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Abstract We propose an approximate computation technique for inter-object dis-
tances of binary data sets. Our approach is based on locality sensitive hashing. We
randomly select a number of projections of the data set and group objects into buckets
based on the hash values of these projections. For each pair of objects, occurrences in
the same bucket are counted and the exact Hamming distance is approximated based
on the number of co-occurrences in all buckets. We parallelize the computation us-
ing mainly two schemes. The first assigns each random subspace to a processor for
calculating the local co-occurrence matrix, where all the local co-occurrence matri-
ces are combined into the final co-occurrence matrix. The second method provides
the same distance approximation in longer runtimes by limiting the total message
size in a parallel computing environment, which is especially useful for very large
data sets generating immense message traffic. Our methods produce very accurate
results, scale up well with the number of objects, and tolerate processor failures. Ex-
perimental evaluations on supercomputers and workstations with several processors
demonstrate the usefulness of our methods.

1 Introduction

Locality Sensitive Hashing (LSH), introduced in [1] and [2], can be used for an ap-
proximate calculation of distances between the tuples of a data set by using random-
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ized hash functions. A close variant of LSH which works best with the Hamming dis-
tance is described in [3]. LSH is used for clustering the Web in [4]. In [5], it is used to
enhance the agglomerative hierarchical clustering of the single link method [6]. Both
of these techniques rely on the same idea provided by LSH: Close objects are likely
to collide under a high number of randomly chosen hashing functions. Both of these
techniques compute the real distances between objects residing in the same blocks.
The clustering algorithms proposed in [4] and [5] focus on finding the approximate
set of near neighbors ANN(u) of an object u, followed by finding real near neighbors
of u by computing the actual distances d(u,v) for all v ∈ ANN(u). Note that some of
the real neighbors of u may be missed because LSH does not guarantee to put all the
close objects in the same blocks.

We propose a method for approximating the distance matrix for data sets of bit
vectors. The core idea is to randomly choose m k-dimensional subspaces and consider
a bucket for each possible bit vector in this subspace. Then the vectors are hashed into
the matching buckets and, for each pair of tuples, the occurrences in the same bucket
are counted. The exact Hamming distance is approximated based on the portion of
co-occurrences in the m subspaces. Next, we parallelize the computation using two
schemes. The first assigns each subspace to a single processor calculating its parts of
the co-occurrence matrix and afterward adds up the complete co-occurrence matrix
over all subspaces. The second method exchanges results between each processor
during computation.

Our data set is a binary table D, having N distinct tuples and a set I that consists
of n distinct attributes. A set K ⊆ I with k attributes, designated as a probe and
chosen randomly, defines a random hashing function hK by assigning to a tuple tj
the numerical binary equivalent of the projection of tj on the set K , tj [K]. Each
hashing function produces a partition of the set of tuples; each block of this partition
consists of tuples that collide under that hashing function.

Parallel and distributed computing techniques are able to solve big and compli-
cated problems by using a variety of divide-and-conquer techniques. In this paper,
we introduce several parallel data mining programming methodologies that are ap-
plicable in two widely used architectures: shared disk cluster environment, and shared
memory architectures [7].

Preliminary results are presented in [8], and the paper is structured as follows.
Section 2 examines the relation between randomly generated hash function collisions
and distances. In Sect. 3, we present the algorithms and implementation guidelines.
Experimental setup and test results are presented in Sect. 4. A final section contains
our conclusions and future scope.

2 Collisions and distances

In this section, we examine the relation between randomly generated hash function
collisions and inter-object distances.

