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Abstract

We characterize measures on free Boolean algebras and we examine the relationships
that exist between measures and binary tables in relational databases. It is shown
that these measures are completely defined by their values on positive conjunctions,
and a formula that yields this value is obtained using the method of indicators. An
extension of the notion of support that is well suited for tables with missing values
is presented. Finally, we obtain Bonferroni-type inequalities that allow for approxi-
mative evaluations of these measures for several types of queries. An approximation
algorithm and an analysis of the results produced is also included.
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1 Introduction

The focus of this paper is a study of measures on free Boolean algebras with
a finite number of generators (abbreviated as MFBAs). As we shall see, these
measures play an important role in query optimization in relational databases,
and also, in the study of frequent sets in data mining. We obtain general
Bonferroni-type inequalities for sizes of arbitrary Boolean queries.
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The origin of our investigation resides in a series of seminal papers by H. Man-
nila et al. ([1-3]) in which the idea of using supports of attribute sets discov-
ered with a data mining algorithm to obtain the size of a database query was
introduced.

We start from the premise that Boolean algebra is the natural framework for
estimating the size of queries applied to relational databases. Indeed, the set
of conditions that specify a relational algebra selection (or a where clause
in a select SQL phrase) is build from atomic conditions of the form Awa or
AwB, where A, B are attributes, a is a value of the domain of the attribute A,
and w is one of the relational operators <, <, >, >, =, #. Then, more complex
conditions are built using the connective symbols and, or, not. As we shall
see, this is precisely the free Boolean algebra over the set of atomic conditions.
Thus, the size of the answer to a particular selection p can be regarded as a
measure over the free Boolean algebra generated by atomic conditions and
the value of this measure on p can be used in query processing in relational
databases (see [4], for example).

After introducing basic definitions and notations concerning Boolean algebras
and relational databases in the next section, we give a representation result
for measures on free Boolean algebras that show that any such functions can
be induced by a table.

Section 3 presents an inclusion-exclusion principle for MFBAs using the method
of indicator variables. The same section presents Bonferroni-type inequalities
[5] that allow us to generate bounds on the value of measures of polynomials.
These results are significant for estimations of the size of queries in relational
databases, or for support estimations for item sets in data mining. Such issues
are explored in Section 4. Also, we extend the notion of support for queries
to tables with missing values. Our approach has the advantage of generating
values that are probabilistically consistent, unlike the techniques used in [6,7].

We conclude the paper by presenting an algorithm that computes bounds on
support of an itemset based on a collection of itemsets with known supports.

2 DMeasures on The Set of Polynomials and Tables

Let B = (B,0,1, ~,V,A) be a Boolean algebra, where 0,1 € B are two
distinguished elements of B, ~ is a unary operation, and V, A are two binary
associative, commutative, and idempotent operations that satisfy the usual
axioms of Boolean algebras (see, for example [8]). Here 0 and 1 are the least
and the largest element of the algebra, respectively.



We define 2* =z ifb=1and 2* =z if b =0, for z € B and b € {0, 1}.

It is a well-known fact that a Boolean algebra B = (B,0,1, ~,V,A) defines
a Boolean ring structure, B = (B,0,1,A,®), where A plays the role of the
multiplication, and & the role of addition, where

1@y =(zAYV(ZAY)

for z,y € B. This ring is unitary, commutative, and has characteristic 2 (since
z @z = 0 for every z). Also, 1 & z = 7.

Let A = {ai,...,a,} be a set of n variables. The set pol(A) of Boolean poly-
nomials of the n variables in A is defined inductively by:

(1) 0, 1, and each a; belong to pol(A) for 1 <i <mn;
(2) if p,q belong to pol(A), then p, (pV q), and (p A q) belong to pol(A).

If p, g € pol(A), then we denote by (p@® ¢) the polynomial ((pAq)V (pAg)). A
Boolean polynomial (- - - ((p1wps)wps)w - - - wpy,) is denoted by (prwpow - - - wpy),
where w € {V, A, ®}.

Let B=(B,0,1, ~,V,A) be a Boolean algebra and let A = {a4,...,a,} be a

set of n variables. The n-ary function f, : B® — B generated by a polynomial

p € pol(A) is defined in the usual way. We write p = ¢ for p,q € pol(A) if
» = Jo-

Let b= (b, ..., by,) be a sequence of elements of the set {0,1}. An A-minterm
is a Boolean polynomial

— b b
pp=ay N ANat,

The set of A-minterms is denoted by mint(A). Any Boolean polynomial in
pol(A) can be uniquely written as a disjunction of some subset of A-minterms
(up to the order of the disjuncts). This observation implies that the Boolean
algebra pol(A) is isomorphic to the Boolean algebra of collections of subsets
of the set A; thus, pol(A) has 22" elements.

For a set of polynomials M = {py,...,pn} and J = {j1,-..,jm} C {1,...,n}
we denote by p; the conjunction p; A --- A p;.. For the special case, when
J = 0 we write py = 1.

A measure on a Boolean algebra B = (B,0,1, ~,V,A) is a non-negative, real-
valued function p : B — R such that p(zVy) = u(x)+ p(y) for every z,y € B
such that x Ay = 0.

Let A ={ay,...,a,} be aset of variables. In this context, we find it convenient
to use the relational database terminology and we refer to the the members
of A as attributes. We attach a set Dom(a;) to each attribute a; such that



|Dom(a;)| > 2. The set Dom(a;) is the domain of a;.

