

THE VAPNIK-CHERVONENKIS DIMENSION and LEARNABILITY

Dan A. Simovici

UMB, Doctoral Summer School Iasi, Romania What is Machine Learning?

The Vapnik-Chervonenkis Dimension

Probabilistic Learning

Potential Learnability

VCD and Potential Learnability

Nets and Learnability

We are given a sequence of points on a two-dimensional grid such that:

- each blue point is inside an unknown shape;
- each red point is outside an unknown shape.

How many points we need until we can say with a "reasonable" degree of certainty what is the shape?

The Complexities of a Grid

We'll see a 45×33 -grid containing 1485 points. With this set we can:

• draw 2¹⁴⁸⁵ shapes, which is about

$$10^{500}$$

• define 2²¹⁴⁸⁵ families of shapes, which is about

$$10^{\frac{10^{500}}{3}}$$

• for comparison, the number of atoms in our Universe is about 10⁸⁰!

5

Why it is difficult to determine what is the "right" shape?

We are seeking to determine a concept starting from a series of examples.

- The concept class is too broad.
- We need to limit the class of concepts and to formulate a hypothesis that is consistent with the examples examined.
- Formalization must be introduced such that we know precisely what we are taking about.

Concepts, Positive and Negative Examples

Let $X \subseteq S^+$.

- X is the example space;
- A *concept* is a function $C: X \rightsquigarrow \{0,1\}$ (identifiable with a subset of X);
- If C(x) = 1, then x is a positive example; if C(x) = 0, then c is a negative example.
- $POS(C) = \{x \in X \mid C(x) = 1\}$ is the set of *positive examples*;
- $NEG(C) = \{x \in X \mid C(x) = 0\}$ is the set of *negative examples*;
- $dom(C) = POS(C) \cup NEG(C)$.

7

Concepts and Hypotheses

Two sets of concepts need to be considered:

- concepts from real world (the concept space C);
- concepts that an algorithm is capable of recognizing (the *hypothesis* space \mathcal{H}).

The central problem of ML: For each concept $C \in C$ find a hypothesis $H \in \mathcal{H}$ which is an approximation of C.

A hypothesis H for a concept C is formed by feeding a sequence of examples (positive and negative) of C to a learning algorithm L.

Lessons to be drawn:

- use concept classes that can be identified in feasible time with a guaranteed level of certainty;
- define the concept class: in our case, two-dimensional drawings of animals.

The Trace of a Collection of Sets

Let U be a set, $K \subseteq U$, and C be a collection of subsets of U. The *trace* of C on K is the collection of sets

$$\mathcal{C}_{K} = \{C \cap K \mid C \in \mathcal{C}\}$$

Set Shattering and the VCD

Let U be a set, $K \subseteq U$, and C be a collection of subsets of U. If $C_K = \mathcal{P}(K)$, then we say that K is shattered by C.

Definition

The *Vapnik-Chervonenkis dimension* of the collection \mathcal{C} (called the VC-dimension for brevity) is the largest cardinality of a set K that is shattered by \mathcal{C} and is denoted by $VCD(\mathcal{C})$.

Example

$$U = \{u_1, u_2, u_3, u_4\}$$
 and
$$\mathcal{C} = \{\{u_2, u_3\}, \{u_1, u_3, u_4\}, \{u_2, u_4\}, \{u_1, u_2\}, \{u_2, u_3, u_4\}\} .$$

 $\mathcal{K} = \{u_1, u_3\}$ is shattered by the collection \mathcal{C} because

$$\{u_1, u_3\} \cap \{u_2, u_3\} = \{u_3\}$$

$$\{u_1, u_3\} \cap \{u_1, u_3, u_4\} = \{u_1, u_3\}$$

$$\{u_1, u_3\} \cap \{u_2, u_4\} = \emptyset$$

$$\{u_1, u_3\} \cap \{u_1, u_2\} = \{u_1\}$$

$$\{u_1, u_3\} \cap \{u_2, u_3, u_4\} = \{u_3\}$$

The Tabular Form

u ₁	и2	из	и4	
0	1	1	0	
1	0	1	1	
0	1	0	1	
	1	0	0	
0	1	1	1	

T.

 $K = \{u_1, u_3\}$ is shattered by the collection C because $\mathbf{r}[K] = ((0,1), (1,1), (0,0), (1,0), (0,1))$ contains the all four necessary tuples (0,1), (1,1), (0,0), and (1,0).

No subset K of U with $|K| \ge 3$ can be shattered by C because this would require $|\mathbf{r}[K]| \ge 8$. Thus, VCD(C) = 2.

The Functional Form

Let $U = \{u_1, \dots, u_n\}.$

• Each set $C \subseteq U$ can be identified with its signed characteristic function $f_C: U \longrightarrow \{-1, 1\}$, where

$$f_C(x) = \begin{cases} 1 & \text{if } x \in C, \\ -1 & \text{otherwise.} \end{cases}$$

Thus, C can be regarded as a collection of function $\mathcal{F} \subseteq \{-1,1\}^U$.

• K with |K| = m is shattered by \mathcal{F} if for every $(b_1, \ldots, b_m) \in \{-1, 1\}^m$ there exists $f \in \mathcal{F}$ such that

$$(f(u_1),\ldots,f(u_m))=(b_1,\ldots,b_m).$$

• $VCD(\mathcal{F})$ is the cardinality of the largest subset of X that is shattered by \mathcal{F} .

Outline What is Machine Learning? The Vapnik-Chervonenkis Dimension Probabilistic Learning Potential Learnability VCD and

Theorem

Let U be a finite nonempty set and let C be a collection of subsets of U. If d = VCD(C), then $2^d \leq |C| \leq (|U| + 1)^d$.

