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We are given a sequence of points on a two-dimensional grid such that:
• each blue point is inside an unknown shape;
• each red point is outside an unknown shape.

How many points we need until we can say with a “reasonable” degree of
certainty what is the shape?
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The Complexities of a Grid

We’ll see a 45× 33-grid containing 1485 points. With this set we can:

• draw 21485 shapes, which is about

10500

• define 221485
families of shapes, which is about

10
10500

3

• for comparison, the number of atoms in our Universe is about 1080!
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Why it is difficult to determine what is the “right” shape?

We are seeking to determine a concept starting from a series of examples.
• The concept class is too broad.
• We need to limit the class of concepts and to formulate a hypothesis

that is consistent with the examples examined.
• Formalization must be introduced such that we know precisely what

we are taking about.
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Concepts, Positive and Negative Examples

Let X ⊆ S+.
• X is the example space;
• A concept is a function C : X ; {0, 1} (identifiable with a subset of

X );
• If C (x) = 1, then x is a positive example; if C (x) = 0, then c is a

negative example.

• POS(C ) = {x ∈ X | C (x) = 1} is the set of positive examples;
• NEG(C ) = {x ∈ X | C (x) = 0} is the set of negative examples;
• dom(C ) = POS(C ) ∪ NEG(C ).
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Concepts and Hypotheses

Two sets of concepts need to be considered:

• concepts from real world (the concept space C);
• concepts that an algorithm is capable of recognizing (the hypothesis

space H).

The central problem of ML: For each concept C ∈ C find a hypothesis
H ∈ H which is an approximation of C .
A hypothesis H for a concept C is formed by feeding a sequence of
examples (positive and negative) of C to a learning algorithm L.
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Lessons to be drawn:

• use concept classes that can be identified in feasible time with a
guaranteed level of certainty;

• define the concept class: in our case, two-dimensional drawings of
animals.
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The Trace of a Collection of Sets

Let U be a set, K ⊆ U, and C be a collection of subsets of U.
The trace of C on K is the collection of sets

CK = {C ∩ K | C ∈ C}
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Set Shattering and the VCD

Let U be a set, K ⊆ U, and C be a collection of subsets of U.
If CK = P(K ), then we say that K is shattered by C.

Definition

The Vapnik-Chervonenkis dimension of the collection C (called the
VC-dimension for brevity) is the largest cardinality of a set K that is
shattered by C and is denoted by VCD(C).
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Example

U = {u1, u2, u3, u4} and

C = {{u2, u3}, {u1, u3, u4}, {u2, u4}, {u1, u2}, {u2, u3, u4}} .

K = {u1, u3} is shattered by the collection C because

{u1, u3} ∩ {u2, u3} = {u3}
{u1, u3} ∩ {u1, u3, u4} = {u1, u3}
{u1, u3} ∩ {u2, u4} = ∅
{u1, u3} ∩ {u1, u2} = {u1}

{u1, u3} ∩ {u2, u3, u4} = {u3}
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The Tabular Form

TC
u1 u2 u3 u4
0 1 1 0
1 0 1 1
0 1 0 1
1 1 0 0
0 1 1 1

K = {u1, u3} is shattered by the collection C because
rrr [K ] = ((0, 1), (1, 1), (0, 0), (1, 0), (0, 1)) contains the all four necessary
tuples (0, 1), (1, 1), (0, 0), and (1, 0).
No subset K of U with |K | > 3 can be shattered by C because this would
require |rrr [K ]| > 8. Thus, VCD(C) = 2.
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The Functional Form

Let U = {u1, . . . , un}.
• Each set C ⊆ U can be identified with its signed characteristic

function fC : U −→ {−1, 1}, where

fC (x) =

{
1 if x ∈ C ,

−1 otherwise.

Thus, C can be regarded as a collection of function F ⊆ {−1, 1}U .
• K with |K | = m is shattered by F if for every

(b1, . . . , bm) ∈ {−1, 1}m there exists f ∈ F such that

(f (u1), . . . , f (um)) = (b1, . . . , bm).

• VCD(F) is the cardinality of the largest subset of X that is shattered
by F .
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Theorem

Let U be a finite nonempty set and let C be a collection of subsets of U. If
d = VCD(C), then 2d 6 |C| 6 (|U|+ 1)d .
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Vapnik-Chervonenkis classes

For a collection of sets C and for m ∈ N, let C[m] be

C[m] = max{|CK | | |K | = m}.

