sets with interestingness greater than or equal to a
specified threshold e given a dataset and a Bayesian network
BN.

Let us first make an observation:

OBSERVATION 4.2. If an itemset (I,1i) has interestingness
greater than or equal to € with respect to a Bayesian network
BN then its support must be greater than or equal to € in
either the data or in BN. Moreover if an attribute set is
e-interesting, by definition 3.1, at least one of its itemsets
must be e-interesting.

It follows that if an attribute set is e-interesting, then one
of its itemsets must be frequent, with minimum support e,
either in the data or in the Bayesian network.

The algorithm works in two stages. First all frequent item-
sets with minimum support ¢ are found in the dataset and
their interestingness is computed. The first stage might have
missed itemsets which are e-interesting but don’t have suf-
ficient support in the data.

In the second stage all itemsets frequent in the Bayesian
network are found, and their supports in the data are com-
puted using an extra database scan.

To find all itemsets frequent in the Bayesian network we
use the Apriori algorithm [1] with a modified support count-
ing part, which we call AprioriBN. The sketch of the algo-
rithm is shown in Figure 2, except for step 3 it is identical
to the original algorithm.

Input: Bayesian network BN, minimum support minsupp.

Output: itemsets whose support in BN is > minsupp
1. K+1
2. Cand « {(1,1) : |I| =1}

@

compute suppgy (1,i) for all (I,i) € Cand using the
algorithm in Figure 1

Freq < {(I,i) € Cand : suppgy (I,i) > minsupp}
Cand < generate new candidates from Freq

remove itemsets with infrequent subsets from Cand

NS o e

goto 3

Figure 2: The AprioriBN algorithm

We now have all the elements needed to present the al-
gorithm for finding all e-interesting attribute sets, which is
given in Figure 3.

Step 4 of the algorithm can reuse marginal distributions
found in step 3 to speed up the computations.

Notice that it is always possible to compute interesting-
ness of every itemset in step 6 since both supports of each
itemset will be computed either in steps 1 and 3, or in steps 4
and 5.

The authors implemented hierarchical and topological in-
terestingness as a postprocessing step. They could however
be used to prune the attribute sets which are not interest-
ing without evaluating their distributions, thus providing a
potentially large speedup in the computations. We plan to
investigate that in the future.

5. EXPERIMENT AL RESULTS

In this section we present experimental evaluation of the
method. One problem we were faced with was the lack
of publicly available datasets with nontrivial background
knowledge that could be represented as a Bayesian net-
work. The UCI Machine Learning repository contains a
few datasets with background knowledge (Japanese credit,
molecular biology), but they are aimed primarily at Induc-
tive Logic Programming: the relationships are logical rather
than probabilistic, only relationships involving the class at-
tribute are included. These examples are of little value for
our approach.

We have thus used networks constructed using our own
common-sense knowledge as well as networks learned from
data.

5.1 An lllustrati ve Example

We first present a simple example demonstrating the use-
fulness of the method. We use the KSL dataset of Danish
70 year olds, distributed with the DEAL Bayesian network
package [4]. There are nine attributes, described in Table 1,
related to the person’s general health and lifestyle. All con-
tinuous attributes have been discretized into 3 levels using
the equal weight method.

We began by designing a network structure based on au-
thors’ (non-expert) knowledge. The network structure is



Input: Bayesian network BN, dataset, interestingness
threshold e.

Output: all attribute sets with interestingness at least e,
and some of the attribute sets with lower interestingness.

1. K « {(L,1) : supp(I,i) > €} (using Apriori algorithm)
2. C+{I:(1,i) € K for some i € Dom(I)}

. compute P for all I € C using algorithm in Figure 1

= W

. K' « {(,i) : suppgn(,i) > €} (using AprioriBN
algorithm)

5. compute support in data for all itemsets in X' \ K by
scanning the dataset

6. compute interestingness of all itemsets in X U K’
7. C' + {I: (1,i) € K' for some i € Dom(I)}
8. compute interestingness of all attribute sets I in C' UC:

Z(I) = max{Z(I,i) : (I,i) € KUK',i € Dom(I)}

Figure 3: Algorithm for finding all e-interesting at-
tribute sets.

