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Abstract—The effectiveness of compression algorithms is in- successfully used to texture matching problems in [2] which
creasing as the data subjected to compression contains peths have a broad spectrum of applications in areas like bioinfor
that occur with a certain regularity. This basic idea is used matics, natural languages. and music. Compression digusit

to detect the existence of regularities in various types of ata din th tual mini to handle dat .
ranging from market basket data to undirected graphs. The are used in the actual mining process 1o handie data mining

results are quite independent of the particular algorithms used ~€xplorations that return huge sets of results by extrattinge
for compression and offer an indication of the potential of results that actually are representative of the data sef {se
discovering patterns in data before the actual mining proces example [19, 16]).
takes place. o o _ Our goal in this paper is to show that compression can be
Index Terms—data mining; lossless compression; LZW; mar- d f . the int i f Vi lact
ket basket data; patterns; Kronecker product. use Qr_assessmg € Iniereslingness or applying an a(_; ua
data mining process. In other words, to evaluate the miitabil
I. INTRODUCTION of a data set using compression. We justify experimenthily t

Our goal is to show that compression can be used as a tit§i2 by evaluating data sets that have different charatt
to evaluate the potential of a data set of producing intergst 2Nd sources. _ o
results in a data mining process. The basic idea that data tha! "ere are two broad classes of compression algorithms:
contains patterns that occur with a certain regularity w@l 0SSy compression, that reduces significantly data but does
compressed more efficiently compared to data that has no sgeRW the full inverse transformation, from compressecdat
characteristics. Thus, a pre-processing phase of the gini€ original data, and lossless compression, that achaaes
process should allow to decide whether a data set is woFffluction and can be completely reversed. We illustrate the
mining, or compare the interestingness of applying minirSe Of lossless compression in pre-mining data by focusing
algorithms to several data sets. on several distinct data mining processes: files with frague

Since compression is generally inexpensive (and certair_ﬂ?ttemsi frequent item sets in market basket data, andrexpl

less expensive than mining algorithms), and compressiBl§ Similarity of graphs. _ _ _
methods are well-studied and understood, pre-mining using! & LZW (Lempel-Ziv-Welch) algorithm was introduced in
compression will help data mining analysts to focus thef?84 by T. Welch in [21] and is among the most popular
efforts on mining resources that can provide a highest pay&@mpression techniques. The algorithm does not need to
without an exorbitant cost. check all the data before starting the compression and the
Compression has received lots of attention in the data migrformance is based on the number of the repetitions and the
ing literature. As observed by Mannila [11], data compr@ssi Ie_ngths of the strings and the rat|_o of 0s/1s or true/falsthgat
can be regarded as one of the fundamental approaches to g4tevel- There are several versions of the LZW algorithm.
mining [11], since the goal of the data mining is to “compres3oPular programs (such as Winzip or the zip function of
data by finding some structure in it". MATLAB) use variations of _the LZW compression. These
The role of compression developing parameter-free dalgorithms wo_rk_ both at the b|_t I_e_vel and_ at the c_harac_teellev
mining algorithms in anomaly detection, classification and Aftér examining compressibility of binary strings in Sec-
clustering was examined in [6]. The sicéz) of a compressed tion Il we e_x_plore _several experlmentallsettlngs that tevi
file = is as an approximation of Kolmogorov complexity [3]sf[rong empirical evidence of the correlation between cesypr

and allows the definition of a pseudo-distance between t&tPN ratio and the existence of hidden patterns in data. In
files z andy as Section IIl discusses the compressibility of sequenceyof s

bols produced by various generative mechanisms. Section 1V

d(z,y) = M, is dedicated to the compressibility of adjacency matrix for
C(z) +C(y) graphs relative to the entropy of distribution of subgraphs
wherexy is the file obtained by concatenatingandy. Finally, in Section V, we examine the compressibility of dile

Further advances in this direction were developed in [7, 8)at contain market basket data sets. This paper is an @qtens
and [20]. A Kolmogorov complexity-based dissimilarity wa®f our contribution [17].