This is the largest number of distinct subsets of a set having m elements
that can be obtained as intersections of the set with members of C. In
general, C[m] 6 2m; however, if C shatters a set of size m, then C[m] = 2m.

Definition

A Vapnik-Chervonenkis class (or a VC class) is a collection C of sets such
that VCD(C) is finite.
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Example

Let S be the collection of sets {(−∞, t) | t ∈ R}. Any singleton is
shattered by S. Indeed, if S = {x} is a singleton, then P({x}) = {∅, {x}}.
Thus, if t > x , we have (−∞, t) ∩ S = {x}; also, if t < x , we have
(−∞, t) ∩ S = ∅, so SS = P(S).
There is no set S with |S | = 2 that can be shattered by S.
Suppose that S = {x , y}, where x < y . Then, any member of S that
contains y includes the entire set S , so SS = {∅, {x}, {x , y}} 6= P(S).
This shows that S is a VC class and VCD(S) = 1.

19



Outline What is Machine Learning? The Vapnik-Chervonenkis Dimension Probabilistic Learning Potential Learnability VCD and Potential Learnability Nets and Learnability

For I = {[a, b] | a, b ∈ R, a 6 b} we have VCD(I) = 2.
No three-element set can be shattered by I.
Consider the intersections

[u, v ] ∩ S = ∅, where v < x ,

[x − ε, x+y
2 ] ∩ S = {x},

[ x+y
2 , y ] ∩ S = {y},

[x − ε, y + ε] ∩ S = {x , y},
which show that IS = P(S).
No three-element set can be shattered by I. Let T = {x , y , z}. Any
interval that contains x and z also contains y , so it is impossible to obtain
the set {x , z} as an intersection between an interval in I and the set T .
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Example
Let H be the collection of closed half-planes in R2. We claim that
VCD(H) = 3.
Let P,Q,R be three points in R2 such that they are not located on the
same line. Each line is marked with the sets it defines; thus, the family of
hyperplanes shatters the set {P,Q,R}, so VCD(H) is at least 3.

u

u
u

P

Q

R

{P,Q}

{Q}{P,R}

{P}

{Q,R}

∅ {P,Q,R}

{R}
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Example (cont’d)

No set that contains at least four points can be shattered by H.
Let {P,Q,R,S} be a set in general position.
If S is located inside the triangle P,Q,R, then every half-plane that
contains P,Q,R will contain S , so it is impossible to separate the subset
{P,Q,R}. Thus, we may assume that no point is inside the triangle
formed by the remaining three points.

w
w

ww
P

Q

R

S
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Example (cont’d)

w
w

ww
P
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S

Any half-plane that contains two diagonally opposite points, for example,
P and R, will contain either Q or S , which shows that it is impossible to
separate the set {P,R}. Thus, no set that contains four points may be
shattered by H, so VCD(H) = 3.
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Example
Let R be the set of rectangles whose sides are parallel with the axes x and
y . Each such rectangle has the form [x0, x1]× [y0, y1].
There is a set S with |S | = 4 that is shattered by R. Indeed, let S be a
set of four points in R2 that contains a unique “northernmost point” Pn, a
unique “southernmost point” Ps , a unique “easternmost point” Pe , and a
unique “westernmost point” Pw . If L ⊆ S and L 6= ∅, let RL be the
smallest rectangle that contains L.

r

r

r
r

Pn

Ps

Pe

Pw
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Example (cont’d)

This collection cannot shatter a set of points that contains at least five
points.
Indeed, let S be a set of points such that |S | > 5 and, as before, let Pn be
the northernmost point, etc. If the set contains more than one
“northernmost” point, then we select exactly one to be Pn. Then, the
rectangle that contains the set K = {Pn,Pe ,Ps ,Pw} contains the entire
set S , which shows the impossibility of separating the set K .
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Recapitulation

X C VCD(C)

R2 convex polygons ∞
R2 axis-aligned rectangles 4
R2 convex polygons with d vertices 2d + 1
Rd closed half-spaces d + 1
RN neural networks with

N parameters O(N log N)
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• If C is not a VC class, then C[m] = 2m for all m ∈ N.
• If VCD(C) = d , then C[m] is bounded asymptotically by a polynomial

of degree d .

The number of subsets having at most d elements of a subset having m
elements is: (

n

6 k

)
=

k∑
i=0

(
n

k

)
.