A table is a triple 7 = (T, A, p), where T is the name of the table, A =
{ai,...,a,} is the heading of the table and p = {t1,...,t,} is a finite set
of functions of the form ¢; : A — U,c4 Dom(a) such that t;(a) € Dom(a)
for every a € A. Following the relational database terminology we shall refer
to these functions as A-tuples, or simply as tuples. If Dom(a;) = {0,1} for
1 <17 < n, then 7 is a binary table.

Let 7 = (T, A, p) be a binary table. A query on the table T is a Boolean
polynomial in pol(A). This definition of queries is a formalization of the usual
notion of queries in databases.

Example 2.1 To retrieve in SQL all tuples ¢ of 7 such that at least two of
t(a1),t(az) and t(a3) equal 1 we write:

select * from T
where (a¢; =1 and ay = 1)
or (a3 =1and a3 =1)
or (a; =1and a3 =1)

The condition specified in the where clause of this select phrase corresponds
to the polynomial (a; A az) V (as A a3) V (a1 A as).

A query p defines a table (7, A, p,), where p, is is defined inductively as
follows:

It is easy to see that for a conjunction

;0=0L§-’11 /\---/\ai-’n":,
where b; € {0,1} for 1 < ¢ < m, the set p, consists of those tuples ¢ such that
t(ai,) = by for 1 < ¢ < m.

Theorem 2.2 A function u : pol(A) — N is a measure if and only if there
ezists a binary table T = (T, A, p) such that u(p) = |p,| for all p € pol(A).

Proof. Suppose that 7 = (T, A,p) is a table. Define the mapping pu, :
pol(A) — R by u(p) = |p,| for every p € pol(A). Let p,q be two poly-
nomials such that (p A ¢) = 0. Then, u,(pV q) = |ppvgl = |pp U pgl- Since



pA g =0 we have p,Np, =0, so pu,(pVq) = p(p) + p,(q). Thus, u, is a
measure on pol(A).

Conversely, let p be a measure on pol(A), where A = {ay,...,a,}. If b =
(bi,...,by) € {0,1}", p; = a}* A---Aal is a minterm and u(p;) = k consider
a set 0. of k tuples t; tk where t. (az) = b; for every 1,7, 1 < j < k, and
1 < i < n. Define the table Tu (T, A ,0“) where p = U{oy,|p; € mlnt(A)}

We claim that p(p) = |p,| for every polynomial p € pol(A). Suppose that
p can be expressed as a disjunction of minterms p = p; V ---V D5, » where

by,... b € {0,1}". Then, u(p) = ;?:1 ,u(pgj), because p; A p; = 0 when
l # h. On the other hand, |p,| = |U;?:1 pp5j| = 22?:1 |'0p5j |, s0 u(p) =1py|. 1

We shall refer to u, as the measure induced by the table T on pol(A).

Measures induced by tables are generated by pseudo-Boolean functions which
range over the set N (see [9]). Namely, let A = {a1,...,a,} be a set of n at-
tributes. Define the pseudo-Boolean function f : {0,1}" — Nby f(b1,...,b,) =
tr(Dby,...pn)- Then, it is easy to verify that for every polynomial p € pol(A) we
have .

=Y {f(b) | p; € mint(A) and p; < p}. (1)
Conversely, if f : {0,1}" — N is an integer-valued, non-negative pseudo-
Boolean function, then the function p defined as in Equality (1) is clearly a
measure on pol(A).

In the next section we regard the set of minterms mint(A4) as a sample space
and each polynomial p € pol(A) as an event on this sample space. The event
p occurs in p; if p; < p. Thus, if 4 is a measure on pol(A), then the mapping

P, : pol(A) — R given by P,(p) = Zg’g is a probability on pol(A).

3 An Inclusion-Exclusion Principle for MFBAs

Let A ={a1,...,a,} be a set of n variables. If I = {i1,...,in,} is a subset of
{1,...,n}, then we denote the conjunction a;, A--- A a;, by ar.

It is known that every polynomial p € pol(A) can be uniquely written as

(&%)
p=)Y crAay,
I

o
where the summation Z involves the “exclusive or” operation @ and is ex-

tended to all subsets I of {1,...,n}. The coefficients ¢; belong to the set {0, 1}.



Thus, for a measure y on pol(A) it is interesting to evaluate pu(p;®pa®- - -Bpm),
where p1, ..., p, are polynomials in pol(A).

The indicator random variable of a polynomial p (see [5]) is the variable I,
defined by:

1 ifp;<p

I (pg) = {

for p; € mint(A). Note that the expected value E[I,] of I, equals P,(p).

0 otherwise.

If M = {p1,...,pa} is aset of polynomials and J = {j1,...,jm} C {1,...,n},
then pas s is the polynomial p;, A ... A pj;; it is easy to see that I, , =
I, ---1

Piy T Pim

For a set of polynomials M define S}, as:

le,k = Z{PH(pM,K) | |K|=k}.

The number of k-subsets K of M such that pus x holds is given by the random
variable >{I,,, . | |K|= k}. By the previous observation

S =S AE(py,) | |K| =k} =E[> AL, | |K|=k}].

Let vy be the random variable on mint(A) such that vu(p;) = {pi € M |
Pz < pi}|- Note that vy gives the number of events in M that hold and,

therefore, the random variable (”;:’) gives the number of k-subsets ) of M
such that pys o holds, which means that (”jc‘”) =2y | |K| =k}, and

so5[(3)]

The equality (2) is the basis of the method of indicators, that is a method of
proving probabilistic identities by taking expectations of their non-probabilistic
counterparts, see [5] for details.