2.1 Representation of hash function

A binary data collection is a sequence D = (t1, . . . , tN) of tuples, where tj ∈ {0,1}n
and n = |I |, the cardinality of set of attributes.
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Fig. 1 A binary collection and
the hashing function hK for
K = {i1, i3, i5}

D

j i1 i2 i3 i4 i5

1 1 0 0 1 1
2 0 1 1 0 0
3 1 0 1 0 0
4 1 1 0 1 0
5 0 1 1 1 1
6 0 0 1 1 1
7 1 0 1 0 1
8 1 1 0 0 1
9 0 1 1 1 0

D[K]
j hK(tj )

1 5
2 2
3 6
4 4
5 3
6 3
7 7
8 5
9 2

(a) (b)

Fig. 2 Partition created by hK

for K = {i1, i3, i5}. Each block
shows its descriptor, and the
corresponding collection of
tuples

000 001 010 011
{} {} {2,9} {5,6}
100 101 110 111
{4} {1,8} {3} {7}

Let K = {i1, . . . , ik} ⊆ {1, . . . , n} define a probe. The projection of a tuple tj on
K is the tuple tj [K] = (tji1, . . . , tj ik ). The K-projection of the binary data collection
D is the binary data collection D[K] = (t1[K], . . . , tN [K]).

Each k-projection of D generates a function hK : {1, . . . ,N} −→ N, where hK(tj )
is the binary equivalent of the sequence tj [K]. This can be seen in Fig. 1, where
the binary data collection shown in Part (a) generates the function h{i1,i3,i5} given in
Part (b) of the figure. In other words, h{i1,i3,i5} creates a partition (clustering), with 8
blocks (clusters); 2 of which are empty as shown in Fig. 2.

2.2 Formulation of approximate distance

Let the Hamming distance between two data set tuples u,v ∈ {0,1}n given by

d(u,v) = |{i ∈ {1, . . . , n} : ui �= vi}|,
where u = (u1, . . . , un) and v = (v1, . . . , vn).

Suppose that the set of attributes K that defines a probe is chosen at random. There
are

(
n
k

)
possible choices where |K| = k. A collision takes place between two tuples u

and v, if the chosen k attributes are among the n − d attributes on which u and v are
equal, where d = d(u,v) is the Hamming distance between u and v. There are

(
n−d
k

)

such choices for the set of attributes, I . Therefore, for any two tuples u,v of D, the
collision probability for hK , that is, the probability that hK(u) = hK(v) is

p =
(
n−d

k

)

( n
k

) .
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For example, for the data set shown in Fig. 1 and another K such that k = 2, the
probability hK(t6) collides with hK(t5) is 0.6. Similarly, probability of collision of
hK(t6) with hK(t9) is 0.3. These results are intuitive since the distance between t6

and t9 is greater, therefore, their collision probability is lower.
If m probes are chosen at random, then C(u,v), the total number of collisions

that occur in this experiment is a binomially distributed variable with the distribution
B(m,p). Thus, the expected number of collisions is

E(C(u,v)) = m

(
n−d
k

)

(
n
k

)

for k ≤ n − d , which typically is the case. If k > n − d, a collision is impossible
and p = 0. It is clear that the smaller the distance d(u,v), the larger the number of
collisions will be.

Using Stirling’s formula, we can write

(
n−d
k

)

(
n
k

) =
(n−d)!

k!(n−d−k)!
n!

k!(n−k)!

= (n − d)!
n!

(n − k)!
(n − d − k)!

≈ (n − d)n−d+0.5(n − k)(n−k+0.5)

n(n+0.5)(n − d − k)n−d−k+0.5

=
(

n2 − nd − nk + dk

n2 − nd − nk

)n+0.5

×
(

n − d − k

n − d

)d

·
(

1 − d

n − k

)k

.

For moderately large values of n, the first two factors are close to 1. Thus, the ex-
pected value of the number of collisions is

E(C(u,v)) ≈ m ·
(

1 − d

n − k

)k

.