Il. PATTERNS IN STRINGS AND COMPRESSION
1.4

An alphabetis a finite and non-empty set whose elemen
are referred to asymbols Let A* be the set of sequences 12} ]
on the alphabet. We refer to these sequencesvesrds or :
strings The length of a stringv is denoted bylw|. The null
string on A is denoted by\ and we defineA™ as At =
A* — {A\}. The subsets ofdA* are referred to asanguages
over A.

If we A* can be written asv = utv, whereu,v € A* and
t € A*, we say that the paift,m) is an occurrence of in

O CR for 500K bits| |
x  CR for 100K bits
O CRfor 10K bits ||

Compression Ratio

w, wherem is the length ofu. %0
The occurrencegx, m) and (y,p) are overlapping ifp < by

m+ |xz| andm < p+ |y|. If this is the case andh < p, there %

is a proper suffix ofc that equals a proper prefix of If z is ‘ ‘ ‘ ‘

a word such that the sets of its proper prefixes and its proj 0 02 Coroportion of 15 08 !

suffixes are disjoint, there are no overlapping occurrenées

z in any word. Fig. 1. BaselineCR;z;pr Behavior

The number of occurrences of a strimgn a stringw is de-
noted byn,(w). Clearly, we haved {n.(w) | a € A} = |w|
for any symbok € A. Theprevalenceof x in w is the number TABLE |
fo(w) = (X2l which gives the ratio of the characters BASELINE COMPRESSIONRATIO FOR FILES CONTAINING A MiNiNuM
contained in the occurrences ofelative to the total number

of characters in the string. Pattern| Proportion of 1s] Baseline

The result of applying a compression algoritidhto a string 00011 ggzjo é-ggz

* - - . (1) .
w € A* is denoted byC'(w) and thecompression ratids the 0010 550 0844
number 00010 20% 0.779
_ |C(w)|
CRc(w) = .
[l

We shall use the binary alphabé? = {0,1} and the

LZW algorithm, the compression algorithm of the package SEecifictal_ly., welcorgztet;j_twl fg%mlm forthte dpat?er_rIOOL .
java.util.zip,orthezi p function of MATLAB. each containing ItS and we generated simiiar Seres

We generated random strings of bits (0s and 1s) af%f tbe I{_Ol,QOlO,tO%?_l?]}.dl(;ggf caze ?tf tfsre]()Ol pattlern
computed the compression ratio for strings with a varie%?e aseline is establishe - and atter tne prevalence

N . . .
of symbol distributions. A stringw that contains only0s xceeds 20% the compression ratio drops dramatically.liResu

(or only 1s) achieves a very good compression ratio &f the experiment fon01 are shown in Table II. In Figure 2

CRjZ]p(w) = 0.012 for 100K bits andCR]-ZIP = 0.003 for

500K bits, wherej ZI P denotes the compression algorithm TABLE Il

from the packagg ava. util.zip. Figure 1 Shows, as PATTERN'001’ PREVALENCE VERSUS THE COMPRESSION RATIG'R; 71 p
expected, that the worst compression ratio is achieved when

0s andls occur with equal frequencies. Prevalence of CR,zir
For strings of small length (less than* bits) the compres- '001’ pattern
sion ratio may exceed 1 because of the overhead introduced 0% 0.93
by the algorithm. However, when the size of the random 10% 0.97
string exceedd0° bits this phenomenon disappears and the ggg’ 8'32
compression ratio depends only on the prevalence of the bits 40(72 0.86
and is relatively independent on the size of the file. Thus, in 50% 0.80
Figure 1, the curves that correspond to files of sigé and 60% 0.72
5-10% overlap. We refer to the compression ratio of a random 70% 0.62
string w with an (ng(w), n1(w)) distribution as thebaseline Sgg’ 8@?
compression ratidor this distribution. 95(72 0.19
We created a series of binary strings,,, which have a 100% 0.01

minimum guaranteed numbenr of occurrences of patterns
t € {0,1}*, where0 < m < 100. The compression baselines
for files containing the patterrsl, 001,0010, and00010 are we show that similar results hold for all patterns mentioned
shown in Table I. above.