Theorem 3.1 Let i : pol(A) — R be a measure on the free Boolean algebra

pol(A), where A = {ay,...,a,}. If M ={p1,...,pm} is a set of m polynomials
of pol(A), then

ppr @@ pu) = (1) - 3 (=2F Sy )

Proof. Let a € N, note that (—1)* = zgzo(—Q)k(g), which yields, after



elementary transformations:

a 0 ifaiseven

-9 k—1 a = (=1 a 1=

,;1( ) (k) (=1) {1 if a is odd.

This implies

VZM( 2)]971 127 i %( 2)k71 123 N 0 if Unr is even
k) k) )1

By taking expectations of both sides, and using equality (2) we get

| M| | M|

E Y (—2)¥ (”}f)] = > (=2) 88 = Pu(va is 0dd) = Pu(p1®. . .@pm).
k=1 k=1

which yields the desired equality. i

Corollary 3.2 Let p, y' : pol(A) — R be two measures on the free Boolean
algebra pol(A), where A = {a1,...,an}. If u(p) = p'(p) for every conjunction
p of the form p=a;; N---Naj,, then u= p'.

Proof. The result follows immediately from Theorem 3.1. i

Example 3.3 Consider the “majority polynomial” pp.; = (a1 A a2) V (ag A
az) V (a1 A az). For f, .. we have f, . (z1,2,73) = 1 if and only if at least
two of its arguments are equal to 1. Note that

Pmaj = (al A a2) D ((1:2 A a3) ) (al A a3)_

Theorem 3.1 allows us to write

P(Pmaj) = p(ar A ag) + p(az A az) + plar A az)
=2u((a1 A ag) A (az A ag)) —2p((ar A ag) A (a1 A ag))
—2u((ag A as) A (a1 A az)) + 4p((ar A az) A (az A az) A (a1 A ag))
= (a1 A ag) + plag A ag) + p(ar A as) — 2u(ar A az A as).

[

Corollary 3.2 shows that the values of a measure on pol(A) are completely
determined by its values on positive conjunctions of the form a; for I C
{1,...,n}. Note that the contribution of every tuple of a table 7 = (T, A, p)
of the form (by, ..., b,) to the value of u,(I) equals 1 for every set I such that
IC{ie{l,...n} | b;=1}.

Next, we obtain Bonferroni-type inequalities [5] that give bounds on the value
of u(p1 @ . .. ® pm)- To this end we need the following technical result:



Define W for a,b € Nand b < a as Wg = Y 4_,(=2)%! (Z) Alternatively, W
can be written as

Wy = (2 S () = o e 1)

Lemma 3.4 The signs of the members of the sequence (Wi, Wi ,...,W2)
are alternating.

Proof. Define

a—b
a
a _ —9 14
vy, )
for a,b € N and b < a. Since W2 = (—2)*71U¢ it suffices to prove that the

numbers Uy are have all the same sign.

Note that U? =1 for b € N. We can write:

=Syt )

i
() (6) 262) ()

(3 5) 2 (00) -2 (%) -2 (5a)
| ()t (Z - 1) T+ (-)et <Z - ;) ()t (Z - 1)

a—1 a—1
_<b_1>_U,, |

Thus, we obtain

a—1 o
Uy = (b—l) — Ut (4)

We claim that 0 < Uy < (bfl) for 0 < b < a. This can be shown by induction
on a > b. The basis step a = b is immediate. Suppose that the double inequal-
ity holds for a — 1, that is, 0 < Uf‘l < (gj) Then, it is clear that Uy > 0.

To show that Uy < (bfl) we need to verify that (’;j) Ut < (bfl). Since

(bfl) = (Z:i) + (z:;) for b > 2 the last inequality follows. ]

Theorem 3.5 For any r,s € N we have:

p(1)- i(-%“sﬁ Supr®... & pm) < p(l)- sf: (—2)*s).



Proof. By equality (2) and Lemma 3.4 we get that for any r,s € N

-0 ()) s e () < e (),

implying

o () < S < o)

k=1

By applying expectations and using equality (2) we get the desired result. §

Example 3.6 Consider a table 7 given below

a1 | a2 | a3
0 0 0
0 1 0
1 0 0
0 0 0
0 1 0
1 0 1
0 1 1
1 1 0
1 1 0
0 1 1
1 0 1
1 1 0
1 1 1

and the majority polynomial py,,; from Example 3.3. We have p(a; A as) = 4,
plaiAaz) = 3, plazAas) = 3, giving p(Pmaj) < 10. Also p((a1Aaz)A(aiAas)) =
(a1 Aag) A (az ANas)) = p((ar Aas) A (az Aaz)) =1 giving p(pmq;) > 4. The
true value of j(ppg;) is 8.

4 Applications in Data Mining and Database Query Optimization

In this section we examine the accuracy of the computation of the size of a
query using the inclusion-exclusion principle. Then, we extend the notion of
support for queries that apply to tables with missing values.

In database query optimization and in data mining, it is often necessary to
estimate the number of rows in a database table satisfying a given query. Un-
fortunately, in most cases, the exact number of rows satisfying a query cannot
be computed exactly and has to be estimated (usually using the assumption



of statistical independence between attributes). Following datamining termi-
nology we will occasionally refer to sets of attributes as itemsets.