Theorem

Let φ : N2 −→ N be the function defined by

φ(d ,m) =

{
1 if m = 0 or d = 0

φ(d ,m − 1) + φ(d − 1,m − 1) otherwise.

We have φ(d ,m) =
( m
6d

)
for d ,m ∈ N.
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Proof by strong induction on s = i + m

The base case: s = 0 implies m = 0 and d = 0; the equality is immediate.
Inductive case: suppose that the equality holds for φ(d ′,m′), where
d ′ + m′ < d + m. We have

φ(d ,m) = φ(d ,m − 1) + φ(d − 1,m − 1)
(by definition)

=
∑d

i=0

(m−1
i

)
+
∑d−1

i=0

(m−1
i

)
(by inductive hypothesis)

=
∑d

i=0

(m−1
i

)
+
∑d

i=0

(m−1
i−1

)
(since

(m−1
−1

)
= 0)

=
∑d

i=0

((m−1
i

)
+
(m−1

i−1

))
=

∑d
i=0

(m
i

)
=
( m
6d

)
,

28



Outline What is Machine Learning? The Vapnik-Chervonenkis Dimension Probabilistic Learning Potential Learnability VCD and Potential Learnability Nets and Learnability

Proof by strong induction on s = d + m

The base case: for s = 0, d = m = 0 so C shatters only the empty set.
Thus, C[0] = |C∅| = 1, and therefore C[0] = 1 = φ(0, 0).
Inductive case: suppose that the statement holds for pairs (d ′,m′) such
that d ′ + m′ < s and let C be a collection of subsets of S such that
VCD(C) = d .
Let |K | = m and let k0 ∈ K be a fixed (but, otherwise, arbitrary) element
of K . Consider the trace CK−{k0}. Since |K − {k0}| = m − 1, we have, by
the inductive hypothesis, |CK−{k0}| 6 φ(d ,m − 1).
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Proof by strong induction on s = d + m (cont’d)

Let C′ be the collection of sets given by

C′ = {G ∈ CK | k0 6∈ G ,G ∪ {k0} ∈ CK}.

Observe that C′ = C′K−{k0} because C′ consists only of subsets of K −{k0}.
Further, note that the Vapnik-Chervonenkis dimension of C′ is less than d .
Indeed, let K ′ be a subset of K − {k0} that is shattered by C′. Then,
K ′ ∪ {k0} is shattered by C. hence |K ′| < d . By the inductive hypothesis,
|C′| = |CK−{k0}| ≤ φ(d − 1,m − 1).
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Proof by strong induction on s = d + m (cont’d)

The CK can be regarded as the union of two disjoint collections:
• those subsets in CK that do not contain the element k0 (CK−{k0})
• those subsets of K that contain k0.

If L is a second type of subset, then L− {k0} is clearly a member of C′.
Thus, we have

|CK | = |CK−{k0}|+ |C
′
K−{k0}|

This equality implies

|CK | 6 φ(d ,m − 1) + φ(d − 1,m − 1),

the desired conclusion.
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Sauer-Shelah Theorem

Theorem

If C is a collection of subsets of S that is a VC-class such that
VCD(C) = d, then C[m] 6 φ(d ,m) for m ∈ N.
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Proof by strong induction on s = d + m

The base case: for s = 0, d = m = 0 so C shatters only the empty set.
Thus, C[0] = |C∅| = 1, and therefore C[0] = 1 = φ(0, 0).
Inductive case: suppose that the statement holds for pairs (d ′,m′) such
that d ′ + m′ < s and let C be a collection of subsets of S such that
VCD(C) = d .
Let |K | = m and let k0 ∈ K be a fixed (but, otherwise, arbitrary) element
of K . Consider the trace CK−{k0}. Since |K − {k0}| = m − 1, we have, by
the inductive hypothesis, |CK−{k0}| 6 φ(d ,m − 1).
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Proof by strong induction on s = d + m (cont’d)

Let C′ be the collection of sets given by

C′ = {G ∈ CK | k0 6∈ G ,G ∪ {k0} ∈ CK}.