Vapnik-Chervonenkis classes

For a collection of sets $\mathcal C$ and for $m\in\mathbb N$, let $\mathcal C[m]$ be

$$C[m] = \max\{|C_K| \mid |K| = m\}.$$

This is the largest number of distinct subsets of a set having m elements that can be obtained as intersections of the set with members of \mathcal{C} . In general, $\mathcal{C}[m] \leq 2^m$; however, if \mathcal{C} shatters a set of size m, then $\mathcal{C}[m] = 2^m$.

Definition

A Vapnik-Chervonenkis class (or a VC class) is a collection $\mathcal C$ of sets such that $VCD(\mathcal C)$ is finite.

Example

Let \mathcal{S} be the collection of sets $\{(-\infty,t)\mid t\in\mathbb{R}\}$. Any singleton is shattered by \mathcal{S} . Indeed, if $S=\{x\}$ is a singleton, then $\mathcal{P}(\{x\})=\{\emptyset,\{x\}\}$. Thus, if $t\geqslant x$, we have $(-\infty,t)\cap S=\{x\}$; also, if t< x, we have $(-\infty,t)\cap S=\emptyset$, so $\mathcal{S}_S=\mathcal{P}(S)$. There is no set S with |S|=2 that can be shattered by \mathcal{S} . Suppose that $S=\{x,y\}$, where x< y. Then, any member of \mathcal{S} that

contains y includes the entire set S, so $S_S = \{\emptyset, \{x\}, \{x,y\}\} \neq \mathcal{P}(S)$.

This shows that S is a VC class and VCD(S) = 1.

For $\mathcal{I} = \{[a, b] \mid a, b \in \mathbb{R}, a \leq b\}$ we have $VCD(\mathcal{I}) = 2$.

No three-element set can be shattered by \mathcal{I} .

Consider the intersections

$$[u, v] \cap S = \emptyset$$
, where $v < x$,
 $[x - \epsilon, \frac{x+y}{2}] \cap S = \{x\}$,
 $[\frac{x+y}{2}, y] \cap S = \{y\}$,
 $[x - \epsilon, y + \epsilon] \cap S = \{x, y\}$,

which show that $\mathcal{I}_S = \mathcal{P}(S)$.

No three-element set can be shattered by \mathcal{I} . Let $\mathcal{T} = \{x, y, z\}$. Any interval that contains x and z also contains y, so it is impossible to obtain the set $\{x, z\}$ as an intersection between an interval in \mathcal{I} and the set \mathcal{T} .

Example

Let \mathcal{H} be the collection of closed half-planes in \mathbb{R}^2 . We claim that $VCD(\mathcal{H})=3$.

Let P,Q,R be three points in \mathbb{R}^2 such that they are not located on the same line. Each line is marked with the sets it defines; thus, the family of hyperplanes shatters the set $\{P,Q,R\}$, so $VCD(\mathcal{H})$ is at least 3.

Example (cont'd)

No set that contains at least four points can be shattered by \mathcal{H} .

Let $\{P,Q,R,S\}$ be a set in general position. If S is located inside the triangle P,Q,R, then every half-plane that contains P,Q,R will contain S, so it is impossible to separate the subset $\{P,Q,R\}$. Thus, we may assume that no point is inside the triangle formed by the remaining three points.

Ρ

) *R*

5

Example (cont'd)

Q

P

R

• 5

Any half-plane that contains two diagonally opposite points, for example, P and R, will contain either Q or S, which shows that it is impossible to separate the set $\{P,R\}$. Thus, no set that contains four points may be shattered by \mathcal{H} , so $VCD(\mathcal{H})=3$.

Example

Let \mathcal{R} be the set of rectangles whose sides are parallel with the axes x and y. Each such rectangle has the form $[x_0, x_1] \times [y_0, y_1]$.

There is a set S with |S|=4 that is shattered by \mathcal{R} . Indeed, let S be a set of four points in \mathbb{R}^2 that contains a unique "northernmost point" P_n , a unique "southernmost point" P_s , a unique "easternmost point" P_e , and a unique "westernmost point" P_w . If $L\subseteq S$ and $L\neq\emptyset$, let R_L be the smallest rectangle that contains L.

Example (cont'd)

This collection cannot shatter a set of points that contains at least five points.

Indeed, let S be a set of points such that $|S| \geqslant 5$ and, as before, let P_n be the northernmost point, etc. If the set contains more than one "northernmost" point, then we select exactly one to be P_n . Then, the rectangle that contains the set $K = \{P_n, P_e, P_s, P_w\}$ contains the entire set S, which shows the impossibility of separating the set K.

Recapitulation

X	\mathcal{C}	VCD(C)
\mathbb{R}^2	convex polygons	∞
\mathbb{R}^2	axis-aligned rectangles	4
\mathbb{R}^2	convex polygons with d vertices	2d + 1
\mathbb{R}^d	closed half-spaces	d+1
\mathbb{R}^N	neural networks with	
	N parameters	$O(N \log N)$

- If C is not a VC class, then $C[m] = 2^m$ for all $m \in \mathbb{N}$.
- If VCD(C) = d, then C[m] is bounded asymptotically by a polynomial of degree d.

The number of subsets having at most d elements of a subset having m elements is:

$$\binom{n}{\leqslant k} = \sum_{i=0}^{k} \binom{n}{k}.$$

Theorem

Let $\phi: \mathbb{N}^2 \longrightarrow \mathbb{N}$ be the function defined by

$$\phi(d,m)=egin{cases} 1 & ext{if } m=0 ext{ or } d=0 \ \phi(d,m-1)+\phi(d-1,m-1) & ext{otherwise}. \end{cases}$$

We have
$$\phi(d, m) = \binom{m}{\leq d}$$
 for $d, m \in \mathbb{N}$.