TABLE Il

1.4 THE COMPRESSIONRATIO CR; 77 p(Syx ) FORTHUE-MORSESEQUENCES
12} 1 k] Iseqor] | CRjz1p(seqqr)
5 32 34
| 8 256 4.625
! 1 10 | 1024 1.226
2 12 | 4096 0.328
c 0.84 CRforol 14 16384 0.0932
2 x CRfor 001 15 | 32768 0.0542
o] ey 6| Ges3s | 00322
£ 17 | 131072 0.0208
© 18 | 262144 0.0151
0.4t 19 | 524288 0.012
20 | 1048576 0.010
ool 21 | 2097152 0.010
’ 22 | 4194304 0.009
0 . . . .
0 0.2 0.4 0.6 0.8 1
Patier prevalence compression utility from th¢ ava. uti | . zi p package the
_ _ . compression ratios shown in Table Il were obtained.
Fig. 2. Dependency of Compression Ratio on Pattern Prevalence

For small values of;, the sequence is incompressible due
to the overhead produced by the compression process. As
Table Il and Figure 3 show, fok big enough 2¥ > 2000)
the sequence becomes compressible and the compression
S_equences or sets_ .Of sequences of symbo_ls are OfFSfi]o reaches a low value (of less thaft) for Thue-Morse
subjected to data mining processes and identifying th°§<§quences longer than000, 000 characters. Since the Thue-
sequences that contain interestin.g patter.ns.pefore thualac]vlorse sequencesy. h:as équal number ofs and 1s for
Mining process may be computationally significant. any value ofk and its compression ratio is well below the
We begin by examining a the well-known sequence callggh seline compression ratio established for sequencest®f bi
the Thue-Morse sequence [1] that has many applications rajg section 1| we can conclude that even in the absence of

ing from crystal physics [13], counter synchronization][22 o etitions, compression can be used for the detections of
metrology [9, 5], and chess playing [12], as well as in gan}%tterns.

theory, fractals and turtle graphics, chaotic dynamicateps,

I1l. COMPRESSIBILITY OFLANGUAGES AND SEQUENCES

etc.
This sequence contains patterns but not repetitions. 14
Definition 3.1: Let n € N be a natural number. ThEhue- L&
Morse sequencs, = sps; - - - S, IS @ word over the alphabet \
. Ly
{0,1} defined as: R
Sosl
1 if ¢ has an odd number of 1s Y
;= in its binary representation TN
0 otherwise o4 “,\
0.2f e
for 0 <i < n. 0 we
For example, we have T T BRI B

Si6 = (Oa 17 ]-aOv ]-aOvOa 17 ]-aOvOa 1a07 ]-7 1a0)

Fig. 3. Compression Ratio Behavior of Thue-Morse Sequence
It is clear that ifm,n € N andm < n, s,, is a prefix ofs,.
Thus, the successive Thue-Morse sequences define an infinite a series of experiments involving generative grammars we
sequence. examined the compressibility of language fragments géeeéra
An equivalent method for defining the Thue-Morse seéby these grammars. A generative grammar, or in short, a
guence is by starting with and concatenating the complemengrammaris defined as a 4-tuplé = (An, Az, S, P), where
of the sequence obtained so far. This procedure yiélds Ay and Ay are non-empty, finite and disjoint sets referred
then01, 0110, 01101001, and so on. It is known (see [15],to as the non-terminal and the terminal alphabet, respygtiv
for example) that the Thue-Morse sequence is a cube-fiec Ay is theinitial symbol of the gramma¢r, and P is a
sequence, that is, the sequence does not contain substriimgte set of pairs of the fornia, 3), wherea € (Ay U Ar)™
of the formwww. andg € (Ay U Ar)*. A pair (o, 8) € P is a production of
We generated the Thue-Morse sequences and stored thesgrammars. Productions are used for rewriting words over
sequence ofds and 1s at the bit level. By using the zip Ay U Ap. Namely, ifv,d € (Ay U Ap)*, v = y1a92, and



d = 1182 for some productiofe, ) € P, we write~y = 0.
The reflexive and transitive closure of the binary reIatiaGﬂ

is denoted by % ”. The language generated Iy is the set -08f N

LG)={ze A} | S = }.