Observe that C′ = C′K−{k0} because C′ consists only of subsets of K −{k0}.
Further, note that the Vapnik-Chervonenkis dimension of C′ is less than d .
Indeed, let K ′ be a subset of K − {k0} that is shattered by C′. Then,
K ′ ∪ {k0} is shattered by C. hence |K ′| < d . By the inductive hypothesis,
|C′| = |CK−{k0}| ≤ φ(d − 1,m − 1).
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Proof by strong induction on s = d + m (cont’d)

The CK can be regarded as the union of two disjoint collections:
• those subsets in CK that do not contain the element k0 (CK−{k0})
• those subsets of K that contain k0.

If L is a second type of subset, then L− {k0} is clearly a member of C′.
Thus, we have

|CK | = |CK−{k0}|+ |C
′
K−{k0}|

This equality implies

|CK | 6 φ(d ,m − 1) + φ(d − 1,m − 1),

the desired conclusion.
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Lemma

Lemma

We have φ(d ,m) 6 2md

d!

Proof: If d = 1, this amounts to φ(1,m) = m + 1 6 2m, which is
obvious. Thus, we assume that d > 1.
For m = d we prove that φ(d , d) = 2d 6 2dd

d! , by induction on d .
The base case: for d = 1 the inequality is immediate.

The inductive case: Suppose that 2d 6 2dd

d! . We have

2d+1 = 2 · 2d 6

(
d + 1

d

)d

· 2d

(
by the well-known inequality 2 <

(
d + 1

d

)d
)

6

(
d + 1

d

)d

·
2dd

d!

= 2
(d + 1)d+1

(d + 1)!
,

which concludes the induction.
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Proof (cont’d)

For a given d the argument is by induction on m, where m > d .
The base case: we presented the argument for m = d .
The inductive case: Since φ(d + 1,m + 1) = φ(d + 1,m) + φ(d ,m), it
suffices to show that

2
md

d!
+ 2

md+1

(d + 1)!
6 2

(m + 1)d+1

(d + 1)!
.

By multiplying both sides by 1
2

d!
md we have the equivalent and immediate

inequality

1 +
m

d + 1
6

(
1 +

1

m

)d+1

,

which concludes the proof.
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A Second Lemma

Lemma

For d > 1 we have 2
(

d
e

)d
< d!.

Proof: The argument is by induction on d .
The base case: for d = 1 the proof is immediate.
The inductive case: suppose that the inequality holds for d . Then, for
d + 1 we have

2

(
d + 1

e

)d+1

= 2

(
d + 1

d

)d d + 1

d

dd+1

ed+1

6 2e
d + 1

d

dd+1

ed+1(
because

(
d + 1

d

)d

6 e

)

= 2(d + 1)
dd

ed
6 (d + 1)!

(by inductive hypothesis).
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An Inequality Involving φ

Theorem

For all m > d > 1 we have

φ(d ,m) <
(em

d

)d
.

Proof: the theorem follows by combining the previous two lemmas.
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A Corollary of Sauer-Shelah Theorem

Corollary

If C is a collection of subsets of S that is a VC-class such that
VCD(C) = d, then C[m] 6

(
em
d

)d
for m ≥ d > 1.
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Sequences on Sets

• Seqn(S) is the set of all sequences of length n on S , also denoted by
Sn;

• Seq(S) =
⋃

n∈N Seqn(S) is the set of all sequences on S , also
denoted by S∗;

• Seq0(S) consists of the null sequence λ;
• S+ = S∗ − {λ} is the set of non-null sequences on S .
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Samples

Definition

A sample of length m, where m > 1, is an m-tuple
sss = ((x1, b1), . . . , (xm, bm)) ∈ Seqm (X × {0, 1}) that satisfies the
coherence condition: xi = xj implies bi = bj for 1 6 i , j 6 m.

• sss = ((x1, b1) . . . , (xm, bm)) is a training sample for a target concept T
if bi = T (xi ) for 1 6 i 6 m.

• A hypothesis H is consistent with sss if H(xi ) = bi for 1 6 i 6 m.
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Rays in R

Definition

A θ-ray is a set
Yθ = {x ∈ R | x > θ}.

Special case:
Y∞ = ∅.