Let c(u,v) = E(C(u,v))/m be the relative number of collisions. Then we estimate
the distance between u and v as

d(u,v) ≈ (n − k)
(
1 − c(u,v)

1
k
)
. (1)

2.3 On the computation time of collisions

Assume that m probes with k attributes are applied, where 1 ≤ m and 1 ≤ k ≤ n.
Since we deal with binary data, each attribute may take a value of either 0 or 1.
Therefore, the partition that corresponds to a k-probe may contain up to 2k blocks.
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Let c1, . . . , c2k be the sizes of the blocks that correspond to a k-probe. For each
block of the partition, we need to update the number of collisions of pairs. Therefore,
for a block of size ci, we need to perform

(
ci

2

)
updates of the pair counters. For

example, for a block having three tuples {t1, t2, t5}, the collision counts of the pairs:
(t1, t2), (t1, t5), (t2, t5) are increased by one. The average size of a block is N

2k , so the
average total time required is

2k∑

i=1

(
ci

2

)
= 1

2

(
2k∑

i=1

ci
2 − ci

)

= 1

2

(
2k

(
N

2k

)2

− 2k

(
N

2k

))
= N2

2k+1
− N

2
.

The process has to be repeated for each of m probes and this requires an average time
proportional to

m

(
N2

2k+1
− N

2

)
. (2)

3 Algorithms and implementation guidelines

A clustering (or partition), which corresponds to a probe, is represented by a Java or a
C++ class that is parameterized by the projection size. A clustering includes clusters
(or blocks) and members of these clusters.

To produce a clustering P , k attributes are randomly selected and the tuples are
projected on the selected set of attributes. A cluster C consists of tuples that have
the same projection p ∈ {0,1}k on the set of attributes that constitutes the probe. The
value of bit vector p is the descriptor of the cluster. The cluster itself is represented
by a bit vector bC ∈ {0,1}N , where (bC )j = 1 if and only if the tuple tj belongs
to cluster C . Clusters do not overlap. The identifiers of the tuples are placed into
appropriate clusters according to the descriptors.

The number of clusterings m is determined by the user and passed as an argument
to the implementation. Both the number of clusterings (which equals to the number
of probes m) and the width k of the probes are set to positive integers by the user.
Note that even for small values of k, the probability of selecting the same probe twice
is rather small because there are

(
n
k

)
possible probes and m is typically much smaller

than
(
n
k

)
.

All clusterings are populated in one scan of the database as follows. Each cluster-
ing may have at most 2k non-empty clusters. First, empty clusterings are initialized,
then each tuple in the database D is passed to all the clusterings. Each clustering
projects the tuple on its own randomly selected attributes and then places the tuple in
the appropriate cluster according to the cluster descriptors.

For example, assume a clustering projects on first, fifth, and tenth attributes, then
the tuple 1001011010, is placed in cluster 4 of this clustering. Similarly, if an-
other clustering projects on fourth, sixth, and seventh attributes, then the same tuple
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Fig. 3 (a) Simultaneous
Occurrence Matrix (SOM).
(b) Corresponding Approximate
Distance Matrix (ADM)

1 2 3 4 5

1 3 0 2 0 2
2 0 3 1 3 1
3 2 1 3 1 1
4 0 3 1 3 1
5 2 1 1 1 3

1 2 3 4 5

1 0 3 1 3 1
2 3 0 2 0 2
3 1 2 0 2 2
4 3 0 2 0 2
5 1 2 2 2 0

(a) (b)

1001011010, is placed in cluster 7 of this clustering. This computation takes place
for each data tuple. In one scan of database D, m clusterings, each having 2k clusters
can be generated efficiently.

3.1 Simultaneous occurrences

We use an N × N matrix referred to as the Simultaneous Occurrence Matrix (SOM)
to keep track of the number of collisions of each possible data tuple pairs. After
obtaining the clusterings, each cluster in every clustering is scanned once and the
SOM cell, corresponding to each pair (u,v) of tuples in D that co-occur in the same
cluster, is incremented by 1. Note that there are at most m2k clusters to scan.

As an example, assume that we have a 5-tuple database D with n = 4 attributes,
the cardinality of the probes is k = 1, and we have m = 3 clusterings, whose bit
vectors are

⎛

⎜⎜⎜⎜
⎝

0
1
1
1
0

⎞

⎟⎟⎟⎟
⎠

,

⎛

⎜⎜⎜⎜
⎝

0
1
0
1
0

⎞

⎟⎟⎟⎟
⎠

, and

⎛

⎜⎜⎜⎜
⎝

1
0
1
0
0

⎞

⎟⎟⎟⎟
⎠

.