FEV | Forced ejection volume of person’s lungs
Kol | Cholesterol
Hyp | Hypertension (no/yes)
BMI | Body Mass Index
Smok | Smoking (no/yes)
Alc | Alcohol consumption (seldom/frequently)
Work | Working (yes/no)
Sex | male/female
Year | Survey year (1967/1984)

Table 1: Attributes of the KSL dataset.

given in Figure 4a. Since we were not sure about the rela-
tion of cholesterol to other attributes, we left it unconnected.

Conditional probabilities were estimated directly from the
KSL dataset. Note that this is a valid approach since even
when the conditional probabilities match the data perfectly
interesting patterns can still be found because the network
structure usually is not capable of representing the full joint
distribution of the data. The interesting patterns can then
be used to update the network’s structure. Of course if both
the structure and the conditional probabilities are given by
the expert, then the discovered patterns can be used to up-
date both the network’s structure and conditional probabil-
ities.

We applied the algorithm for finding all interesting at-
tribute sets to the KSL dataset and the network, using the
e threshold of 0.01. The attribute sets returned were sorted
by interestingness, and top 10 results were kept.

The two most interesting attribute sets were {FEV, Sex}
with interestingness 0.0812 and {Alc,Year} with interest-
ingness 0.0810.

Indeed, it is known (see [8]) that a women’s lungs are
on average 20% — 25% smaller than men’s lungs, so sex in-
fluences the forced ejection volume (FEV) much more than

Figure 4: Network structures for the KSL dataset
constructed by the authors

smoking does (which we thought was the primary influence).
This fact, although not new in general, was overlooked by
the authors, and we suspect that, due to large amount of
literature on harmful effects of smoking, it might have been
overlooked by many domain experts. This proves the high
value of our approach for verification of Bayesian network
models.

The data itself implied a growth in alcohol consumption
between 1967 and 1984, which we considered to be a plau-
sible finding.

We then decided to modify the network structure based on
our findings by adding edges Sex — FEV and Year — Alc.
One could of course consider other methods of modifying
network structure, like deleting edges or reversing their di-
rection. A brief overview of more advanced methods of
Bayesian network modification can be found in [15, Chap. 3,
Sect. 3.5]. Instead of adapting the network structure one
could keep the structure unchanged, and tune conditional
probabilities in the network instead, see [15, Chap. 3, Sect. 4]
for details.

As a method of scoring network structures we used the
natural logarithm of the probability of the structure condi-
tioned on the data, see [10, 26] for details on computing the
score.

The modified network structure had the score of —7162.71
which is better than that of the original network: —7356.68.

With the modified structure, the most interesting attribute
set was {Kol, Sex,Year} with interestingness 0.0665. We
found in the data that cholesterol levels decreased between
the two years in which the study was made, and that choles-
terol level depends on sex. We found similar trends in the
U.S. population based on data from American Heart Asso-
ciation [2]. Adding edges Year — Kol and Sex — Kol



improved the network score to —7095.25.

{FEV, Alc,Year} became the most interesting attribute
set with the interestingness of 0.0286. Its interestingness is
however much lower than that of previous most interesting
attribute sets. Also, we were not able to get any improve-
ment in network score after adding edges related to that
attribute set.

Since we were unable to obtain a better network in this
case, we used topological pruning, expecting that some other
attribute sets might be the true cause of the observed dis-
crepancies. Only four attribute sets, given below, were topo-
logically 0.01-interesting.

{Kol, BMI} 0.0144
{Kol, Alc} 0.0126
{Smok, Sex,Year} | 0.0121
{Alc, Work} 0.0110

We found all those patters intuitively valid, but were un-
able to obtain an improvement in the network’s score by
adding related edges. Moreover, the interestingness values
were quite small. We thus finished the interactive network
structure improvement process with the final result given in
Figure 4b.

The algorithm was implemented in Python and used on
a 1.7GHz Pentium 4 machine. The computation of inter-
estingness for this example took only a few seconds so an
interactive use of the program was possible. Further perfor-
mance evaluation is given below.

5.2 PerformanceEvaluation

We now present the performance evaluation of the algo-
rithm for finding all attribute sets with given minimum in-
terestingness. We used the UCI datasets and Bayesian net-
works learned from data using B-Course [26]. The results
are given in Table 2.

The maz. size column gives the maximum size of frequent
attribute sets considered. The # marginals column gives
the total number of marginal distributions computed from
the Bayesian network. The attribute sets whose marginal
distributions have been cached between the two stages of
the algorithm are not counted twice.