The space of rays is Hrays = {Yθ | θ ∈ R}.
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L - An Algorithm for Learning Rays

Input: a training sample sss = ((x1, b1) . . . , (xm, bm)), where xi ∈ R and
bi ∈ {0, 1} for 1 6 i 6 m.
Output: a hypothesis in Hrays .
Algorithm:
λ =∞;
for i = 1 to m do

if bi = 1 and xi < λ then λ = xi ;
L(sss) = Yλ;

44



Outline What is Machine Learning? The Vapnik-Chervonenkis Dimension Probabilistic Learning Potential Learnability VCD and Potential Learnability Nets and Learnability

-t
0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

Sequence of hypotheses

Y0.8

-tt
0.4 0.5 0.6 0.7 0.8 0.90.3

10

Y0.8

-tt t
0.4 0.5 0.6 0.7 0.8 0.90.3

0 1 1

Y0.8

-tt tt
0.4 0.5 0.6 0.7 0.8 0.90.3

0 111

Y0.6

-tt ttt
0.4 0.5 0.6 0.7 0.8 0.90.3

00 11 1

Y0.6

-tt ttt t
0.4 0.5 0.6 0.7 0.8 0.90.3

0 0 11 11

Y0.6

45



Outline What is Machine Learning? The Vapnik-Chervonenkis Dimension Probabilistic Learning Potential Learnability VCD and Potential Learnability Nets and Learnability

Probably Approximative Correct Learning

Main features of the model:

• a training sample sss of length m for a target concept C is generated by
drawing from the probability space X = (X , E ,P) according to some
fixed probability distribution;

• a learning algorithm L produces a hypothesis L(sss) intended to
approximate t;

• as m increases the expectation is that the error of using L(sss) instead
of C decreases.
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The Error of a Hypothesis

Assumptions:
• the target concept C belongs to a hypothesis space H available to the

learner;
• the error of a hypothesis H with respect to C is

errP(H,C ) = P ({x ∈ X | H(x) 6= C (x)})

• {x ∈ X | H(x) 6= C (x)} ∈ E .
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Probabilistic Framework

Given X = (X , E ,P), consider the product probability space
Xm = (X m, Em,P(m)).

• the components of a sample sss = (x1, . . . , xm) are regarded as m
independent random variables, identically distributed;

• S(m,C ): the set of training samples of size m for a target concept C ;
• the probability on the product space P(m) will be still denoted by P.
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Probably Approximately Correct Algorithms

L. Valiant:

• δ: a confidence parameter;
• ε: accuracy parameter;

An algorithm L is probably approximately correct (PAC) if given δ ∈ (0, 1)
and ε ∈ (0, 1), there is a positive integer m0 = m0(δ, ε) such that for any
target concept C ∈ H and for any probability P on X , m > m0 implies

P({sss ∈ S(m, t) | errP(L(sss),C ) < ε}) > 1− δ.

Essential Feature: m0 depends only on δ and ε.
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Learning Rays is PAC

• target concept Yθ, δ, ε and P:
• sss: a training sample of length m;
• error set: L(sss) = yλ and [θ, λ);
• define β0 = sup{β | P([θ, β)) < ε}.

Note that

P([θ, β0)) 6 ε

P([θ, β0]) > ε

If λ 6 β0 then

errP(L(sss),Yθ) = errP(Yλ,Yθ) = P([θ, λ)) 6 P([θ, β0)) 6 ε.
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The Hypothesis Space of Axis-Aligned Rectangles

Axis-aligned close rectangles (referred to as rectangles) are specified by the
coordinates of their southwestern and northeastern corners; (x1, y1) and
(x2, y2). Such a rectangle is denoted by [x1, y1; x2, y2], The
PAC-learnability was analyzed by Kearns and Vazirani.

[x1, y1; x2, y2] = {(x , y) ∈ R2 | x ∈ [x1, x2], y ∈ [y1, y2]}.

-

6

t
t t

t
(0, 0)

(a, b)

(x2, y2)

(x1, y1)
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A Learning Strategy

• Construct an axis-aligned rectangle that gives the tightest fit to the
positive rectangles.

• This strategy will yield a hypothesis R such that R ⊆ R0.
• If no positive example exist, R = ∅.
• Error is P(R − R0).
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Other Possible Learning Strategies:

• constructing the largest rectangle that excludes all negative examples,
or

• constructing a rectangle located at mid-distance between the positive
and the negative examples.
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L - An Algorithm for Learning Axis-Aligned Rectangles

Input: a training sample sss = ((x1, y1), b1) . . . , (xm, ym), bm)).
Output: a hypothesis R in R.
Algorithm:

R = [u1, v1; u1, v1];
i = 1;
for i = 1 to m do
if (bi = 1)

R = R ? (xi , yi );
endif;
i = i + 1

endfor
L(sss) = R;
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The Hypothesis Space

• H: hypothesis space defined on an example space X ;
• L: learning algorithm for H; L is consistent if for any training sample

sss for a target concept T ∈ H, the output hypothesis H of L agrees
with T on examples in sss, that is, H(xi ) = T (xi ) for 1 6 i 6 |s|.