Let 7 = (T, A, p) be a binary table and let K = {ay,,...,ax,} be a set of
attributes, K C A. The support of the set K relative to the table 7 is the
value of the probability P, (ag, A---Aag,):

{tep | t(a) =1foralla e K}
ol '

supp, (K) =

In other words, the support of an attribute set K in the table 7 is defined by

the value of the measure induced by the table on the Boolean polynomial that

describes the attribute set. By extension, we can regard the number ZT(q) as

the support of the query ¢ and we denote this number by supp, (¢). Indeed,
if ¢ € pol(A) is a query involving a table 7 = (T, A, p) such that ¢ can be
written as

@
QZC@ZGI,

1e]

where ¢ € {0,1} and J is a collection of subsets of {1,...,n}, then supp,(q)
can be obtained from Theorem 3.1 using the numbers supp, (ar). Methods
that obtain approximative estimations of query sizes been proposed [2], in-
cluding the use of Maximum Entropy Principle. An open problem raised was
estimating the quality of such an approximation.

The computation of the size of the query using Theorem 3.1 can be often
simplified if there is a known maximal number of 1 components in the tuples
of the table. For example, in a store that sells 1000 items (corresponding to
1000 attributes in a table that contains the records of purchases) it is often
the case that we can use an empirical limit of, say, 8 items per tuple. In this
case, conjunctions that contain more than 8 conjuncts can be discarded and
the estimation is considerably simplified. Even, if such an upper bound cannot
be imposed apriori, it is often the case that we can discard large conjunctions
(which have low support). However, there are some risks when approximations
of this nature are performed due to the the large values of coefficients that
multiply the supports for large conjunctions.

n n

Indeed, consider the tables 72, = (Tb, A, Podd)s Toven = (Tey A, Peven), Where
Podd = {t € Dom(A) | ny(t) is odd} and peyen, = {t € Dom(A) | nq(t) is even},

where n;(t) denotes the number of attributes equal to 1 in tuple ¢ and |A| = n.

Note that for proper subset K of A, we have supp, (K) = supp, _ (K),

10



while

1 ifnisodd 1 ifnis even
0 otherwise.

supp,» (A) = { and supp,. (A) =

odd 0 otherwise, cven

Thus, from the point of view of the supports of any proper subset of the at-
tribute set the tables 7, and 77, are indiscernible. However, the support
of certain queries can be vastly different on these tables. For example, con-
sider the polynomial p = a1 ® as & ... & a,. We have SUPP,n (p) = 1 and
Supp,» (p) = 0. So, ignoring the term that corresponds to the support for a
single attribute set (note that this is also the attribute set with the smallest
possible support) has a huge impact on p,(p). Note that the result is consis-
tent with Theorem (3.1) which gives the set of attributes A a coefficient 2771,
We stress however that the negative result above does not rule out practical
applicability of approximating the values of yu, since the parity function query
used above is by no means a typical database query.

Frequently, real world datasets contain missing values; this makes important
to adequately address this issue. Here we present a generalization of the notion
of support which takes missing values into account. The idea is related to the
hot deck imputation of missing values where each missing value is replaced by
a value randomly drawn from some distribution (see [10]).

Suppose that 7 = (T, A, p) is a table such that A = {a4, ..., a,} and Dom(a;) =
{0,u,1} for 1 < i < n. The symbol u represents null values, that is, values
that are missing or undefined. With every attribute a; € A we associate a real
number «a; € [0, 1]. Intuitively, this number corresponds to the probability of
a; = 1, and can be obtained using the non-missing values for the attribute or
based on background knowledge.

Let a be a non-negative number, and let b,c € {0,1}. Define

« ifb=1lande=0 )
b ) © b ifc=1
ab? =01_q ifb=0andc=0 and b =
1 ife=1 v ife=0,

For a table 7 = (T, A, p) let u* : pol(A) — R be defined as follows. For a

minterm a%' A --- A ab let

prad Ao Aagr)

n

— Z H a/(bi,ci) |{t cp | t(al) = bgcz) forl1 <i< n}l

(€1,emen)E{0,1}7 i=1 ol

11



For an arbitrary boolean polynomial p define

py(p) = > py(py

pzEminty
where mint, is the set of minterm implicants of p.
Theorem 4.1 For every table 7 = (T, H, p), p* is a measure on pol(A).

Proof. Since p is clearly non-negative, it remains to be shown that p%(p; V
p2) = p(p1) + p(pa) for every pi,pe € pol(A) such that p; A po = 0. Note
that if p; A po = 0 then mint,, N mint,, = (), and

V)= Y prp)+ Do pr(pg) = pr (1) + 7 (p2).

pgz»Emintp1 pgz»Emintp2

Example 4.2 Let n = 2, we have:

pir (a1 @ az)

= py (@ A ag) + pr(ay A az)

=supp, (a1 =0Aay =1)+ (1 —ay)supp, (a1 =uAay =1)
+agsupp, (a1 = 0A ay = u) + (1 — a;1)assupp, (a1 = as = u)
+supp,_ (a1 =1 A ay =0) + assupp, (a1 = u A ay = 0)
+(1 — ag)supp, (a1 = 1 Aag = u) + a4 (1 — ag)supp, (a1 = as = u).

[

The benefit of using arbitrary measures instead of probabilities or supports in
previous sections is that results on inclusion-exclusion principle automatically
apply to p. Also, the fact that y is a measure makes the proof of the following
theorem straightforward.

Theorem 4.3 For every table T = (T, A, p) such that A = {a,...,a,} and
Dom(a;) = {0,u,1} for 1 < i < n, and every collection of sets of attributes
A={ar,...,ar, | I; C{1,...,n}} there is a probability distribution P over
A such that for every aj, € A, P{\jer,(a; = 1)} = ¥ (Ajer, (a; = 1))/|pl.

