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Abstract: A genetic code, the mapping from trinucleotide codons to amino 
acids, can be viewed as a partition on the set of 64 codons. A small set of  
non-standard genetic codes is known, and these codes can be mathematically 
compared by their partitions of the codon set. To measure distances between  
set partitions, this study defines a parameterised family of metric functions that 
includes Shannon entropy as a special case. Distances were computed for  
17 curated genetic codes using four members of the metric function family. 
With these metric functions, nuclear genetic codes had relatively small  
inter-code distances, while mitochondrial codes exhibited greater variance. 
Hierarchical clustering using Ward’s algorithm produced a tight grouping  
of nuclear codes and several distinct clades of mitochondrial codes. This family 
of functions may be employed in other biological applications involving set 
partitions, such as analysis of microarray data, gene set enrichment and 
protein–protein interaction mapping. 
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1 Introduction 

The genetic code, the mapping from trinucleotide codons to the amino acids, is a central 
feature of present-day biological systems. As the code was elucidated, its highly regular 
organisation became plainly manifest, raising fundamental questions surrounding the 
code’s origin and evolution. Most prominently, the mapping appears to reduce the 
harmful effects of point mutations and mistranslations (Woese, 1965). For example, all 
codons with uracil in the second position translate to hydrophobic amino acids, thereby 
providing some resilience to mutations in the first and third positions. Similarly, much of 
the code redundancy is organised to allow nucleotide changes in the third codon ‘wobble’ 
position without changing the resulting amino acid. 

A variety of computational experiments have quantified genetic code robustness to 
DNA point mutations. These experiments typically generate a non-standard code and 
then measure the burden of random DNA point mutations on a translated protein, 
modelling the mutational cost as a function of changes in a biophysical amino acid 
property such as hydrophobicity or molecular volume. In an early work, Alff-Steinberger 
(1969) tested 200 codes and found that the standard code was significantly more robust 
than the random codes when measured by tolerance to mutations in the first and third 
codon positions. Freeland and Hurst (1998) further explored robustness by generating 106 

variant codes that preserved the standard degeneracy pattern, and tested these codes 
against a mutational model with parameterised probabilities of transition and transversion 
errors. Their work found that the vast majority of random amino acid assignments were 
inferior to the standard code. More recently, Itzkovitz and Alon (2007) examined the 
ability of the standard code to represent additional non-coding information such as 
transcription factor binding sites and mRNA secondary structure, and found that the 
standard code was far more capable than the majority of perturbed codes. This work also 
found that the stop codon assignments of the standard code were nearly optimal for 
truncating proteins following frame shift errors. It is certainly plausible that these 
properties are biologically advantageous and contributed to code evolution. 

A variety of hypotheses attempt to describe the origin of the genetic code. In one of 
the earliest models, Crick (1968) proposed that primitive genetic codes translated a subset 
of amino acids and eventually grew to specify the full set. Crick’s ‘frozen accident’ 
model assumes that any subsequent code evolution would be gravely deleterious to the 
majority of proteins, and, therefore, highly unlikely to occur. In another model, Wong 
(1975) argued that the code organisation reflected the emergence of new amino acid 
biosynthetic pathways, by observing that neighbouring codons frequently represent 
amino acids related by pathway. More recently, Vetsigian et al. (2006) proposed that in 
the early stages of protein-based biology, the code became standardised as a consequence 
of horizontal gene transfer, in which the ability to share genetic information between 
species was selectively advantageous to the group. Such information sharing is possible 
only when group members have compatible genetic codes, and this information sharing, 
along with code fitness, drove evolution towards a standard code. 
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The discovery of alternate codes in present-day organisms invalidated Crick’s frozen 
limitation (Knight et al., 2001), particularly because identical non-standard codes have 
emerged more than once. For example, AUA normally codes for isoleucine but specifies 
methionine in some metazoan and fungal mitochondria, which do not share a common 
ancestor having this variant code. Sixteen alternate codes have been curated and others 
have been hypothesised through computational analysis of mitochondrial genomes 
(Abascal et al., 2006). All reassigned triplets have been observed in various species’ 
mitochondria, but only a subset of these triplets has been reassigned in nuclear genetic 
codes. For a given triplet codon, a reassignment is not necessarily universal; for example, 
UGA is normally a stop codon but has been reassigned to both cysteine and tryptophan.  
These data suggest that general principles permit code evolution along initially similar 
trajectories. At the same time, it appears that mitochondria are relatively freer to explore 
a slightly broader range of evolutionary paths. 