• S(m,T ): set of samples of length m for the target concept T .
• H[sss]: set of hypothesis consistent with sss:

H[sss] = {H ∈ H | H(xi ) = T (xi ) for 1 6 i 6 m}.
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Definitions

• P: a probability distribution on X ; T is a target concept;
• define err(H,T ) = P {x ∈ X | H(x) 6= T (x)};
• for sss = ((x1, b1), . . . , (xm, bm)) define

errsss(H,T ) =
1

m
· |{i | bi = T (xi ) 6= H(xi )}|

• the set of ε-bad hypotheses for T is

BADε(T ) = {H ∈ H | err(H,T ) > ε}.
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A consistent learning algorithm L for H when presented with a sample sss
produces a hypothesis H ∈ H that is consistent with sss, that is a
hypothesis in H[s].
The PAC property requires that such an output is unlikely to be ε-bad.

57



Outline What is Machine Learning? The Vapnik-Chervonenkis Dimension Probabilistic Learning Potential Learnability VCD and Potential Learnability Nets and Learnability

Potential Learnability of a Hypothesis Space

Definition

A hypothesis space H is potentially learnable if given δ, ε ∈ (0, 1) there is a
positive integer m0 = m0(δ, ε) such that, m > m0 implies

P(sss ∈ S(m,T ) | H[sss] ∩ BADε(T ) = ∅) > 1− δ

for any probability distribution P and any target T .
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Theorem

If H is potentially learnable and L is a consistent learning algorithm, then
L is PAC.

Proof: If L is consistent, then L(sss) ∈ H[sss]. Thus, the condition
H[sss] ∩ BADε(T ) = ∅ means that err(T , L(sss)) < ε.
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Potential Learnability of Finite Hypotheses Space

Theorem

If H is finite, then it is potentially learnable.
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Proof

Suppose that H is finite and ε, δ,T and P are given.
Claim: P(H[sss] ∩ BADε(T ) 6= ∅) can be made sufficiently small if m, the
size of sss is large enough.

• P{x ∈ X | H(x) = T (x)} = 1− err(T ,H) 6 1− ε.
• Probability that any one ε-bad hypothesis is in H[sss]:

Pm{sss | H(xi ) = T (xi ) for 1 6 i 6 m} 6 (1− ε)m.
• Probability that there is some ε-bad hypothesis in H[sss]:

Pm(sss | H[sss] ∩ BADε(T ) 6= ∅) 6 |H|(1− ε)m.
• If

m > m0 =

⌈
1

ε
ln
|H|
δ

⌉
,

then

|H|(1− ε)m 6 |H|(1− ε)m0 < |H|e−εm0 6 |H|e ln(δ/|H|) = δ.
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Theorem

If a hypothesis space H has infinite VCD, then H is not potentially
learnable.
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Proof

Suppose that VCD(H) =∞. There exists a sample zzz of length 2m which
is shattered by H.
• Ezzz : set of examples of zzz .
• P a probability on X such that

P(x) =

{
1

2m if x ∈ Ezzz ,

0 otherwise.

With probability 1 a random sample xxx of length m is a sample of
examples from Ezzz .

• Since zzz is shattered by H, there exists H ∈ H such that
H(xi ) = T (xi ) for 1 6 i 6 m and H(xi ) 6= T (xi ) for m + 1 6 i 6 2m.
Thus, err(H,T ) > 1

2 . Thus, any positive m and any target concept
T , there is P such that P(sss ∈ S(m,T ) | H[sss] ∩ BADε(T ) = ∅) = 0.

There is no positive integer m0 = m0(0.5, 0.5) such that m > m0 such
that P(sss ∈ S(m,T ) | H[sss] ∩ BAD0.5(T ) = ∅) > 0.5.
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An Example of a Hypothesis Space of Infinite VDC

Let U be the collection of finite union of closed intervals of R.
Let zzz be a sample and let Ezzz be the set of example in zzz . If A ⊆ Ezzz , define
UA to the union of closed intervals, such that each interval contains
exactly one element of A. Then, UA ∩ Ezzz = A, so U shatters A.
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Lemma

Lemma

For c > 0 and x > 0 we have

ln x 6

(
ln

1

c
− 1

)
+ cx .