The first bit vector indicates that the two buckets that correspond to the probe, contain
tuples {u1, u5} and {u2, u3, u4} respectively; the other bit vectors are constructed in a
similar way. Figure 3(a) shows the Simultaneous Occurrence Matrix (SOM) based on
the information in all probes. For example, tuples 2 and 4 occur in the same clusters 3
times. Using the SOM, the Approximate Distance Matrix (ADM) shown in Fig. 3(b)
can be computed using Formula (1).

3.2 Parallelization of computation

In the distributed parallel computing environment (in our case, a Beowulf cluster),
each worker node reads the database file from the shared disk and creates a collection
of bit vectors representing the projected columns. Tuples having the same values on
the projected columns are placed in the same clusters. At each computing node, a
local binary simultaneous occurrence matrix is filled with 1 s representing collision
between a particular pair of tuples. To reduce the message size among multiple pro-
cessors, we use the upper right half of SOM, which is referred to as Simultaneous
Occurrence Vector (SOV) and represented in Fig. 4. Kambadur et al. [9] and [10]
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Fig. 4 Local SOM and its SOV
representation

offer solutions for efficient use of data structures in a message passing environment.
In order to keep the SOV size reasonably low, we use type char (8 bits). Note that the
number of simultaneous occurrences cannot be greater than the number of nodes in
the parallel computing environment. There are 124 nodes in our cluster, therefore, in
the resulting SOV the largest value may be 124 and this number can be represented
by 8 bits.

Algorithm 1 is for computing SOVs in the cluster environment. This algorithm is
graphically represented in Fig. 5. SOVs obtained from each worker node are summed
into a resultant SOV. Instead of summing all the SOVs sequentially in the master
node, we use the built-in MPI function MPI_Reduce. MPI_Reduce is handled in par-
allel, and in logarithmic time, therefore, it is very advantageous. Full details of the
MPI_Reduce depends on the message size and the MPI implementation. Using [11]
and [12], a conceptual cost model for MPI collective operations is developed and
shown on an MPI_Reduce example in Fig. 6. An alternative idea is to compress each
SOV, and decompress the SOVs at receiving nodes, then perform summation. For
achieving this, along with compression functions, MPI_Pack and MPI_Unpack rou-
tines are used. SOVs gets much smaller when they are compressed. However, there is
a large overhead to compress each SOV at the sender node, and to decompress each
SOV at the receiver side. Note that the alternative approach reduces the total message
size in the cluster noticeably, but it incurs overhead for constantly compressing and
decompressing. Experimental results showed us that using MPI_Reduce with original
SOVs yields better performance.

As a final procedure for computing the ADM, Formula (1) is applied to the
summed SOV as shown in Algorithm 2: Instead of performing this operation sequen-
tially on one node, we divide SOV into m equal fragments and apply Formula (1)
on m different worker nodes for the corresponding fragments. For distributing SOV
fragments into m worker nodes, we use MPI_Scatter. For collecting the fragments in
the master node, MPI_Gather is used.

For very large databases, we noticed that the total message size in Algorithm 1
becomes very large since every node has a message of size |SOV| to pass. Message
traffic adversely affects the communication, and in rare cases computing environment
comes to a halt. Therefore, we created an alternative method as shown in Algorithm 3.
In this algorithm, which divides the SOV into equal fragments, each node operates
on a |SOV|

m
size message, where m is the total number of nodes. The algorithm passes

each SOV fragment m − 1 times in a circular motion between the worker nodes. For
achieving this, we created a virtual circular topology of m worker nodes as shown
in Fig. 7. In this setting, each node randomly generates a hash function, and creates
a fragment of SOV. For example Node1 has the first fragment containing first |SOV|

m
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Input: D: database, k: projection size, m: number of projections
Output: SOV : Simultaneous Occurrence Vector
// There are m worker nodes
foreach worker node do

Represent D vertically by a collection of bit vectors in the main memory,
refer to this bit vector collection as Dbv