Proof. We prove the theorem by showing that u¥/|p| is a probability distri-

bution. Since p¥ is a measure, it suffices to show that p*(1) = |p|. For any
a; € A we have:

12



pr (1) = pi (@i V @) = it (a) + (@)
=supp, (a; = 1) + a;supp, (a; = u)
+supp, (a; = 0) + (1 — a;)supp, (a; = u)
=supp, (a; = 1) + supp, (a; = 0) + supp,(a; = u) = [p|.

The importance of the above theorem is that if we use some datamining al-
gorithm (e.g. Apriori) to find p? for a collection of sets of attributes, then
their values of u are probabilistically consistent. Other approaches to mining
frequent itemsets in the presence of missing values can be found in [6,7]. How-
ever, both these approaches can produce probabilistically inconsistent results.
Specifically, the technique used in [6] is to count the support of an itemset
only on the portion of the table where it is valid. For example, consider the
table 7 = (T, ajas, p), given by

T
a1 | a2
111
1 |u
0| u
0| u

Using the method from [6] the support of attribute as is counted only in
the first row, giving supp, (a2) = 100%. Similarly supp (a;) = 50%, and
supp, (a1a2) = 100%, but this means supp, (a1as) > supp, (a1), which is im-
possible. In the method proposed in [7] the probability for each attribute is
estimated from the part of the data where the attribute is defined. When com-
puting how much support does a row with a missing value contribute for an
itemset, this probabilities are summed for each attribute (see [7] for details).
In the table above this will give supp. (a1) = 50%, supp, (a2) = 100%, and
supp, (a1a) = [(0.5-1+0.5-1)+(0.5-1+0.5-1)+2(0.5-0+0.5-1)] /4 = 75%, and
supp, (a1az) > supp, (a1). Using our u? measure with o, = 1 gives consistent
values of supp, (a1) = 50%, supp, (as) = 100%, and supp.(a1as) = 50%.

5 Support Approximations Using Bonferroni-type Inequalities

The question of estimating supports of general Boolean expressions based on
supports of frequent itemsets discovered by a datamining algorithm was ini-
tiated in [1]. The accuracy of this estimation (using the inclusion-exclusion

13



principle) is influenced by the supports of the frequent items set; when, for
various reasons, some of these supports are missing this accuracy may be com-
promised. The problem has been addressed in [11,12] but the results presented
there can be applied only for the case when we know supports of all itemsets
up to a given size. This is usually not the case with datamining algorithms
which compute supports of only some of the itemsets of a given size. A similar
problem has been addressed in the area of statistical data protection, where it
is important to assure that inferences about individual cases cannot be made
from marginal totals (see [13,14] for an overview). Those methods concen-
trate on obtaining the most accurate bounds possible (in order to rule out
information disclosure), computational efficiency being a secondary concern.
Algorithms usually involve repeated iterations over full contingency tables [14],
branch and bound search [13] or numerous applications of linear programming.

We use recursively Bonferonni inequalities to estimate supports of missing
itemsets. In their original form the inequalities require that we know supports
of all itemsets up to a given size. We address the problem by using the inequal-
ities recursively to estimate supports of missing itemsets. The advantage of
Bonferroni inequalities is that we can choose an arbitrary limit on the size of
the marginals involved, thus allowing for trading off accuracy for speed. Our
experiments revealed that it is possible to obtain good bounds even if only
marginals of small size are used.

Example 5.1 Consider a binary table 7 whose heading is A = abc and assume
that the distribution of the values of the tuples in this table is given by:

a 0(0(0] 0|11 |1]|1

b oOj(joy1} 170,011

c o140} 1701101
Frequency| 0 | 0 {0.1{0.25]0.1|0.25]0.05{0.25

A run of the Apriori algorithm ([15]) on a dataset conforming to that distri-
bution, with the minimum support of 0.35 will yield the following itemsets:

Itemset| a b ¢ |ac|be

Support|0.65]0.65]0.75(0.5|0.5

To estimate the unknown support of the itemset abc we can use Bonferroni
inequalities of the form:
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supp, (abc) > 1 — supp, (a) — supp, (b) — supp, (¢), (5)
supp, (abc) <1- sSupp, (C_L) - SuppT(b) — Supp. (E (6)
+supp, (@b) + supp, (ac) + supp, (be).

Note that since the support of ab is below the minimum support its value
is not returned by the Apriori algorithm and this creates a problem for this
estimation. All the itemset supports, except for supp, (ab), in the previous
expression can be determined from known itemset supports using inclusion-
exclusion principle. For example, we have

supp, (a¢) = 1 — supp, (a) — supp, (c) + supp, (ac) = 0.1.
Since all needed probabilities are known exactly, the lower bound (5) is easy
to compute giving
supp, (abc) > 1 —0.35 —0.35 — 0.25 = 0.05.

To compute the upper bound we proceed as follows.

Since supp,,. (@b) is not known, we apply Bonferroni inequalities recursively to
get an upper bound for it. We have

sSupp, (ab) =1- Supp’r(a’) - suppT(b) + supp’r(ab)’

and, since ab is not frequent, we know that its support is less than the 0.35
minimum support, giving

supp, (ab) < 1 — supp, (a) — supp, (b) + minsupp = 0.05.

Substituting into (7) we get

supp, (abc) <1 — supp, (a) — supp, (b) — supp. (c)
+0.05 + supp, (a¢) + supp, (be)
=1-0.35—0.35 — 0.25 + 0.05 4+ 0.1 + 0.1 = 0.3.

Note that both bounds are not trivial since the lower bound is greater than
0, and the upper bound is less than the minimum support.