Proof by strong induction on s = i + m

The base case: s=0 implies m=0 and d=0; the equality is immediate. Inductive case: suppose that the equality holds for $\phi(d',m')$, where d'+m'< d+m. We have

$$\begin{array}{lll} \phi(d,m) & = & \phi(d,m-1) + \phi(d-1,m-1) \\ & & (\text{by definition}) \\ & = & \sum_{i=0}^{d} \binom{m-1}{i} + \sum_{i=0}^{d-1} \binom{m-1}{i} \\ & (\text{by inductive hypothesis}) \\ & = & \sum_{i=0}^{d} \binom{m-1}{i} + \sum_{i=0}^{d} \binom{m-1}{i-1} \\ & (\text{since } \binom{m-1}{-1}) = 0) \\ & = & \sum_{i=0}^{d} \binom{m}{i} + \binom{m-1}{i-1} \\ & = & \sum_{i=0}^{d} \binom{m}{i} = \binom{m}{\leqslant d}, \end{array}$$

Proof by strong induction on s = d + m

The base case: for s=0, d=m=0 so $\mathcal C$ shatters only the empty set. Thus, $\mathcal C[0]=|\mathcal C_\emptyset|=1$, and therefore $\mathcal C[0]=1=\phi(0,0)$.

Inductive case: suppose that the statement holds for pairs (d', m') such that d' + m' < s and let C be a collection of subsets of S such that VCD(C) = d.

Let |K|=m and let $k_0\in K$ be a fixed (but, otherwise, arbitrary) element of K. Consider the trace $\mathcal{C}_{K-\{k_0\}}$. Since $|K-\{k_0\}|=m-1$, we have, by the inductive hypothesis, $|\mathcal{C}_{K-\{k_0\}}|\leqslant \phi(d,m-1)$.

Proof by strong induction on s = d + m (cont'd)

Let C' be the collection of sets given by

$$\mathcal{C}' = \{G \in \mathcal{C}_K \mid k_0 \not\in G, G \cup \{k_0\} \in \mathcal{C}_K\}.$$

Observe that $\mathcal{C}' = \mathcal{C}'_{K-\{k_0\}}$ because \mathcal{C}' consists only of subsets of $K-\{k_0\}$. Further, note that the Vapnik-Chervonenkis dimension of \mathcal{C}' is less than d. Indeed, let K' be a subset of $K-\{k_0\}$ that is shattered by \mathcal{C}' . Then, $K' \cup \{k_0\}$ is shattered by \mathcal{C} . hence |K'| < d. By the inductive hypothesis, $|\mathcal{C}'| = |\mathcal{C}_{K-\{k_0\}}| \le \phi(d-1,m-1)$.

Proof by strong induction on s = d + m (cont'd)

The C_K can be regarded as the union of two disjoint collections:

- those subsets in C_K that do not contain the element k_0 $(C_{K-\{k_0\}})$
- those subsets of K that contain k_0 .

If L is a second type of subset, then $L - \{k_0\}$ is clearly a member of C'. Thus, we have

$$|\mathcal{C}_{K}| = |\mathcal{C}_{K-\{k_{0}\}}| + |\mathcal{C}'_{K-\{k_{0}\}}|$$

This equality implies

$$|\mathcal{C}_K| \leqslant \phi(d, m-1) + \phi(d-1, m-1),$$

the desired conclusion.

Sauer-Shelah Theorem

Theorem

If \mathcal{C} is a collection of subsets of S that is a VC-class such that $VCD(\mathcal{C}) = d$, then $\mathcal{C}[m] \leqslant \phi(d,m)$ for $m \in \mathbb{N}$.

Proof by strong induction on s = d + m

The base case: for s=0, d=m=0 so $\mathcal C$ shatters only the empty set. Thus, $\mathcal C[0]=|\mathcal C_\emptyset|=1$, and therefore $\mathcal C[0]=1=\phi(0,0)$. Inductive case: suppose that the statement holds for pairs (d',m') such

that d' + m' < s and let \mathcal{C} be a collection of subsets of S such that $VCD(\mathcal{C}) = d$.

Let |K|=m and let $k_0\in K$ be a fixed (but, otherwise, arbitrary) element of K. Consider the trace $\mathcal{C}_{K-\{k_0\}}$. Since $|K-\{k_0\}|=m-1$, we have, by the inductive hypothesis, $|\mathcal{C}_{K-\{k_0\}}|\leqslant \phi(d,m-1)$.

Proof by strong induction on s = d + m (cont'd)

Let C' be the collection of sets given by

$$\mathcal{C}' = \{G \in \mathcal{C}_K \mid k_0 \notin G, G \cup \{k_0\} \in \mathcal{C}_K\}.$$

Observe that $\mathcal{C}' = \mathcal{C}'_{K-\{k_0\}}$ because \mathcal{C}' consists only of subsets of $K-\{k_0\}$. Further, note that the Vapnik-Chervonenkis dimension of \mathcal{C}' is less than d. Indeed, let K' be a subset of $K-\{k_0\}$ that is shattered by \mathcal{C}' . Then, $K' \cup \{k_0\}$ is shattered by \mathcal{C} . hence |K'| < d. By the inductive hypothesis, $|\mathcal{C}'| = |\mathcal{C}_{K-\{k_0\}}| \le \phi(d-1,m-1)$.

Proof by strong induction on s = d + m (cont'd)

The C_K can be regarded as the union of two disjoint collections:

- those subsets in C_K that do not contain the element k_0 $(C_{K-\{k_0\}})$
- those subsets of *K* that contain *k*₀.