Grammars are used as generative devices that produce
languages over their terminal alphabet. Chomsky’s hiégarc
(see [14] or [18]) defines four classes of grammars based on o8 W
the complexity of their productions. In turn, these classes

log of compression ratio
I
o
3
3+
-

-0.85 -*
grammars, define a strict hierarchy of classes of languages e ‘ ‘ ‘ ‘ ‘

Ly C Ly C Ly C Lo, where £3 is the class of regL_JIar ° P eadmaseto e w0y it
languages Lo is the class of context-free languagds, is

the class of context-sensitive languages, dndis the class Fig. 5. Compression Ratio Behavior of the langudge

of recursively enumerable languages. It is worth noting tha

the classe€; and £, collapse on languages over one-symbol

alphabet. In other words, ff is a language over an one-symbogeneratesL,,i.,. has 42 productions. As expected, experi-

alphabet, therl. € £, implies L € L. ments summarized in Figure 6 show that thg,, is more
We evaluate the compressibility of a languabeover an compressible thai.,,,;,,. which has a rather complex gener-

alphabetA by considering the increasing sequence of finitating process.

languagesS(L) = (Lo, L1,...,Ly,...), where L,, consists

of the firstn words of L in lexicographic order, computing

the compression ratio§ R;z;p(L,), and examining the de- - .
pendency of this ratio on. o
.. . g epe -4.5F
We examinine comparatively the compressibility of the ‘é\
languagesL; = {ww | w € {0,1}*} (a context-sensitive g . el
language) versus the compressibility of a similar language :
Ly = {ww® | w € {0,1}*} (a context-free language) which 5.
has a simpler structure. The results shown in Figures 4 and 5 2 Sl
- “d
—6 ~~~~
.,
-0.35
-04r W oS 1 2 3 3 5 6
o5 II size of data set x10°
£ o L Fig. 6. Compression Ratios of Languages,, and Ly rime
§ -0551
§ el ! T
E el ! | These results suggest that the compressibility of langaiage
5 .18 . . .
B . el ] is related to the complexity of the generative process that
o5l Tl ] produce them. This will be the object of further investigas.
08} ~~"‘--n
085 2 s . s 10 1 IV. RANDOM INSERTION AND COMPRESSION

size of data set for {ww | w 0 {0,1}'} x 10"

For a matrixM € {0,1}"*? denote byn;(M) the number
of entries of M that equali, wherei € {0,1}. Clearly, we

show thatL,, the less complex language has a better (Iower}fwem(M) (M) =uv.
compression ratio, and therefore, higher compressibility qu a randc;rl]v variablé? which ranges over the set of
Similar results are obtained when comparing the compregg?mces{o’ 1I}h let v;(V) fbe th.e rar;dhom Va“?ble r\:vhose
ibility of the context-sensitive languagés,, andL, .. over ya ues equal the number of entries ‘Bfthat equali, where
the one-symbol alphabét} defined by i€ {0,1}. .
Let A € {0,1}P*? be a0/1 matrix and let

Fig. 4. Compression Ratio Behavior of the langudge

= {a®" | neN},

Lprime = {a” | pis a prime numbér B;(Bl By - Bk)7
pr P2 - Dk

LeJ,p

The reference [14] (see Chapter 1, section 2) containsfapeci
grammars developed for both language. Namely, the gramnbh&ra matrix-valued random variable whé8e € R"**, p; > 0
for L., has6 productions, while the second grammar thébr 1 < j <k, andzlepj =1