On Dbv, create a random projection of size k by choosing k columns
randomly
Form a clustering P containing 2k clusters
// Some of the clusters in P may be empty
Place each tuple in Dbv into corresponding cluster according to the values
in randomly chosen columns
Initialize a Simultaneous Occurrence Vector SOV
foreach cluster C ∈ P do

foreach tuple pair (ti , tj ) ∈ C do
Set value of (ti , tj ) in SOV to 1

Sum all SOVs in parallel using, MPI_Reduce
return SOV

Algorithm 1: Parallel Algorithm to Compute Simultaneous Occurrence Vector

Input: SOV : Simultaneous Occurrence Vector, m: number of nodes
Output: ADM: Approximate Distance Matrix
// Fragment SOV into m contiguous vectors of size s

each
s = size(SOV) / m;
Scatter each fragment SOVf of size s, f ∈ {1, . . . ,m} to m worker nodes;
// Apply distance approximation formula
foreach SOVf , f ∈ {1, . . . ,m} do

foreach element e in SOVf do
if e != 0 then

e = applyDistanceFormula(e) ;

// Each SOVf has become an ADMf

Gather ADMf , f ∈ {1, . . . ,m} in the master node to form ADM;
return ADM

Algorithm 2: Parallel Algorithm for Computing Approximate Distance Matrix
(ADM)
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Fig. 5 Computing SOV in cluster environment

Fig. 6 MPI_Reduce adding 4 SOVs in parallel

entries, and Nodem has the last |SOV|
m

entries. After projecting, each node updates the
SOV message it has, then passes this SOV message to its right, and receives a new
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Fig. 7 Alternative approach for
computing SOVs in virtual
circular topology

Input: D: database, k: projection size, m: number of projections
Output: SOV : Simultaneous Occurrence Vector
// There are m worker nodes
foreach worker node do

Represent D vertically by a collection of bit vectors in the main memory,
refer to this bit vector collection as Dbv ;
On Dbv, create a random projection of size k by choosing k columns
randomly;
Form a clustering P containing 2k clusters ;
// Some of the clusters in P may be empty
Place each tuple in Dbv into corresponding cluster according to the values
in randomly chosen columns;
Initialize a Simultaneous Occurrence Vector SOV fragment;
Update the SOV fragment at hand ;

for 1 to m-1 do
foreach worker node do

Send SOV fragment to the right node ;
Update SOV fragment received from left node ;

Combine all the SOV fragments into a global SOV ;

Algorithm 3: Parallel Algorithm to Compute Simultaneous Occurrence Vector
with Circular Topology

SOV message from its left. The circular message passing between nodes is completed
in m − 1 iterations. This design makes sure that at anytime in the system maximum
message size is |SOV|, which makes it suitable for larger databases.
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Fig. 8 Topology of the beowulf cluster having 124 nodes

4 Experimental results

4.1 Testing environment

Our primary testing environment is a Beowulf cluster having 124 nodes and infini-
band connectivity. Each node has a 64-bit processor with 4 GB to 8 GB of main
memory. The cluster is equipped with parallel file system, message passing interface
(MPI) [13, 14], Linux operating system, and 62 dual core 1.0-GHz AMD Opteron
processors.

Our choice of programming language on the cluster is C++. For conducting exper-
iments, we used MPICH2 [15], along with the gcc version 4.2. compiler, and Boost
library [16]. In the cluster, whose topology is given in Fig. 8, workload balancing is
performed manually.

Since we are also interested in implementing our algorithms on multi-core plat-
forms with a relatively smaller number of processors (which are widely available),
we used as a secondary experimental environment an Apple–Mac Pro having 2 Intel
3.0 GHz Xeon quad-core 64 bit processors. This server has 8 cores and 16 GB of
total main memory. On this shared memory system, we use Java threads, and these
threads are converted to operating system native threads by the compiler. We relied
on the operating system (Mac OS X Leopard) to distribute the work evenly.

In the Beowulf cluster, we relied mostly on MPI libraries for achieving reliability,
and synchronization. In the shared memory environment, we used locks, and atomic
operations (where possible) to solve similar problems.