If L is a second type of subset, then $L - \{k_0\}$ is clearly a member of C'. Thus, we have

$$|\mathcal{C}_{K}| = |\mathcal{C}_{K-\{k_{0}\}}| + |\mathcal{C}'_{K-\{k_{0}\}}|$$

This equality implies

$$|\mathcal{C}_K| \leqslant \phi(d, m-1) + \phi(d-1, m-1),$$

the desired conclusion.

Lemma

Lemma

We have
$$\phi(d, m) \leqslant \frac{2m^d}{d!}$$

Proof: If d=1, this amounts to $\phi(1,m)=m+1\leqslant 2m$, which is obvious. Thus, we assume that d>1. For m=d we prove that $\phi(d,d)=2^d\leqslant \frac{2d^d}{d!}$, by induction on d.

The base case: for d = 1 the inequality is immediate.

The inductive case: Suppose that $2^d \leqslant \frac{2d^d}{d!}$. We have

$$\begin{split} 2^{d+1} &= 2 \cdot 2^d & \leqslant & \left(\frac{d+1}{d}\right)^d \cdot 2^d \\ & \left(\text{ by the well-known inequality } 2 < \left(\frac{d+1}{d}\right)^d\right) \\ & \leqslant & \left(\frac{d+1}{d}\right)^d \cdot \frac{2d^d}{d!} \\ & = & 2\frac{(d+1)^{d+1}}{(d+1)!} \,, \end{split}$$

which concludes the induction.

Proof (cont'd)

For a given d the argument is by induction on m, where $m \ge d$.

The base case: we presented the argument for m = d.

The inductive case: Since $\phi(d+1,m+1) = \phi(d+1,m) + \phi(d,m)$, it suffices to show that

$$2\frac{m^d}{d!} + 2\frac{m^{d+1}}{(d+1)!} \leqslant 2\frac{(m+1)^{d+1}}{(d+1)!}.$$

By multiplying both sides by $\frac{1}{2} \frac{d!}{m^d}$ we have the equivalent and immediate inequality

$$1 + \frac{m}{d+1} \leqslant \left(1 + \frac{1}{m}\right)^{d+1},$$

which concludes the proof.

A Second Lemma

Lemma

For $d \geqslant 1$ we have $2\left(\frac{d}{e}\right)^d < d!$.

Proof: The argument is by induction on d.

The base case: for d = 1 the proof is immediate.

The inductive case: suppose that the inequality holds for d. Then, for d+1 we have

$$\begin{split} 2\left(\frac{d+1}{e}\right)^{d+1} &=& 2\left(\frac{d+1}{d}\right)^{d}\frac{d+1}{d}\frac{d^{d+1}}{e^{d+1}}\\ &\leqslant& 2e\frac{d+1}{d}\frac{d^{d+1}}{e^{d+1}}\\ &\qquad \left(\text{because }\left(\frac{d+1}{d}\right)^{d}\leqslant e\right)\\ &=& 2(d+1)\frac{d^{d}}{e^{d}}\leqslant (d+1)!\\ &\qquad (\text{by inductive hypothesis}). \end{split}$$

An Inequality Involving ϕ

Theorem

For all $m \geqslant d \geqslant 1$ we have

$$\phi(d,m)<\left(\frac{em}{d}\right)^d$$
.

Proof: the theorem follows by combining the previous two lemmas.

A Corollary of Sauer-Shelah Theorem

Corollary

If $\mathcal C$ is a collection of subsets of S that is a VC-class such that $VCD(\mathcal C)=d$, then $\mathcal C[m]\leqslant \left(\frac{em}{d}\right)^d$ for $m\geq d\geqslant 1$.

Sequences on Sets

- **Seq**_n(S) is the set of all sequences of length n on S, also denoted by S^n ;
- Seq $(S) = \bigcup_{n \in \mathbb{N}}$ Seq $_n(S)$ is the set of all sequences on S, also denoted by S^* ;
- **Seq**₀(S) consists of the null sequence λ ;
- $S^+ = S^* \{\lambda\}$ is the set of non-null sequences on S.

Samples

Definition

A sample of length m, where $m \ge 1$, is an m-tuple $\mathbf{s} = ((x_1, b_1), \dots, (x_m, b_m)) \in \mathbf{Seq}_m(X \times \{0, 1\})$ that satisfies the coherence condition: $x_i = x_i$ implies $b_i = b_i$ for $1 \le i, j \le m$.

- $\mathbf{s} = ((x_1, b_1), \dots, (x_m, b_m))$ is a *training sample* for a target concept T if $b_i = T(x_i)$ for $1 \le i \le m$.
- A hypothesis H is *consistent with* s if $H(x_i) = b_i$ for $1 \le i \le m$.

Rays in ℝ

Definition

A θ -ray is a set

$$Y_{\theta} = \{x \in \mathbb{R} \mid x \geqslant \theta\}.$$

Special case:

$$Y_{\infty} = \emptyset$$
.

The space of rays is $\mathcal{H}_{rays} = \{ Y_{\theta} \mid \theta \in \mathbb{R} \}.$

L - An Algorithm for Learning Rays

Input: a training sample $\mathbf{s} = ((x_1, b_1), \dots, (x_m, b_m))$, where $x_i \in \mathbb{R}$ and $b_i \in \{0, 1\}$ for $1 \le i \le m$. **Output:** a hypothesis in H_{ravs} .