Definition 4.1: The random variablel + B obtained by TABLE IV
the insertionof B into A is given by INSERTION OF ATHREE-VALUED RANDOM VARIABLE, ENTROPY AND
COMPRESSIONRATIOS

anB ... anB Probability Compression| Entropy
A B= : : e RS distribution Ratio
P1 P2 P3
tmiB o amnB 0 1 0 0.33 0
In other words, the entries off < B are obtained by 1 0 0 0.33 0
substituting the block,;; B, with the probabilityp, for a;; 0 0 1 0.33 0
in A 0 0.9 0.1 0 0.51 0.46
. . . o L. 0.8 0 0.2 0.61 0.72
Note that this operation is a probabilistic generalizatidn 0 03 07 0.7 0.88
Kronecker’s product for if 02 02 06 0.77 1.37
0.6 0.2 0.2 0.74 1.37
B (Bl) 015 035 05 0.78 |  1.44
’ 1)’ 0.49 0.25 0.26 0.77 1.5
. . 0.33 0.33 0.34 0.79 1.58
then A + B has as its unique value the Kronecker product
A® B.
The expected number df in the insertion4 < B is TABLE V
INSERTION OF AFOUR-VALUED RANDOM VARIABLE, ENTROPY AND
k COMPRESSIONRATIOS
Blri(A < B)] =ni(4) Z n1(B;)p; Probability Compression] Entropy
j=1 distribution Ratio
- = - PL__ P2 ps  pa
\2/)?9;’]:11((5172 TLl(Bk> n, we haveE[l/l(A — ) 1 9 o 0753 5
" . . . . 0.4 0 0.2 0.4 0.53 1.52
In the experiment that involves insertion, we used a matrix- | g45 012 022 0.21 0.61 1.83
valued random variable such that(B;) = --- = n1(Bg) = 03 01 02 04 0.65 1.84
n. Thus, the variability of the values ofl < B is caused 02 02 02 04 0.69 1.92
by the variability of the matrices3;, ..., B, which can be 025 025 025 0.23 0.69 2

evaluated using the entropy of the distribution&f

k
2 =
H(B) =~ pjlog,p;. .
J=1 18F 0 1
We expect to obtain a strong positive correlation between t Loy o O Insertion of 3 matrices | |
entropy of B and the degree of compression achieved on t 14t O Insertion of 4 matrices| |

file that represents the matrix < B, and the experiments
support this expectation.
In a first series of experiments, we worked with a matri

Compression ratio
=

A € {0,1}106x106 and with a matrix-valued random variable 08f . g 00 9

B: Bi By By | o ¢ |

‘\pm p2 p3)’ 04r 1

Wherij € {0, ].}SXB, andn; (B1> = TLl(BQ> = TLl(Bd) =4, 02f i

Several probability distributions were considered, aswsho h o o2 o8 oo ; 2 14 1s
in Table IV. Values ofA + B had1062%3% = 101124 entries. Shannon entropy

In Table IV, we had 39% 1s and the baseline compression
rate for a binary file with this ratio ofis is 0.9775. We  Fig. 7. Evolution CR;zr» and Shannon Entropy for Insertions
also computed the correlation between ®R;~;p and the
Shannon entropy of the probability distribution and obealin
the value0.98 for the insertion of a matrix-valued randomthe inserted random variable is shown in Figure 7 for both
variable having three values. experiments.

In Table V, we did the same experiment but with 4 different This experiment reconfirms that data that contains patterns
matrices of formatt x 4. An even stronger correlatio.09) can be better compressed than randomly generated files and
was observed betweeBR;z;p and the Shannon entropy ofthat the compressibility is less pronounced when the diyers
the probability distribution. of these patterns increases.