The test data sets we used are randomly generated using independent uniform
distributions for each bit and consisted of bit vectors of length 20, unless otherwise
indicated. The average density of the 1 s is 50% in each vector.

4.2 Runtime results

Using Algorithms 1 and 2 subsequently, Fig. 9 presents the runtime for creating the
approximate distance matrix (ADM) on a database having 10,000 tuples. It is impor-
tant to note that in all approximate distance computation experiments presented in
this section, increasing the number of nodes produces more accurate ADMs rather
than reducing the runtime. Communication and computation runtime results in Fig. 9
demonstrate that our implementation runs fully in parallel. By using more nodes in
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Fig. 9 Runtime on 10,000 tuples using Algorithms 1 and 2 in the cluster environment

the computing environment, we obtain more accurate approximations without in-
creasing the runtime. Running our algorithm on 70 nodes and above achieves accu-
racy results greater than 90% as shown in Fig. 14.

It should also be noted that we are physically limited by the network bandwidth.
In Algorithm 1, each node computes a local SOV, and then these SOVs are sent over
the network and merged into a final SOV in the master node. The size of each SOV
is N(N−1)

2 where N is the number of tuples in the database. In a relatively smaller
database with 10,000 tuples, there are around 50 million entries in the SOV (each
entry is 1 byte long for saving space). Each node sends its local SOV through the
high speed infiniband network as a 50-MB message. Therefore, when running on,
e.g. 100 nodes, total message size (total network traffic) on the system goes up to
100 ∗ 50 MB = 5 GB. Although, the projection size does not effect the execution
time, the messages are reflected as overhead.

In our experimental setup, computing the ADMs of databases having 40,000 tu-
ples or more by using the Algorithms 1 and 2 became problematic due to the total
message size. Figure 10 shows that for 40,000 tuples only 32 nodes could be utilized:
It was impossible to use more nodes because of the network bottleneck and mem-
ory requirements. Clearly, for very large databases we need to use the alternative
approach presented in Algorithm 3 in Sect. 3.2. Although this approach is somewhat
more time consuming compared to Algorithm 1, due to m− 1 iterations and commu-
nication overhead, it is less sensitive to total message size and memory requirements
by keeping the network traffic constant and equal to |SOV|. Figure 11 shows that
this approach can handle a database with 40,000 tuples as opposed to the results in
Fig. 10. Note that increasing the number of nodes does not increase runtime but ac-
curacy, which means the algorithm scales. Figure 11 also shows the time spent for
communication and computation.

On our secondary platform (an Apple–Mac Pro) which has only 8 nodes, each
clustering is implemented as a Java thread which is converted to an operating system
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Fig. 10 Runtime on 40,000 tuples with different projections using Algorithms 1 and 2 in the cluster
environment

Fig. 11 Runtime on 40,000 tuples using Algorithms 3 and 2 (circular topology) in the cluster environment

native thread by the compiler. On a database having 15,000 tuples, we computed
approximate distance matrices for k = 4 and varying number of nodes (probes). In
Fig. 12, we report the total execution time. The results are as expected: total time
stays almost stable when increasing number of nodes.

4.3 Accuracy

To evaluate the accuracy of our approximation, we used the cophenetic correlation
coefficient [17]. This coefficient takes its maximum value at 1, where a higher value
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Fig. 12 Runtime on 15,000
tuples in the secondary testing
environment

Nodes Total time (sec)

2 2.2
3 2.1
4 2.1
5 2.3
6 2.3
7 2.4
8 2.5

Fig. 13 Cophenetic correlation coefficient on 1,000 tuples having 20 attributes and for varying k and m

implies better correlation. We calculated the cophenetic correlation coefficient be-
tween our approximate distance matrix ADM , and the Hamming distance matrix H .
The averages of the matrices ADM and H are denoted by d̄ and h̄, respectively. The
coefficient is given by

c =
∑

(ADMij − d̄)(Hij − h̄)
√∑

(ADMij − d̄)2
∑

(Hij − h̄)2
.