Algorithm:

```
\lambda=\infty; for i=1 to m do if b_i=1 and x_i<\lambda then \lambda=x_i; L({m s})=Y_\lambda;
```

Sequence of hypotheses

Probably Approximative Correct Learning

Main features of the model:

- a training sample **s** of length m for a target concept C is generated by drawing from the probability space $\mathfrak{X} = (X, \mathcal{E}, P)$ according to some fixed probability distribution;
- a learning algorithm L produces a hypothesis L(s) intended to approximate t;
- as m increases the expectation is that the error of using L(s) instead of C decreases.

The Error of a Hypothesis

Assumptions:

- the target concept C belongs to a hypothesis space $\mathcal H$ available to the learner;
- the error of a hypothesis H with respect to C is

$$err_P(H, C) = P(\lbrace x \in X \mid H(x) \neq C(x) \rbrace)$$

• $\{x \in X \mid H(x) \neq C(x)\} \in \mathcal{E}$.

Probabilistic Framework

Given $\mathfrak{X} = (X, \mathcal{E}, P)$, consider the product probability space $\mathfrak{X}^m = (X^m, \mathcal{E}^m, P^{(m)})$.

independent random variables, identically distributed;

• the components of a sample $\mathbf{s} = (x_1, \dots, x_m)$ are regarded as m

- S(m, C): the set of training samples of size m for a target concept C;
- the probability on the product space $P^{(m)}$ will be still denoted by P.

Probably Approximately Correct Algorithms

L. Valiant:

- δ : a confidence parameter;
- ullet ϵ : accuracy parameter;

An algorithm L is probably approximately correct (PAC) if given $\delta \in (0,1)$ and $\epsilon \in (0,1)$, there is a positive integer $m_0 = m_0(\delta,\epsilon)$ such that for any target concept $C \in \mathcal{H}$ and for any probability P on X, $m \geqslant m_0$ implies

$$P(\{s \in S(m,t) \mid err_P(L(s),C) < \epsilon\}) > 1 - \delta.$$

Essential Feature: m_0 depends only on δ and ϵ .

Learning Rays is PAC

- target concept Y_{θ} , δ , ϵ and P:
- s: a training sample of length m;
- error set: $L(\mathbf{s}) = y_{\lambda}$ and $[\theta, \lambda)$;
- define $\beta_0 = \sup\{\beta \mid P([\theta, \beta)) < \epsilon\}.$

Note that

$$P([\theta, \beta_0)) \leqslant \epsilon$$

 $P([\theta, \beta_0]) \geqslant \epsilon$

If $\lambda \leqslant \beta_0$ then

$$err_P(L(\mathbf{s}), Y_{\theta}) = err_P(Y_{\lambda}, Y_{\theta}) = P([\theta, \lambda)) \leqslant P([\theta, \beta_0)) \leqslant \epsilon.$$

The Hypothesis Space of Axis-Aligned Rectangles

Axis-aligned close rectangles (referred to as rectangles) are specified by the coordinates of their southwestern and northeastern corners; (x_1, y_1) and (x_2, y_2) . Such a rectangle is denoted by $[x_1, y_1; x_2, y_2]$, The PAC-learnability was analyzed by Kearns and Vazirani.

$$[x_1, y_1; x_2, y_2] = \{(x, y) \in \mathbb{R}^2 \mid x \in [x_1, x_2], y \in [y_1, y_2]\}.$$

A Learning Strategy

- Construct an axis-aligned rectangle that gives the tightest fit to the positive rectangles.
- This strategy will yield a hypothesis R such that $R \subseteq R_0$.
- If no positive example exist, $R = \emptyset$.
- Error is $P(R R_0)$.

Other Possible Learning Strategies:

- constructing the largest rectangle that excludes all negative examples, or
- constructing a rectangle located at mid-distance between the positive and the negative examples.

L - An Algorithm for Learning Axis-Aligned Rectangles

```
Input: a training sample \mathbf{s} = ((x_1, y_1), b_1), \dots, (x_m, y_m), b_m).
Output: a hypothesis R in R.
Algorithm:
 R = [u_1, v_1; u_1, v_1];
 i = 1:
 for i = 1 to m do
    if (b_i = 1)
      R = R \star (x_i, y_i);
    endif:
    i = i + 1
 endfor
 L(\mathbf{s}) = R:
```

The Hypothesis Space

- \mathcal{H} : hypothesis space defined on an example space X;
- L: learning algorithm for \mathcal{H} ; L is consistent if for any training sample **s** for a target concept $T \in \mathcal{H}$, the output hypothesis H of L agrees with T on examples in **s**, that is, $H(x_i) = T(x_i)$ for $1 \le i \le |s|$.
- S(m, T): set of samples of length m for the target concept T.
- $\mathcal{H}[s]$: set of hypothesis consistent with s:

$$\mathcal{H}[\mathbf{s}] = \{ H \in \mathcal{H} \mid H(x_i) = T(x_i) \text{ for } 1 \leqslant i \leqslant m \}.$$

Definitions

- P: a probability distribution on X; T is a target concept;
- define $err(H, T) = P\{x \in X \mid H(x) \neq T(x)\};$
- for $\mathbf{s} = ((x_1, b_1), \dots, (x_m, b_m))$ define

$$err_s(H, T) = \frac{1}{m} \cdot |\{i \mid b_i = T(x_i) \neq H(x_i)\}|$$

• the set of ϵ -bad hypotheses for T is

$$\mathsf{BAD}_{\epsilon}(T) = \{ H \in \mathcal{H} \mid \mathit{err}(H, T) \geqslant \epsilon \}.$$

A consistent learning algorithm L for \mathcal{H} when presented with a sample s produces a hypothesis $H \in \mathcal{H}$ that is consistent with s, that is a hypothesis in $\mathcal{H}[s]$.