5.1 A Recursive Procedure for Computing Bonferroni Bounds from Frequent
Itemsets

Since the Apriori algorithm only discovers supports of itemsets (as opposed to
other types of queries), we need to express all inequalities in terms of supports
of itemsets.

15



Theorem 5.2 Let q1,...,qy, be m queries in pol(A). The following inequali-
ties hold for any t € N:

2+1
Z(—l)’C Z supp, (1 A - NG ANgiy Ao ANGy)
k=0 r<iy<...<ip<m

<supp, (LA AG NG A A Q) <
2t

> (—1)F > supp, (1 A - - Agr Agiy Ao A giy).

k=0 r<i1<...<ix<m

Proof. By Rényi’s Theorem [16] it suffices to prove the claim for ¢; € {1, 0}
for all 1 < ¢ < m. When ¢; = 0 for some 1 < ¢ < r, then both sides of the
inequalities reduce to 0 and the result is immediate. For the case ¢; = 1 for all
1 <4 <r wehave supp, (@1 A .. AGGrs1 A .. AGm) = Supp, (Frs1 - - - Gm), and
forall k and forall r <4y < ... <ix <m,supp, (A . . ANGAGN...NG,) =
supp, (¢i, A - .. A gi, ). The result now follows from Bonferroni inequalities. O

Corollary 5.3 Let a1 Aas A+ ANap N @ri1 A Gryo A+ A ay, be a minterm.
The follounng inequalities hold for any natural number t:

2041
> (-1)F > supp, (@1 A=+~ Aap Aayg A+ Aag,)

k=0 r<i1<...<tx<m

<supp, (@1 A Aap AGrpr A+ Nbpy) <
2t

> (1) > supp, (@ A+~ Aay Aay A+ Aag,)

k=0 r<iy<..<ig<m

Proof. This statement follows immediately from Theorem 5.2. O

Below we present results which form the basis of our algorithm for approxima-
tive computations of supports of itemsets. The binomial symbol () will allow
negative values of n, in which case its value is defined by the usual formula

C):nm—1y~M—k+D‘

k k!

Lemma 5.4 For m,k, h,s € N such that m > s we have:
s — k-1 _
ZG@S%m k )&)ZO m+j'
pard s—k k s
Proof. In [17], p. 169, it is shown that for every a,b, ¢, d € N we have:

S () (D) o
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By using the complimentary combinations in Equality 7 we can write:

5 m—k—1\(h s m—k—1\[h
-1 s—k — -1 s+k —
2 ([ 2 [ 14
meo_s[h—m+s
1y (M)
_ (h m—+ s)
Note that the application of the formula
m—k—-1\ (m-—k-1
s—k C\m—s—1
in the above chain of equalities is justified because m—k—1 < m—s—1>0. O

Note that if h = m, the previous lemma implies
> —k—1
ne (")) -
s s—k k

Our method of obtaining bounds is based on the following theorem

Theorem 5.5 Let 7 = (T, A, p) be a table and let ay, ..., an, be attributes in
A. Then, if m > 2t we have:

2t _ k -1
supp, (a1 Aag A ... A ap) < Z(—l)'C (m )Sk
= 2% — k

and if m > 2t 4+ 1:

2t+1 m_k_l
supp, (a1 Aas A ... Aap) > Z: (—1)k* <2t 1o k) Sk

where

Sy = Z supp, (ai; A ... Aaj),

1<i1 <. <m

and Sy = 1.
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Proof. We use the method of indicators previously discussed.

Let v, be a random variable equal to the number of events Ay,..., A, that
actually occur. By Lemma 5.4 we have:

S () (1)

1 ifv,=m
=40 ifv, <mandvy, >m-—s
(”m_sm“) if v, <m — s.

By taking expectations of the above equation we get

>0+ (" 7 E ) s = supp v = m)

k=0 s

iy { <ym(w) —m+ S) supp_(w) : w € Q, vy (w) < m — S} :

S

where 2 denotes the space of elementary events. Note that when v,, <m — s
the sign of (”m_sm“) is identical to that of (—1)*. Replacing s by 2t or 2t + 1
yields the result. O

6 The Estimation Algorithm

The main problem in using Bonferroni-type inequalities on collections of fre-
quent itemsets is that some of the probabilities in the S, sums are not known.
We solved this problem by estimating the missing probabilities using Theorem
5.5. In Figure we give an algorithm for computing bounds on support of an
itemset based on a collection of itemsets with known supports.

Of course upper and lower bounds for itemsets are cached during computations
to avoid repeated evaluations for the same itemset. The parameter r controls
the maximum size of marginals (itemsets) used in the estimation.

The use of minsupp in step 5 of function U requires some comment. Including
the value of minsupp in the minimum is possible only if we can determine that
the estimated itemset I is not frequent. This can be done for example, if F
contains all frequent itemsets, or when F contains all frequent itemsets up to
a given size k, and |I| < k. If we don’t know whether [ is frequent or not, we
have to drop minsupp from the minimum.

18



Algorithm 1

Input: Itemset I, natural number r, collection F of itemsets, and their
supports

Output: Bounds L(I),U(I) on the support of I

The algorithm is implemented by functions L and U given below

Function L(I,F,r).
1) frer

(2)  return supp, (I)
(3) else
(4)  return max_j<op1<r gy ST <(—1)’“rl (;’;;’f:;), I, F, k)

Function U(I, F,r).