The relationship between the compression r&R;z;p Next, we examine the compressibility of binary square
and the Shannon entropy of the probability distribution ahatrices and its relationship with the distribution of ijyal



submatrices. Anm x m principal submatrix of a matrix 0.06
A € R™" is the matrix A[I] defined by a non-emptyn-

0.05

element subsef of the set{l,...,n} and is obtained by
selecting entries ofA of the form a;;, wherei,j € I. c 00 /f \
We mention that the principal submatrices of the adjacency 2 oos A¥ .
matrix of a graph correspond to the adjacency matrices of the & 001 LK /
subgraphs of that graph. The patterns in a graph are captured /\\A /\_/
in the form of frequent isomorphic subgraphs. oot M

A binary square matrix is compressed by first vectorizing o -

the matrix and then compressing the resulting binary sempien
There is a strong correlation between the compression oétio
the adjacency matrix of a graph and the frequencies of the o
occurrences of isomorphic subgraphs of it. Specifically, tf JELCET ERERC e Ut O T e betal s 5
lower the compression ratio is, the higher are the freq@sncjapelled with the number of edges of the graph.

of isomorphic subgraphs and hence the worthier is the graph

for being mined.

Let §,, be an undirected graph haviq@,...,v,} as its As expected, the compression ratio of the adjacency matrix
set of nodes. The adjacency matrix @f, Ag, € {0,1}"*™ and the distribution entropy of graphs are roughly the same f
is defined as isomorphic graphs, so both numbers are characteristicrfor a

isomorphism type. It is a permutation of the vertices §f,,

(Ag,)ij = {1 if there is an edge between andv; in 5, the adjacency matrix of the gragf obtained by applying

0 otherwise. the permutation is defined b4 is given by
We denote withCRc(Ag, ) the compression ratio of the A . — P A. p-l
adjacency matrix of grapB,, obtained by applying the com- g¢ = LoAg, Ly -
pression algorithnt' We compute the adjacency matridg,, the entropy

Let S = {i1,...,ix} be a subset of{1,...,n}. The
principal submatrixAg, [S] is the adjacency matrix of the
subgraph of5,, which consists of the nodes with indices$h

Hp (G2, k), and the compression ratiCR; z1p(Ags) for
several values of and permutations. !

Graphs withn = 60 nodes and various number of
Qe%tSes ranging fronb to 1765 were randomly generated.
For each generated graph, we randomly produced twenty
permutations of its set of nodes and compuiteg(S¢, k) and

by P, (k) the collection of all subsets dfl,2,...,n} of size
k where2 < k < n. We have|P, (k)| = (7).

Le_t (AL,....A}) be.an enumeration of possiﬁdjacen%ijP(Agﬁ).
matrices of graphs withk: nodes where/;, = 2727". We  Fipally, for each graph we calculated the ratio of standard
define the finite probability distribution deviation over average for the computed compression ratios
nE(G) nk (G,.) followed by the same computation for distribution entrepie
P(Gn, k) = ( gi l: e g‘;‘ - ) , The results of this experiment are shown in Figures 8 and 9
[P (k)] [P (k)] against the number of edges. As it can be seen, the deviation

» is the number of subgraphs ofoVer mean of the compression ratio_s fmr: 60 does not
exceed the numbe).05. Also, the deviation over average of
the distribution entropies for various valueskoflo not exceed
0.006. In particular, the deviation of the distribution entropy
b k(3,) n®(g,) for the graphs ofil00 to 1500 edges falls belov.001, which
Hp(Gn, k) = = = logy : allows us to conclude that the deviations of both compressio
= [Pu(B)] 7 [Pn(R)] : R . . _
i=1 ratio and distribution entropy with respect to isomorprésame
If Hp(9,,k) is low, there are to be fewer and larger setsegligible.
of isomorphic subgraphs of,, of size k. In other words,  For eachk € {3,4,5}, we generated randomB60 graphs
small values ofH »(G,,, k) for various values ok suggest that having 60 vertices and sets of edges whose size were vary-
the graphg,, contains repeated patterns and is susceptibleitgy from 10 to 1760. Then, the number${p(S,, k) and
produce interesting results. Note that although two is@hior CR;z;p(Ag, ) were computed. Figure 10 captures the results
subgraphs do not necessarily have the same adjacency matrixhe experiment. Each plot contains two curves. The first
the number(p(G,, k) is a good indicator of the diversity of curve represents the changes in aver@z;p(Ag, ) for
isomorphic subgraphs and hence of the frequency subgrdpity randomly generated graphs of equal number of edges.
patterns. The second curve represents the variation of the average
We evaluated the correlation betwe@R;;;p(Ag,) and Hp(S,, k) for the same forty graphs. The trends of these two
Hp(Gn, k) for different values ofk. curves are very similar for different values bf