The PAC property requires that such an output is unlikely to be ϵ -bad.

Potential Learnability of a Hypothesis Space

Definition

A hypothesis space \mathcal{H} is *potentially learnable* if given $\delta, \epsilon \in (0,1)$ there is a positive integer $m_0 = m_0(\delta, \epsilon)$ such that, $m \geqslant m_0$ implies

$$P(\mathbf{s} \in S(m, T) \mid \mathcal{H}[\mathbf{s}] \cap \mathsf{BAD}_{\epsilon}(T) = \emptyset) > 1 - \delta$$

for any probability distribution P and any target T.

Theorem

If $\mathcal H$ is potentially learnable and L is a consistent learning algorithm, then L is PAC.

Proof: If L is consistent, then $L(s) \in \mathcal{H}[s]$. Thus, the condition $\mathcal{H}[s] \cap \mathsf{BAD}_{\epsilon}(T) = \emptyset$ means that $\mathit{err}(T, L(s)) < \epsilon$.

Potential Learnability of Finite Hypotheses Space

Theorem

If ${\cal H}$ is finite, then it is potentially learnable.

Proof

Suppose that \mathcal{H} is finite and ϵ, δ, T and P are given.

Claim: $P(\mathcal{H}[s] \cap \mathsf{BAD}_{\epsilon}(T) \neq \emptyset)$ can be made sufficiently small if m, the size of s is large enough.

- $P\{x \in X \mid H(x) = T(x)\} = 1 err(T, H) \le 1 \epsilon$.
- Probability that any one ϵ -bad hypothesis is in $\mathcal{H}[\mathbf{s}]$: $P^m\{\mathbf{s} \mid H(x_i) = T(x_i) \text{ for } 1 \leq i \leq m\} \leq (1 \epsilon)^m$.
- Probability that there is some ϵ -bad hypothesis in $\mathcal{H}[\mathbf{s}]$: $P^m(\mathbf{s} \mid \mathcal{H}[\mathbf{s}] \cap \mathsf{BAD}_{\epsilon}(T) \neq \emptyset) \leqslant |\mathcal{H}|(1-\epsilon)^m$.
- If

$$m\geqslant m_0=\left\lfloor rac{1}{\epsilon}\lnrac{|\mathcal{H}|}{\delta}
ight
floor,$$

then

$$|\mathcal{H}|(1-\epsilon)^m \leqslant |\mathcal{H}|(1-\epsilon)^{m_0} < |\mathcal{H}|e^{-\epsilon m_0} \leqslant |\mathcal{H}|e^{\ln(\delta/|\mathcal{H}|)} = \delta.$$

Outline What is Machine Learning? The Vapnik-Chervonenkis Dimension Probabilistic Learning Potential Learnability VCD and

Theorem

If a hypothesis space ${\cal H}$ has infinite VCD, then ${\cal H}$ is not potentially learnable.

Proof

Suppose that $VCD(\mathcal{H}) = \infty$. There exists a sample z of length 2m which is shattered by \mathcal{H} .

- E_z : set of examples of z.
- P a probability on X such that

$$P(x) = \begin{cases} \frac{1}{2m} & \text{if } x \in E_{\mathbf{z}}, \\ 0 & \text{otherwise.} \end{cases}$$

With probability 1 a random sample x of length m is a sample of examples from E_z .

• Since ${\bf z}$ is shattered by ${\mathcal H}$, there exists $H\in {\mathcal H}$ such that $H(x_i)=T(x_i)$ for $1\leqslant i\leqslant m$ and $H(x_i)\ne T(x_i)$ for $m+1\leqslant i\leqslant 2m$. Thus, $err(H,T)\geqslant \frac{1}{2}$. Thus, any positive m and any target concept T, there is P such that $P({\bf s}\in S(m,T)\mid {\mathcal H}[{\bf s}]\cap {\sf BAD}_\epsilon(T)=\emptyset)=0$.

There is no positive integer $m_0 = m_0(0.5, 0.5)$ such that $m > m_0$ such that $P(\mathbf{s} \in S(m, T) \mid \mathcal{H}[\mathbf{s}] \cap \text{BAD}_{0.5}(T) = \emptyset) > 0.5$.

An Example of a Hypothesis Space of Infinite VDC

Let $\mathcal U$ be the collection of finite union of closed intervals of $\mathbb R$. Let $\mathbf z$ be a sample and let $E_{\mathbf z}$ be the set of example in $\mathbf z$. If $A\subseteq E_{\mathbf z}$, define U_A to the union of closed intervals, such that each interval contains exactly one element of A. Then, $U_A\cap E_{\mathbf z}=A$, so $\mathcal U$ shatters A.

Lemma

Lemma

For c > 0 and x > 0 we have

$$\ln x \leqslant \left(\ln \frac{1}{c} - 1\right) + cx.$$

Proof: Let $f: \mathbb{R}_{>0} \longrightarrow \mathbb{R}$ be the function $f(x) = \ln \frac{1}{c} - 1 + cx - \ln x$. Note that $\lim_{x \to 0} f(x) = +\infty$ and $\lim_{x \to \infty} f(x) = +\infty$. Also,

$$f'(x) = c - \frac{1}{x}$$
 and $f''(x) = \frac{1}{x^2}$,

so f has a minimum for $x = \frac{1}{c}$. Since $f\left(\frac{1}{c}\right) = 0$, the inequality follows.