Proof: Let f : R>0 −→ R be the function f (x) = ln 1
c − 1 + cx − ln x .

Note that limx→0 f (x) = +∞ and limx→∞ f (x) = +∞. Also,

f ′(x) = c − 1

x
and f ′′(x) =

1

x2
,

so f has a minimum for x = 1
c . Since f

(
1
c

)
= 0, the inequality follows.
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Let T be a target concept, T ∈ C. The class of error regions with respect
to T is

∆(C,T ) = {C ⊕ T | C ∈ C}.

Also, for ε > 0, let

∆ε(C,T ) = {E ∈ ∆(C,T ) | P(E )> ε}.

Theorem

VDC(∆(C,T )) = VDC(C) for any T ∈ C.

Proof: Let K be a fixed concept and let φ : CK −→ ∆(C,T )K be

φ(C ∩ T ) = (C ⊕ T ) ∩ K

for C ∈ C. φ is a bijection, for if

(C1 ⊕ T ) ∩ K = (C2 ⊕ T ) ∩ K ,

we have C1 ∩ K1 = C2 ∩ K2.
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ε-Nets

Definition

A set S is an ε-net for (C,T ) if for every R ∈ ∆ε(C,T ) we have
S ∩ R 6= ∅. (S hits R)

• Equivalently: S is an ε-net for ∆(C,T ) if R ∈ ∆(C,T ) and P(R) > ε
imply S ∩ R 6= ∅.

• S fails to be an ε-net for (C,T ) if there exists an error region
R ∈ ∆ε(C,T ) such that S ∩ R = ∅, so if there exists an error region
that is missed by S .

67



Outline What is Machine Learning? The Vapnik-Chervonenkis Dimension Probabilistic Learning Potential Learnability VCD and Potential Learnability Nets and Learnability

Example

• X = [0, 1] equipped with the uniform probability P;
• C = {[a, b] | a, b ∈ [0, 1]} ∪ {∅};
• if T = ∅, ∆(C,C ) = C;
•

S =

{
kε
∣∣∣ 1 6 k 6

⌈
1

ε

⌉}
is an ε-net for ∆(C, ∅).

-· · ·0 1

ε 2ε 3ε
⌊

1
ε

⌋
ε
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A Property of ε-Nets

Theorem

Let sss be a sequence of examples. If there exits an ε-net for ∆ε(C,T ) and
the output of the learning algorithm L is a hypothesis H = L(sss) ∈ C that is
consistent with sss, then the error of H must be less than ε.

Proof: Since H is consistent with sss, T ⊕ H was not hit by Esss (otherwise
H would not be consistent with sss). Thus, T ⊕ H 6∈ ∆ε(C,T ), so
err(H) = P(T ⊕ H) 6 ε.
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Main Theorem

Theorem

(Blumer et al.) Let C be a concept class such that VCD(C) = d. Then,
C is potentially learnable.

The proof consists in proving that m > 4
ε

(
d log 12

ε + log 2
δ

)
.
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Chernoff’s Bound

0 5 10 15 20
0

0.02
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0.06

0.08
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X=s

P
(X

=
s)

X is a binomial variable that
corresponds to m drawings and
probability of success is p. Then,

P(X 6 s) 6 e
−−β

2mp
2 ,

where β = 1 − s
mp

.
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Draw a sequence xxx of m-random samples.
• A: takes place when xxx misses some R ∈ ∆ε(C,T ), that is, when xxx

fails to form an ε-net for ∆(C,T );
• fix R and draw a second m-sample yyy ;
• B: the combined event that takes place when:

• we draw a sequence xxxyyy of length 2m,
• A occurs on xxx ,
• and yyy has at least mε

2 hits in R in ∆ε(C,T ).
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Let “success” be defined as occurring when an error occurs, that is, when
H(x) 6= T (x).