1) IfIeF

(2)  return supp, (/)

(3) else

(4) U — mingeue, T SY (—1)F (51 )s L Fo k)
(6) U — min{U, minsupp, min;; U(J)}

(6)  return U

The functions ST and SY are defined below

Function S%(real coefficient c, itemset I = ajay...a,,, F, integer k)
1) If £ = 0 return ¢
2) Iife>0
3) return ¢- 3 o cio<m L(0s asy - . a5, F k= 1)
4) else

) return ¢ - 3 o cip<m Ui, @iy - . a5, F kb — 1)

Function SY(real coefficient c, itemset I = ayas...a,,, F, integer k)
(1) If £ = 0 return ¢

Fig. 1. Algorithm for computing bounds on support of an itemset based on supports
of a collection of its subsets.
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6.1 FEzxperimental results

In this section we present experimental evaluation of the bounds. Our algo-
rithm works best on dense datasets, which are more difficult to mine for fre-
quent itemsets than sparse ones. However, the algorithm was tested on both
dense and sparse data (artificial market basket data was used). The rest of
the paper is focused on experiments performed on dense databases.

As dense databases we used the mushroom database from the UCI Machine
Learning Archive [18], and a census data of elderly people from the University
of Massachusetts at Boston Gerontology Center available at

http://wuw.cs.umb.edu/"sj/datasets/census.arff.gz.

Since both datasets involve multivalued attributes, we replaced each attribute
(including binary ones) with a number of Boolean attributes, one for each
possible value of the original attribute.

Before we present a detailed experimental study of the quality of bounds, we
present the results of applying the bounds to a practical task. Suppose that
we did not have enough time or computational resources to run the Apriori
(or similar) algorithm completely, and we decided to stop the algorithm after
finding frequent itemsets of size less than or equal to 2. We then use lower
bounds to find frequent itemsets of size greater than 2. The experimental
results for mushroom and census databases are shown in Figures 2 and 3
respectively.

The figures show, for various values of minimum support, the true number of
frequent itemsets of sizes 3 and 4, the number of itemsets that we discovered
to be frequent by using our bounds, and the ratio of the two numbers.

For large values of minimum support we are more likely to classify an itemset
correctly than for smaller ones. The data shows that for itemsets with largest
support the chances of actually being determined to be frequent without con-
sulting the data can be as high as 80%.

We now present an experimental analysis of the bounds obtained. In what
follows, by trivial bounds for the support of an itemset I we mean 0 for the
lower bound, and for the upper bound: the minimum of the upper bounds of
the supports of all proper subsets of I and of the minimum support. As in the
example above here too we mine frequent itemsets with at most two items,
and compute bounds for larger ones.

Table 1 (a) contains the results for the census dataset with minimum support
of 1.8%.
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Ttemset Min. support 18% 25% 30% 37% 43% 49% 55% 61% 73%
size
Frequent 1761 893 498 308 152 70 45 23 13
3 Est. Freq. 345 244 179 127 86 54 34 19 10
ratio (%) 19.59% 27.32% 35.94% 41.23% 56.58% 77.14% 75.56% 82.61% 76.92%
Frequent 4379 1769 795 368 147 48 29 16 6
4 Est. Freq. 298 202 131 85 53 31 18 10 2
ratio (%) 6.81% | 11.42% | 16.48% | 23.10% | 36.05% | 64.58% | 62.07% | 62.50% | 33.33%

Ratio of discovered frequent itemsets

to total frequent itemsets for the
90% T mushroom dataset

* for itemset size = 3 *
80% T A for itemset size = 4 . .

*
70% T
A
A A
60% T
*
50%
40% + *
* A
A
30% T
*
A
20% T *
A
10% T A
A
\ \ \ \ \ \ \ \ \

10% 20% 30% 40% 50% 60% 70% 80% 90% support

Fig. 2. Discovered vs. total frequent itemsets for the mushroom dataset

Ttemset size Min. support 1% 2% 3% 5% 10% 15% 30% 50%
Frequent 1701 1377 1145 879 503 312 112 40
3 Est. Freq. 154 149 146 137 108 90 47 21
ratio (%) 9.05% 10.82% 12.75% 15.59% 21.47% 28.85% 41.96% 52.50%
Frequent 5050 3560 2728 1901 852 485 105 20
4 Est. Freq. 103 98 94 85 64 48 18 3
ratio (%) 2.04% 2.75% 3.45% 4.47% 7.51% 9.90% 17.14% 15.00%

Fig. 3. Ratios of discovered to total frequent itemsets for the census data

The parameter 7 in Algorithm 1 was chosen for each itemset I to be |I| — 1
for maximum accuracy. This causes an increase in estimation time for larger
itemsets. Later in the section we present results showing that limiting the
value of r can give very fast estimates with a very small impact on the quality
of the bounds. All experiments were run on a 100MHz Pentium machine with
64MB of memory.

The bounds obtained are fairly accurate. The width of the interval between
the lower and upper bounds varied from 0.048 to 0.019 for itemsets of size 3.
Note that the estimates become more and more accurate for larger itemsets.
The reason is that the bulk of large itemsets will have subsets whose support is
very small, thus giving better average trivial bounds. Nontrivial upper bounds
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itemset size 3 4 5 6

average interval width 0.0482797 0.0313103 0.0228579 0.0196316
average upper bound 0.0568679 0.0319395 0.0228771 0.0196316
average lower bound 0.00858817 0.000629199 1.925e-05 0
itemsets with nontrivial bounds 7.04% 0.59% 0.04% 0.00%
itemsets with nontrivial lower 4.06% 0.39% 0.02% -
average lower improvement 0.211321 0.161151 0.0962518 -
itemsets with nontrivial upper 6.43% 0.47% 0.03% -
average upper improvement 0.0225656 0.00983444 0.00262454 -
time [ms/itemset] 0.2 0.3 1 7