Outline What is Machine Learning? The Vapnik-Chervonenkis Dimension Probabilistic Learning Potential Learnability VCD and

Let T be a target concept, $T \in \mathcal{C}$. The class of *error regions with respect* to T is

$$\Delta(\mathcal{C},T) = \{C \oplus T \mid C \in \mathcal{C}\}.$$

Also, for $\epsilon \geqslant 0$, let

$$\Delta_{\epsilon}(C, T) = \{E \in \Delta(C, T) \mid P(E) \geqslant \epsilon\}.$$

Theorem

 $VDC(\Delta(C, T)) = VDC(C)$ for any $T \in C$.

Proof: Let K be a fixed concept and let $\phi: \mathcal{C}_K \longrightarrow \Delta(\mathcal{C}, T)_K$ be

$$\phi(C \cap T) = (C \oplus T) \cap K$$

for $C \in \mathcal{C}$. ϕ is a bijection, for if

$$(C_1 \oplus T) \cap K = (C_2 \oplus T) \cap K$$

we have $C_1 \cap K_1 = C_2 \cap K_2$.

ϵ -Nets

Definition

A set S is an ϵ -net for (C, T) if for every $R \in \Delta_{\epsilon}(C, T)$ we have $S \cap R \neq \emptyset$. (S hits R)

- Equivalently: S is an ϵ -net for $\Delta(\mathcal{C}, T)$ if $R \in \Delta(\mathcal{C}, T)$ and $P(R) \geqslant \epsilon$ imply $S \cap R \neq \emptyset$.
- S fails to be an ϵ -net for (\mathcal{C}, T) if there exists an error region $R \in \Delta_{\epsilon}(\mathcal{C}, T)$ such that $S \cap R = \emptyset$, so if there exists an error region that is missed by S.

Example

- X = [0,1] equipped with the uniform probability P;
- $C = \{[a, b] \mid a, b \in [0, 1]\} \cup \{\emptyset\};$
- if $T = \emptyset$, $\Delta(C, C) = C$;

$$S = \left\{ k\epsilon \ \middle| \ 1 \leqslant k \leqslant \left\lceil rac{1}{\epsilon}
ight
ceil
ight\}$$

is an ϵ -net for $\Delta(\mathcal{C}, \emptyset)$.

A Property of ϵ -Nets

Theorem

Let **s** be a sequence of examples. If there exits an ϵ -net for $\Delta_{\epsilon}(C, T)$ and the output of the learning algorithm L is a hypothesis $H = L(\mathbf{s}) \in C$ that is consistent with \mathbf{s} , then the error of H must be less than ϵ .

Proof: Since H is consistent with \boldsymbol{s} , $T \oplus H$ was not hit by $E_{\boldsymbol{s}}$ (otherwise H would not be consistent with \boldsymbol{s}). Thus, $T \oplus H \not\in \Delta_{\epsilon}(\mathcal{C}, T)$, so $err(H) = P(T \oplus H) \leqslant \epsilon$.

Main Theorem

Theorem

(Blumer et al.) Let C be a concept class such that VCD(C) = d. Then, C is potentially learnable.

The proof consists in proving that $m \geqslant \frac{4}{\epsilon} \left(d \log \frac{12}{\epsilon} + \log \frac{2}{\delta} \right)$.

Chernoff's Bound

X is a binomial variable that corresponds to m drawings and probability of success is p. Then,

$$P(X \leqslant s) \leqslant e^{-\frac{-\beta^2 mp}{2}}$$

where $\beta = 1 - \frac{s}{mp}$.

Draw a sequence x of m-random samples.

- A: takes place when \mathbf{x} misses some $R \in \Delta_{\epsilon}(\mathcal{C}, T)$, that is, when \mathbf{x} fails to form an ϵ -net for $\Delta(\mathcal{C}, T)$;
- fix R and draw a second m-sample y;
- *B*: the combined event that takes place when:
 - we draw a sequence **xy** of length 2m,
 - A occurs on **x**,
 - and \mathbf{y} has at least $\frac{m\epsilon}{2}$ hits in R in $\Delta_{\epsilon}(\mathcal{C}, T)$.

Let "success" be defined as occurring when an error occurs, that is, when $H(x) \neq T(x)$.

- let $p = P(\{x \in X \mid H(x) \neq T(x)\});$
- let $\ell_{p,m,s}$ be the probability of having at most s successes in m drawings; by the Chernoff bound for the binomial distribution we have

$$\ell_{p,m,s} \leqslant e^{-\frac{\beta^2 mp}{2}},$$

where
$$s = (1 - \beta)mp$$
.

• if we have at most s successes in m drawings, then

$$\operatorname{\textit{err}}_{\mathbf{y}}(H,T) = \frac{1}{m} \cdot |\{i \mid H(y_i) \neq T(y_i)\}| \leqslant \frac{s}{m},$$

so $m \cdot err_{\mathbf{y}}(H, T)$ is a binomially distributed random variable with probability of success $err_{\mathbf{y}}(H, T) > \epsilon$;

• by applying these definitions we have:

$$\begin{split} P\left(\left\{\boldsymbol{y} \mid \textit{err}_{\boldsymbol{y}}(H,T) \leqslant \frac{\epsilon}{2}\right\}\right) \\ &= P\left(\left\{\boldsymbol{y} \mid m \cdot \textit{err}_{\boldsymbol{y}}(H,T) \leqslant \frac{m \cdot \epsilon}{2}\right\}\right) \\ &= \ell\left(\epsilon, m, \frac{m \cdot \epsilon}{2}\right). \end{split}$$

Application of Chernoff's Bound

- $\beta = 1 \frac{s}{m\epsilon} = 1 \frac{\frac{mr\epsilon}{2}}{m\epsilon} = \frac{1}{2}$ $\ell(\epsilon, m, \frac{m\epsilon}{2}) \leqslant e^{-\frac{m\epsilon}{8}}$
- for $m \geqslant \frac{8}{\epsilon}$, $\ell(\epsilon, m, \frac{m \cdot \epsilon}{2}) \leqslant \frac{1}{\epsilon}$.