wheren®(G,,) for 1 <i < ¢
9, with adjacency matrifo. The Shannon entropy of this
probability distribution is:
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Fig. 9. Standard deviation vs. average of tHe>(S,, k) of a number of
different permutations of nodes for the same graph. Thezbotal axis is
labelled with the number of edges of the graph. Each curveesponds to
one value ofk.

Table VI contains the correlation betwe@R;z;p(Ag,,)
and Hp(G,, k) calculated for the560 randomly generated
graphs for each value df.

TABLE VI
CORRELATIONS BETWEENCR z1p(Ag,, ) AND Hp(Gn, k)

Correlation
0.92073175
0.920952812
0.919256573

O [ | X

V. FREQUENTITEMS SETS AND COMPRESSIONRATIO

A market basket data set consists of a multi§etof
transactions Each transactiofi’ is a subset of a set of items
I = {iy,...,in}. The multiplicity of a transactior” in the
multisetT is denoted bym(T').

A transaction is described by its characteristietuple ¢ =
(t1,...,tn), Where

L _uitier
"7 o0 otherwise

for 1 < k < N. The length of a transactiol’ is
IT| = Son_tk, while the average size of transactions is

Z{|T||‘7T\ In 7}
The support of a set of item& of the data sefl is the

number

_{TeT | KCT}

supp(K) 7]

The set of itemsX is s-frequent ifsupp(K) > s.

The study of market basket data sets is concerned wﬁ@ (

3.5
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Plots of averageCR;zrp(Ag, ) (CMP RTIO) and average
Sn, k) (DIST ENT) for randomly generated grapBs of equal number

the identification of association rules. A pair of item setsf edges with respect to the number of edges.

(X,Y) is an association rule, denoted by — Y. Its
support,supp(X — Y) equalssupp(X) and its confidence
conf(X — Y) is defined as

~ supp(X UY)

conf(X —»Y) = supp(X)



Using the artificial transaction ARMiner generator desedib  The use of compression as a measure of minability is
in [4], we created a basket data set. Transactions are replastrated on a variety of paradigms: graph data, markskéia
sented by sequences of bits,--- ,tx). The multisetT of data, etc. Compression has been applied in bioinformasics a
M transactions was represented as a binary string of lengthtool for reducing the size of immense data sets that are
MN obtained by concatenating the strings that represeggnerated in the genomic studies. Furthermore, spedalize

transactions. algorithms were developed that mine data in compressed
We generated files with 1000 transactions, with 100 itenfierm [10].
available in the basket, adding up to 100K bits. Our current work shows that identifying compressible areas

For data sets having the same number of items and trang-human DNA by comparing the compressibility of certain
actions, the efficiency of the compression increases whgenomic regions is a useful tool for detecting areas wheze th
the number of patterns is lower (causing more repetitiongjene replication mechanisms are disturbed (a phenomeabn th
In an experiment with an average size of a frequent iteaccurs in certain genetically based diseases).
set equal tol0, the average size of a transaction equal to
15, and the number of frequent item sets varying in the AKNOWLEDGEMENTS
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sion ratio had a S'gf_"f'cam variation ranging k_)etwe(]eﬁo from President of the University of Massachusetts.
and 0.75, as shown in Table VII. The correlation between )
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Although the frequency of 1s and baseline compression ratio

were roughly constant (at 0.75), the number of patterns and
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