To accommodate the existence of multiple present-day genetic codes, several 
hypotheses propose evolutionary mechanisms that obviate the harsh limitation of the 
frozen accident model. The codon capture hypothesis (Osawa et al., 1992) posits that a 
shift to high G-C or A-T genomic content reduces the frequency of certain codons, 
eventually allowing these codons to become unassigned. In that state, relatively neutral 
evolution is free to explore reassignment of these codons to other amino acids, eventually 
settling on a beneficial assignment. Another hypothesis, the ambiguous intermediate 
model, proposes that a particular codon can represent more than one amino acid without 
causing fatal effects to the proteome. Then, selective pressures on the translational 
machinery eliminate the ambiguity, resulting in the codon specifying a single amino acid. 
Evidence supporting this model comes from Candida, in which the CUG codon 
predominantly translates to serine but also produces small amounts of leucine (Suzuki  
et al., 1997). Broadly supporting the notion of code evolvability, Wong (1983) isolated a 
strain of Bacillus subtilis that preferentially translates 4-fluorotryptophan into its 
proteome rather than standard tryptophan. 

The set of genetic codes can also be viewed from a mathematical perspective.  
Given the set C of 64 trinucleotide codons, and given the union A of 20 amino acids 
along with the stop signal, each genetic code defines a mapping r : C → A. A genetic 
code uniquely partitions C into a set of codon blocks, with each block representing  
a particular a ∈ A. Given a distance metric on two partitions of C, genetic codes can be 
compared and clustered to elucidate their differences. The remainder of this paper is as 
follows. First, we develop a family of parameterised distance functions based on a 
generalisation of entropy. Next, we apply several members of this family to a set of 
genetic codes found in extant organisms. Finally, we demonstrate that these distance 
functions reveal biologically interesting clusters of codes. 

2 The metric space of finite functions 

The notion of equivalence relation and partition is used repeatedly in this section.  
We refer the reader to Simovici and Djeraba (2008) for a comprehensive treatment  
of these concepts. 

The set of equivalence relations on a set S will be denoted by EQ (S). Let S, T be two 
finite sets and let f : S → T be a function. The kernel equivalence of f is defined as 
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2( ) {( , ) | ( ) ( )}.f x y S f x f y= ∈ =ker  

We denote by πf the partition of the set S that corresponds to the equivalence relation 
ker(f ). The blocks of the partition πf are the equivalence classes of ker(f) and have the 
form 

[ ] { | ( ) ( )}.x y S f y f x= ∈ =  

Each such block corresponds to a value f(x) of the function and any two distinct blocks 
are disjoint. 

Two functions f : S → T and g : S → T have the same kernel equivalence, i.e., 
ker(f) = ker(g) if and only if there exists a permutation p of T such that f = pg. Indeed,  
if such a permutation exists, then f(x) = f(z) if and only if g(x) = g(z) for all x, z ∈ S. 
Conversely, if ker(f) = ker(g) we define the mapping p : T → T as 

( ) if there is such that ( ) ,
( )

if ( )
g x x S f x t

p t
t x f S

∈ =
=  ∉

 

for t ∈ T. It is easy to verify that p is a well-defined permutation of the set T and  
that pf(x) = g(x) for every x ∈ S. Thus, an equivalence relation on S characterises a class 
of functions from S to T such that any of these functions can be obtained from any other 
function by a permutation of its values. 

Define the function d : (EQ (S))2 → N as 

( ) | | | |,d ρ σ ρ σ σ ρ, = − + −  

for ρ, σ ∈ EQ (S). In other words, d(ρ, σ) equals the cardinality of the symmetric 
difference of the relations ρ and σ, i.e., the number of pairs in ρ but not in σ, plus the 
number of pairs in σ but not in ρ. It is easy to verify the following 
properties: 

i d(ρ, σ) = 0 if and only if ρ = σ 

ii d(ρ, σ) = d(σ, ρ) 

iii d(ρ, σ) ≤ d(ρ, τ) + d(τ, σ), 

for every ρ, τ, σ ∈ EQ (S). Thus, d is a metric on EQ (S). Starting from d, we can define  
a semimetric on the set of functions TS by 

( , ) ( ( ), ( )),D f g d f g= ker ker  

for f, g : S → T. Note that D is only a semimetric because D(f, g) = 0 implies only that 
ker(f) = ker(g), i.e., f and g can be obtained from each other composition with a 
permutation, as we have shown earlier. 