$$P\left(\left\{\mathbf{y} \mid \operatorname{err}_{\mathbf{y}}(H, T) \leq \frac{\epsilon}{2}\right\}\right) \leqslant \frac{1}{\epsilon},$$

which implies for any $H \in BAD_{\epsilon}(T)$:

$$P\left(\left\{\mathbf{y} \mid \mathit{err}_{\mathbf{y}}(H, T) > \frac{\epsilon}{2}\right\}\right) \leqslant 1 - \frac{1}{\epsilon} > \frac{1}{2}.$$

The link between P(A) and P(B)

• Since $P(B|A) \geqslant \frac{1}{2}$ and $B \subseteq A$, we have

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{P(B)}{P(A)} \geqslant \frac{1}{2},$$

so
$$2P(B) \geqslant P(A)$$
.

• An upper bound on P(A) can be found through an upper bound on P(B).

Another way of looking to this problem

- draw randomly 2m balls;
- fix a region R in $R \in \Delta_{\epsilon}(C, T)$ such that $|R| \geqslant \frac{\epsilon m}{2}$;
- randomy divide these into **x** and **y**;
- analyze the probability that none of the x_i is in R with respect to the random division into x and y;
- summing up over all possible fixed R and applying the union bound we obtain a bound on P(B).

Reduction to A Combinatorial Problem

- an urn with 2m balls colored red or blue with ℓ red balls;
- divide the balls randomly into two groups S_1 and S_2 of equal size m;
- find an upper bound on the probability that all ℓ red balls fall in S_2 ;

A Combinatorial Problem (cont'd)

- there are $\binom{2m}{\ell}$ ways to paint 2m balls in red;
- if the red balls occur only in S_2 there are $\binom{m}{\ell}$ ways to paint in red these balls:
- the probability that all ℓ red balls belong to S_2 is

$$\frac{\binom{m}{\ell}}{\binom{2m}{\ell}} = \frac{\frac{m!}{\ell!(m-\ell)!}}{\frac{(2m)!}{\ell!(2m-\ell)!}} \\
= \frac{m!(2m-\ell)!}{(m-\ell)!(2m)!} \\
= \prod_{i=0}^{\ell} \frac{m-i}{2m-i} \leqslant \prod_{i=0}^{\ell} \frac{1}{2} = 2^{-\ell}.$$

Thus

$$P(B) \le \phi(d,2m)2^{-\frac{m\epsilon}{2}}$$
 $\le \left(\frac{2em}{d}\right)^d \cdot 2^{-\frac{m\epsilon}{2}}$
by the corollary of Sauer-Shelah Theorem

Therefore,

$$P(A) \leqslant 2P(B) \leqslant 2\left(\frac{2em}{d}\right)^d \cdot 2^{-\frac{m\epsilon}{2}}$$

The following statements are equivalent:

- $2\left(\frac{2em}{d}\right)^d \cdot 2^{-\frac{m\epsilon}{2}} \leq \delta$;
- $d \ln \left(\frac{2e}{d}\right) + d \ln m \frac{\epsilon m}{2} \ln 2 \leqslant \ln \frac{\delta}{2}$;
- $\frac{\epsilon m}{2} \ln 2 d \ln m \geqslant d \ln \frac{2\epsilon}{d} + \ln \frac{2}{\delta}$;
- choosing $c = \frac{\epsilon \ln 2}{4d}$ and x = m in the inequality $\ln x \le \left(\ln \frac{1}{c} 1\right) + cx$ proven in the lemma,

$$d \ln m \leqslant d \left(\ln \frac{4d}{\epsilon \ln 2} - 1 \right) + \frac{\epsilon \ln 2}{4} m.$$

Combining the inequalities

$$\frac{\epsilon m}{2} \ln 2 \geqslant d \ln m + d \ln \frac{2e}{d} + \ln \frac{2}{\delta}$$

$$d \ln m \leqslant d \left(\ln \frac{4d}{\epsilon \ln 2} - 1 \right) + \frac{\epsilon \ln 2}{4} m$$

it follows that it suffices to have

$$\frac{\epsilon m}{4} \ln 2 \geqslant d \left(\ln \frac{4d}{\epsilon \ln 2} - 1 \right) + d \ln \frac{2e}{d} + \ln \frac{2}{\delta}$$

$$= d \ln \frac{8e}{\epsilon \ln 2} + \ln \frac{2}{\delta} - d = d \ln \frac{8}{\epsilon \ln 2} + \ln \frac{2}{\delta}.$$

Since $\frac{8}{\ln 2}$ < 12 the inequality

$$\frac{\epsilon m}{4} \ln 2 \geqslant d \ln \frac{8}{\epsilon \ln 2} + \ln \frac{2}{\delta}$$

can be satisfied by taking m such that

$$\frac{\epsilon m}{4} \ln 2 \geqslant d \ln \frac{12}{\epsilon} + \ln \frac{2}{\delta},$$

so $m \geqslant \frac{4}{\epsilon} \left(d \log \frac{12}{\epsilon} + \log \frac{2}{\delta} \right)$, which concludes the proof.

Where to look further...

- M. Anthony and N. Biggs: Computational Learning Theory, Cambridge, 1997
- V.N. Vapnik: Statistical Learning Theory, J. Wiley, 1998
- M. Vidyasagar: Learning and generalization with applications to neural networks, Springer Verlag, 2003
- D. Simovici and C. Djeraba: Mathematical Tools for Data Mining, Springer, 2008