In Fig. 13, we show the cophenetic correlation coefficient for varying k and m. Note
that best experimental results are achieved when k = 2. As expected, higher values
of m produces better correlations and the coefficient approaches to 1 for reasonable
values of m. Figure 14 shows that for 20, 100, and 200 probes, the cophenetic cor-
relation coefficient is 0.773, 0.934, and 0.972, respectively. 200 probes may seem
extreme, but each probe scans only 2 attributes out of the total 20 attributes. There-
fore, each probe scans 10% of the database, and 200 probes correspond to a total
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Fig. 14 Cophenetic correlation coefficient on 10,000 tuples having 20 and 50 attributes with k = 2 and
varying values of m (nodes)

of 20 full scans of the database. On the other hand, to compute a distance matrix of
10,000 tuples, around 5,000 full scans of the database are required.

4.4 Comparative runtimes and complexity analysis

Figure 15 shows runtime results of approximate distance computation in compari-
son to sequential computation of Hamming distance. We also implemented a parallel
computation method for Hamming distance. In both implementations, we use bit sets
and take the cardinality of XOR operation on bit sets, which is the fastest way to
compute Hamming distance. Only the upper half of the Hamming distance matrix is
computed because the matrix is symmetric. When using m nodes, the matrix is di-
vided into m equal parts and distributed to m nodes for computing. Figure 16 presents
the comparative parallel runtime results in the cluster environment. For all compar-
isons, our approximate distance matrix computation is composed of Algorithms 1
and 2 except for 40,000 tuples, and we use Algorithms 3 and 2. We did not provide
Fig. 16 as a comparative speedup diagram since the achievement of our algorithm is
that it provides almost a constant runtime with increasing number of nodes to improve
accuracy of the approximation. Therefore, our major concern is scalability.

Finally, Table 1 shows time complexities of the algorithms comparatively. Gen-
erally speaking, complexities of MPI collective operations are logarithmic with the
number of inputs which, in our case, is N2. However, they may vary according to the
implementation [11].
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Fig. 15 Runtime comparison with sequential Hamming distance algorithm

Fig. 16 Runtime comparison with parallel Hamming distance algorithm for data set with 30,000 tuples

5 Conclusions and future scope

Computing the distance matrix of database tuples is a fundamental problem in data
clustering. We present an efficient, approximative approach for this computation
which relies on randomized hash functions known as Locality Sensitive Hashing
(LSH). Implementation guidelines, and several methods that are suitable for dis-
tributed and shared memory architectures are discussed. Experimental results clearly
demonstrate that our parallel methods are comparably fast and accurate.
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Table 1 Comparison of algorithm complexities

Algorithm Order of complexity Explanations

Sequential Hamming Distance O(nN2) N : cardinality of data set n:
cardinality of set of attributes

Sequential Approximate
Distance

m( N2

2k+1 − N
2 ) + N2 See (2). Second term refers to

computation of Formula (1)

Parallel Approximate Distance
(Algorithms 1 + 2)

N2

2k+1 − N
2 + α logN2 We assume m nodes and include

complexity of MPI collective
operations

Parallel Approximate Distance
(Algorithms 3 + 2)

(m − 1)(

N2

2k+1 − N
2

m ) + β logN2 with added complexity of MPI
collective operations

Parallel Hamming Distance O(nN2

m ) + γ logN2 m is O(N) and complexity of MPI
collective operations is added

A very strong point of our method is that when some of the nodes fail, we still
get the whole approximate distance matrix, but with reduced accuracy. However, par-
allel Hamming will leave empty portions in the Hamming distance matrix. Empty
portions in the distance matrix get larger when the number of failed nodes increases.
Therefore, parallel Hamming leads to incomplete results while we provide complete
results in case of network troubles and failed nodes.

Running our algorithm on a few nodes is always faster than both parallel and
sequential Hamming distance computations. However, the accuracy may not be very
good, but obtained information can provide general idea for exploratory purposes.

Our future scope is to concentrate on more efficient parallel implementations of
our method and contemplate developing new parallel clustering ensemble algorithms
that will combine several clusterings into a single superior clustering in an efficient
manner.
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