The value of the semimetric D(f, g) can be expressed using the partitions 
πf = {B1, …, Bm} and πg = {C1, …, Cn} of the functions f and g. Indeed, since 

|( ( ) ( )) ( ( ) ( ))|
| ( )| | ( )| 2 | ( ) ( ) |,

f g g f
f g f g

− ∪ −
= + − ⋅ ∩

ker ker ker ker
ker ker ker ker

 

we have 
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2 2

1 1 1 1
( , ) | | | | 2 | |.

m n m n

i j i j
i j i j

D f g B C B C
= = = =

= + − ⋅ ∩∑ ∑ ∑∑  (1) 

Let S be a finite set and let π = {B1, …, Bm} be a partition of S. The Shannon entropy of π 
is the number 

2
1

| | | |( ) log .
| | | |

m
i i

i

B B
S S

π
=

= −∑H  

The Gini index of π is the number 
2

1

| |Gini( )=1 .
| |

m
i

i

B
S

π
=

 
−  

 
∑  

Both numbers can be used to evaluate the uniformity of the distribution of the elements 
of S in the blocks of π because both values increase with the uniformity of the 
distribution of the elements of S. 

It is interesting to observe that an equivalent metric can be obtained starting from 
generalised entropies (Daróczy, 1970; Havrda and Charvat, 1967). The algebraic 
axiomatisation of partition entropy was done by Jaroszewicz and Simovici (1999), and 
various applications of Shannon and generalised entropies in data mining were 
considered by Simovici and Jaroszewicz (2000, 2003). 

Let π be a partition of S and let C ⊆ S. Denoted by πC, the ‘trace’ of π on C is  
given by 

{ | such that }.C B C B B Cπ π φ= ∩ ∈ ∩ ≠  

Let π, σ be two partitions of S and let σ = {C1, …, Cn}. The β-conditional entropy of the 
partitions π and σ is the function Hβ defined by 

1

| |
( / ) ( ).

| | j

n
j

C
j

C
S

β

β βπ σ π
=

 
=  

 
∑H H  

For π = {B1, …, Bm} and σ = {C1, …, Cn}, the conditional entropy can be written 
explicitly as 

1
1 1

1
1 1

| | | |1( / ) 1
| | | |1 2

| | | |1 .
| | | |1 2

n m
j i j

j i j

n m
j i j

j i

C B C
S C

C B C
S S

ββ

β β

β β

β

π σ −
= =

−
= =

  ∩   = −     −      
 ∩   
 = −    −     

∑ ∑

∑ ∑

H

 

For every β > 1, the mapping dβ defined by 

( , ) ( / ) ( / )dβ β βπ σ π σ σ π= +H H  

is a metric on the set of partitions of S. An explicit expression of the metric between two 
partitions can now be obtained using the values of conditional entropies given by the 
previous equality: 
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1
1 1

1 1

1( , ) | | | |
(1 2 ) | |

2 | | ,

m n

i j
i j

m n

i j
i j

d B C
S

B C

β β
β β β

β

π σ −
= =

= =


= +− 


− ⋅ ∩ 



∑ ∑

∑∑
 

(2)

 

where π = {B1, …, Bm} and σ = {C1, …, Cn} are two partitions of S. 
In the special case β = 2, we have 

2 2
2 2

1 1

2

1 1

2( , ) | | | |
| |

2 | | ,

m n

i j
i j

m n

i j
i j

d B C
S

B C

π σ
= =

= =


= +




− ∩ 


∑ ∑

∑∑
 

which implies 

2 2

2( , ) ( , ),
| |

d d
S

π σ π σ=  

where d is the distance introduced by using the symmetric difference in equality (1). 
It is interesting to note that when β approaches 1, we have 

21 1

| | | |lim ( ) log ,
| | | |

m
i i

i

B B
S Sββ

π
→ =

= −∑H  

which is precisely the Shannon entropy. Furthermore, 

2 21 1 1

2
1 1

| | | || | | |
lim ( , ) log log

| | | | | | | |
| | | |

2 log
| | | |

m n
j ji i

i j

m n
i j i j

i j

C CB B
d

S S S S
B C B C

S S

ββ
π σ

→ = =

= =

= − −

∩ ∩
+ ⋅

∑ ∑

∑∑
 

a metric that was used in de Màntaras (1991) for comparing clusterings. 
Using a naïve algorithm to compute equality (2), the running time is bounded by the 

set intersection term, and is O (mn|S|). 