(a) 1.8% minimum support, all itemsets

itemset size 3 4 5 6
average interval width 0.102848 0.105024 0.106997 0.110767
average upper bound 0.127438 0.109572 0.107491 0.110767
average lower bound 0.0245896 0.00454846 0.00049354 0
itemsets with nontrivial bounds 20.17% 4.25% 0.58% 0.02%
itemsets with nontrivial lower 11.64% 2.82% 0.46% -
average lower improvement 0.211321 0.161151 0.106164 -
itemsets with nontrivial upper 18.41% 3.43% 0.40% 0.02%
average upper improvement 0.0225656 0.00983444 0.00333985 0.00338427
(b) 1.8% minimum support, frequent itemsets only

itemset size 3 4 5 6
average interval width 0.171608 0.205194 0.222602 0.231362
average upper bound 0.235004 0.223174 0.225491 0.231362
average lower bound 0.0633963 0.0179804 0.00288882 0
itemsets with nontrivial bounds 48.55% 16.79% 3.40% 0.14%
itemsets with nontrivial lower 30.00% 11.16% 2.72% -
average lower improvement 0.211321 0.161151 0.106164 -
itemsets with nontrivial upper 44.00% 13.56% 2.33% 0.14%
average upper improvement 0.0238776 0.00983444 0.00333985 0.00338427

(¢) 9% minimum support, frequent itemsets only

Table 1
Results for the census dataset

occur slightly more frequently than nontrivial lower bounds; however, lower
bounds give on average much better improvement over the trivial bounds (this
is due to the fact that our trivial upper bounds are quite sophisticated, while
the trivial lower bound is just assumed to be 0).

The percentage of itemsets having nontrivial bounds is quite small. However
those itemsets who have high support (and thus are the most interesting) are
more likely to get interesting nontrivial bounds. This can be seen in Tables
1(b) and 1(c), where up to 48% of itemsets have nontrivial bounds proving the
usefulness of Theorem 5.5. Note that in this case the interval width increases
with the size of the itemsets. This is due to the fact that for high supports
we don’t have large number of itemsets with low supports that would create
trivial upper bounds.

The conclusions were analogous for the mushroom database.
Table 2 shows how the choice of the argument r in Algorithm 1 influences the
computation speed and the quality of the bounds. The results when 7 is set to

the highest possible value (size of the estimated itemset minus one) is given
in Table 1(a).
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Census Data with 1.8% Minimum Support

=2
itemset size 3 4 5 6
average interval width 0.0482797 0.0315442 0.022993 0.0196671
average upper bound 0.0568679 0.0321734 0.0230122 0.0196671
average lower bound 0.00858817 0.000629199 1.925e-05 0
itemsets with nontrivial bounds % 1% 0.10% 0%
time [ms/itemset] 0.18 0.24 0.34 0.46

r=3
itemset size 3 4 5 6
average interval width 0.0482797 0.0313103 0.0228666 0.0196328
average upper bound 0.0568679 0.0319395 0.0228859 0.0196328
average lower bound 0.00858817 0.000629199 1.925e-05 0
itemsets with nontrivial bounds 7% 0.50% 0% 0%
time [ms/itemset] 0.18 0.3 0.53 0.92

Table 2
Influence of the order of inequalities on the bounds

Census Data with 1.8% Minimum Support

itemset size 3 4 5 6 7
avg interval width 0.040498 0.081989 0.0668155 0.0392651 0.0180174
average upper bound 0.171319 0.120666 0.0685168 0.0392925 0.0180174
average lower bound 0.130821 0.0386768 0.00170127 2.73405e-05 0
time [ms/itemset] 0.24 0.46 0.96 2.54 5.12

Table 3
Estimates for itemsets with negations

The results show that limiting the value of r to 2 or 3 gives a large speedup
at a negligible decrease in accuracy. This is the approach we recommend. Also
note that the proportion of itemsets with nontrivial bounds is higher for lower
values of r. The same experiments repeated for frequent itemsets only yielded
analogous results, so we omitted the data here.

Our last experimental result concerns estimating support of conjunctions al-
lowing negated items using Corollary 5.3. Table 3 shows the results for the
census ataset, with supports of all frequent 1- and 2-itemsets known (1.8%
minimum support). In each of the itemsets exactly two of the items were
negated. Again the inequalities gave fairly tight bounds.

7 Conclusions and Open Problems

We studied properties of measures defined on free Boolean algebras arising
naturally in the evaluation of sizes of queries applied to binary tables in re-
lational databases. A method of obtaining bounds for support of database
queries based on supports of frequent itemsets discovered by a datamining
algorithm was presented by generalizing the Bonferroni inequalities. Special-
ized bounds for estimating support of itemsets, itemsets with negated items,
as well as bounds for arbitrary queries have been obtained. An experimen-
tal evaluation of the bounds shows that the bounds are capable of providing
useful approximations.
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Various other specialized Bonferroni inequalities for other types of queries
could be considered. General inequalities in Theorem 3.1 can be used for this
but the bounds they give are not always tight. It has also been shown in [19]
that for certain queries it is not possible to obtain tight bounds at all. Never-
theless, we believe that it is possible to obtain useful bounds for a large family
of practically useful queries.

Another important direction of future research is the investigation of vari-
ous other types of inequalities (e.g., sharp Bonferroni inequalities) to improve
the tightness of currently available bounds. An interesting challenge would
be applying other (besides the method of indicators) methods of prooving in-
equalities presented in [5] like the method of polynomials or the geometric
method.
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