• let p = P ({x ∈ X | H(x) 6= T (x)});
• let `p,m,s be the probability of having at most s successes in m

drawings; by the Chernoff bound for the binomial distribution we have

`p,m,s 6 e−
β2mp

2 ,

where s = (1− β)mp.
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• if we have at most s successes in m drawings, then

erryyy (H,T ) =
1

m
· |{i | H(yi ) 6= T (yi )}| 6

s

m
,

so m · erryyy (H,T ) is a binomially distributed random variable with
probability of success erryyy (H,T ) > ε;

• by applying these definitions we have:

P
({

yyy | erryyy (H,T ) 6
ε

2

})
= P

({
yyy | m · erryyy (H,T ) 6

m · ε
2

})
= `

(
ε,m,

m · ε
2

)
.
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Application of Chernoff’s Bound

• β = 1− s
mε = 1−

m·ε
2

mε = 1
2

• `(ε,m, m·ε
2 ) 6 e−

mε
8

• for m > 8
ε , `(ε,m, m·ε

2 ) 6 1
ε ,

P
({

yyy | erryyy (H,T ) ≤ ε

2

})
6

1

ε
,

which implies for any H ∈ BADε(T ):

P
({

yyy | erryyy (H,T ) >
ε

2

})
6 1− 1

ε
>

1

2
.
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The link between P(A) and P(B)

• Since P(B|A) > 1
2 and B ⊆ A, we have

P(B|A) =
P(A ∩ B)

P(A)
=

P(B)

P(A)
>

1

2
,

so 2P(B) > P(A).
• An upper bound on P(A) can be found through an upper bound on

P(B).
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Another way of looking to this problem

• draw randomly 2m balls;
• fix a region R in R ∈ ∆ε(C,T ) such that |R| > εm

2 ;
• randomy divide these into xxx and yyy ;
• analyze the probability that none of the xi is in R with respect to the

random division into xxx and yyy ;
• summing up over all possible fixed R and applying the union bound

we obtain a bound on P(B).
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Reduction to A Combinatorial Problem

• an urn with 2m balls colored red or blue with ` red balls;
• divide the balls randomly into two groups S1 and S2 of equal size m;
• find an upper bound on the probability that all ` red balls fall in S2;
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A Combinatorial Problem (cont’d)

• there are
(2m
`

)
ways to paint 2m balls in red;

• if the red balls occur only in S2 there are
(m
`

)
ways to paint in red

these balls;
• the probability that all ` red balls belong to S2 is(m

`

)(2m
`

) =

m!
`!(m−`)!

(2m)!
`!(2m−`)!

=
m!(2m − `)!

(m − `)!(2m)!

=
∏̀
i=0

m − i

2m − i
6
∏̀
i=0

1

2
= 2−`.
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Thus

P(B) ≤ φ(d , 2m)2−
mε
2

≤
(

2em

d

)d

· 2−
mε
2

by the corollary of Sauer-Shelah Theorem

Therefore,

P(A) 6 2P(B) 6 2

(
2em

d

)d

· 2−
mε
2
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The following statements are equivalent:

• 2
(

2em
d

)d · 2−mε
2 ≤ δ;

• d ln
(

2e
d

)
+ d ln m − εm

2 ln 2 6 ln δ
2 ;

• εm
2 ln 2− d ln m > d ln 2e

d + ln 2
δ ;

• choosing c = ε ln 2
4d and x = m in the inequality ln x 6

(
ln 1

c − 1
)

+ cx
proven in the lemma,

d ln m 6 d

(
ln

4d

ε ln 2
− 1

)
+
ε ln 2

4
m.
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Combining the inequalities

εm

2
ln 2 > d ln m + d ln

2e

d
+ ln

2

δ

d ln m 6 d

(
ln

4d

ε ln 2
− 1

)
+
ε ln 2

4
m

it follows that it suffices to have

εm

4
ln 2 > d

(
ln

4d

ε ln 2
− 1

)
+ d ln

2e

d
+ ln

2

δ

= d ln
8e

ε ln 2
+ ln

2

δ
− d = d ln

8

ε ln 2
+ ln

2

δ
.
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Since 8
ln 2 < 12 the inequality

εm

4
ln 2 > d ln

8

ε ln 2
+ ln

2

δ

can be satisfied by taking m such that

εm

4
ln 2 > d ln

12

ε
+ ln

2

δ
,

so m > 4
ε

(
d log 12

ε + log 2
δ

)
, which concludes the proof.
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Where to look further...

• M. Anthony and N. Biggs: Computational Learning Theory,
Cambridge, 1997

• V.N. Vapnik: Statistical Learning Theory, J. Wiley, 1998
• M. Vidyasagar: Learning and generalization with applications to

neural networks, Springer Verlag, 2003
• D. Simovici and C. Djeraba: Mathematical Tools for Data Mining,

Springer, 2008
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