3 Results and discussion 

Using the metric on set partitions described in equality (2), we computed pairwise 
distance matrices between the 17 genetic codes curated at NCBI. Four distance matrices 
were derived corresponding to the functions dβ(π, σ) with β ∈ {1.01, 2, 3, 5}. 

To visualise these four distance matrices, we performed metric multidimensional 
scaling on the data set. These results, shown in Figure 1, indicate that all nuclear-only 
codes are relatively similar, and these also cluster closely with codes found in both the 
nucleus and the mitochondria. Conversely, the mitochondrial-only genetic codes exhibit a 
higher level of diversity. These findings are consistent across different levels of the  
non-linear parameter β. For all values of β examined, the mitochondrial outliers such as 
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M3, M14 and M22 remained near the boundaries of the projected space, while the 
diffusion and relative distances between points varied considerably. 

To evaluate equality (2) as a metric for clustering applications, we computed pairwise 
distances of the genetic codes using β = 3, and performed hierarchical clustering of the 
distance matrix using Ward’s minimum variance method. Figure 2 shows the resulting 
heatmap and dendrogram. To validate that the tree topology reflects the pairwise genetic 
code distances, we computed the Spearman cophenetic correlation between the code 
distance matrix and the tree, resulting in ρ = 0.85. Genetic codes found in the nucleus or 
mitochondria formed a nearly homogeneous single clade, whereas the mitochondrial-only 
codes exhibited local clustering as well as greater overall diversity. These results are 
consistent with the findings from multidimensional scaling. 

Figure 1 Distances between genetic codes for several values of the β parameter. Distances are 
projected onto R2

 via metric multidimensional scaling. Black circles and labels 
beginning with M represent mitochondrial-only codes; blue triangles labelled N are 
nuclear-only codes; and, red squares labelled B are codes found in both organelles.  
The integers are genetic code identifiers defined by NCBI, and are summarised  
in Figure 2 (see online version for colours) 
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Figure 2 Hierarchical clustering of genetic codes. Genetic code distances are computed  
with dβ = 3(π, σ), and clustered using Ward’s method. Heatmap colours represent values 
of d. In the top row, blue represents nuclear-only codes, black codes are  
mitochondrial-only, and red codes are found in both organelles (see online version  
for colours) 

 

Overall, the results from these experiments support a hypothesis that mitochondria  
and nuclear genetic codes are under different selection pressures (Knight et al., 2001). 
The tight clustering of nuclear codes suggests that evolution has relatively little flexibility 
to modify this mapping. At the same time, if measured by the diversity of pairwise 
distances, mitochondrial genetic codes appear to have somewhat greater freedom to 
evolve. 

The analysis was performed with 17 known genetic codes. Deeper biological 
interpretation, however, was limited by this small set. To move beyond this constraint,  
it would be valuable to mine the immense collection of genomic sequence data and 
search for evidence of other genetic codes (Abascal et al., 2006). If new codes are found, 
computing their pairwise distances would cast further light on the biological forces that 
drive the emergence and evolution of genetic codes. 
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The family of distance metrics described here can be widely applied in other data 
mining and bioinformatics research. As discretisation of a variable inherently partitions  
a set of observations, a number of biological assays fall naturally within this  
framework. Microarray analysis, mass spectroscopy, protein–protein interaction,  
as well as metagenomic marker data sets can be interpreted as discretised set partitions, 
thereby facilitating pairwise comparison, clustering and classification of these biological 
data. 

4 Methods 

All computations were performed in R version 2.10.1 on generic x86 hardware, running 
Debian Linux version 5.0. The archive ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump. 
tar.gz, dated 11/01/2008, was downloaded and the genetic codes file gencode.dmp was 
extracted. A custom Python script reformatted this file into .csv for reading from R, and 
added annotations specifying the code location {B, M, N}. These annotations were 
manually determined from the NCBI descriptions at http://www.ncbi.nlm.nih.gov/ 
Taxonomy/Utils/wprintgc.cgi and from Knight et al. (2001). 

Four sets of pairwise genetic code distances were computed per equality (2) using  
β ∈ {1.01, 2, 3, 5}. Hierarchical clustering was performed by the R function hclust 
using Ward’s method, and multidimensional scaling was performed with the R function 
cmdscale. The heatmap was produced with R function heatmap.2. 

An R package, partitionMetric, implementing this metric is available from the  
The Comprehensive R Archive Network at http://www.r-project.org/. 
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