The time does not include the initial run of the Apriori al-
gorithm used to find frequent itemsets in the data (the time
of the AprioriBN algorithm is included though). The times
for larger networks can be substantial; however the proposed
method has still a huge advantage over manually evaluating
thousands of frequent patterns, and there are several possi-
bilities to speed up the algorithm not yet implemented by
the authors, discussed in the following section.

The mazimum interestingness column gives the interest-
ingness of the most interesting attribute set found for a given
dataset. It can be seen that there are still highly interesting
patterns to be found after using classical Bayesian network
learning methods. This proves that frequent pattern and as-
sociation rule mining has the capability to discover patterns
which traditional methods might miss.

To give a better understanding of how the algorithm scales
as the problem size increases we present two additional fig-
ures. Figure 5 shows how the computation time increases
with the number of marginal distributions that must be com-
puted from the Bayesian network. It was obtained by vary-
ing the maximum size of attribute sets between 1 and 5.
The value of ¢ = 0.067 was used (equivalent to one row in
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Figure 5: Time of computation depending on the
number of marginal distributions computed for the
lymphography database
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Figure 6: Time of computation depending on the
number of attributes for datasets from Table 2

the database). It can be seen that the computation time
grows slightly slower than the number of marginal distri-
butions. The reason for that is that the more marginal
distributions we need to compute, the more opportunities
we have to avoid using bucket elimination by using direct
marginalization from a superset instead.

Determining how the computation time depends on the
size of the network is difficult, because the time depends
also on the network structure and the number of marginal
distributions computed (which in turn depends on the max-
imum size of attribute sets considered).

We nevertheless show in Figure 6 the numbers of attributes
and computation times plotted against each other for some
of the datasets from Table 2. Data corresponding to maxi-
mum attribute set sizes equal to 3 and 4 are plotted sepa-
rately.

It can be seen that the algorithm remains practically us-
able for fairly large networks of up to 60 variables, even
though the computation time grows exponentially. For larger
networks approximate inference methods might be neces-
sary, but this is beyond the scope of this paper.



dataset Fattrs € max. size | #marginals | time [s] | max. inter.

KSL 9 0.01 5 382 1.12 0.032
soybean 36 0.075 3 7633 1292 0.064
soybean 36 0.075 4 61976 7779 0.072
breast-cancer 10 0.01 5 638 3.49 0.082
annealing 40 0.01 3 9920 1006 0.048
annealing 40 0.01 4 92171 6762 0.061

mushroom 23 0.01 3 2048 132.78 0.00036

mushroom 23 0.01 4 10903 580.65 0.00036
lymphography 19 0.067 3 1160 29.12 0.123
lymphography 19 0.067 4 5036 106.13 0.126
splice 61 0.01 3 37882 8456 0.036

Table 2: Performance evaluation of the algorithm for finding all e-interesting attribute sets.

6. CONCLUSIONS AND DIRECTIONS OF
FUTURE RESEARCH

A method of computing interestingness of itemsets and at-
tribute sets with respect to background knowledge encoded
as Bayesian networks was presented. We built efficient al-
gorithms for computing interestingness of frequent itemsets
and finding all attribute sets with given minimum interest-
ingness. Experimental evaluation proved the effectiveness
and practical usefulness of the algorithms for finding inter-
esting, unexpected patterns.

An obvious direction for future research is increasing ef-
ficiency of the algorithms. Partial solution would be to
rewrite the code in C, or to use some off-the-shelf highly op-
timized Bayesian network library like Intel’s PNL. Another
approach would be to use approximate inference methods
like Gibbs sampling.

Adding or removing edges in a Bayesian network does not
always influence all of its marginal distributions. Interactiv-
ity of network building could be imporved by making use of
this property.

Usefulness of methods developed for mining emerging pat-
terns [6], especially using borders to represent collections of
itemsets, could also be investigated.

Another interesting direction (suggested by a reviewer)
could be to iteratively apply interesting patterns to modify
the network structure until no further improvement in the
network score can be achieved. A similar procedure has been
used in [24] for background knowledge represented by rules.

It should be noted however that it might be better to just
inform the user about interesting patterns and let him /her
use their experience to update the network. Manually up-
dated network might better reflect causal relationships be-
tween attributes.

Another research area could be evaluating other proba-
bilistic models such as log-linear models and chain graphs
instead of Bayesian networks.
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