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Abstract

We investigate a class of metrics on lattices that are compatible with the partial
order defined by the lattice using the ternary relation of betweenness that can be
naturally defined on a metric space. The relationships between entropy-like func-
tions and metrics defined on lattices are studied and we show the links that exists
between various properties of entropies and properties of metrics. Applications to
metrics defined on the lattice of partitions of finite sets areexamined.

1 Introduction

The notion of entropy that is fundamental for information theory and statistical me-
chanics has been applied in a variety of disciplines rangingfrom circuit design [2, 6, 3,
8], to data mining [10, 12] and biodiversity [4].

A variety of axiomatizations of this notion have been developed, including axiom-
atizations that have an algebraic flavor [7, 9, 11].

In this paper we examine the interaction between metrics on lattices, their associ-
ated betweenness relations, and a family of generalizations of entropy. Lattice theory
is the natural framework for this study due to the relationship that exists between par-
titions of sets and finite discrete probabilistic distributions.

A lattice is defined as a partially ordered set(P,≤) such thatsup{x, y} andinf{x, y}
exist for allx, y ∈ P . It is well known that lattices can be regarded as algebras ofthe
form (P,∧,∨), where “∧” and “∨” are commutative, associative and idempotent oper-
ations linked by the absorption laws

x ∨ (x ∧ y) = x andx ∧ (x ∨ y) = x,

for x, y ∈ P . The partial order “≤” consists of those pairs(x, y) ∈ P 2 such that
x = x ∧ y or, equivalently,y = x ∨ y.

If the least element of the partially ordered set(P,≤) exists we denoted it by0;
the largest element of(P,≤) is denoted by1. If a lattice(P,≤) has both a least and a



largest element we denote it as an algebra by(P,∧,∨, 0, 1), where we regard0 and1
as zero-ary operations.

A metric on a setS is a mappingd : S × S −→ R that satisfies the following
conditions:

1. d(x, y) = 0 if and only if x = y,
2. d(x, y) = d(y, x), and
3. d(x, y) ≤ d(x, z) + d(z, y) (thetriangular inequality),

for everyx, y, z ∈ S. The pair(S, d) will be referred to as ametric space.
An elementu of a metric space(S, d) is betweenx andy if d(x, y) = d(x, t) +

d(t, y). The betweenness ternary relationBd ⊆ S × S × S is defined by

Bd = {(x, t, y) ∈ S3 | d(x, y) = d(x, t) + d(t, y)}.

We use this relation to introduce a compatibility requirement for metrics defined on
lattices. Then, we show that compatible metrics define entropy-like functions on lat-
tices and we examine also the reverse process that starts from entropy-like functions
and generates compatible metrics on lattices. We clarify the connections that exist be-
tween various metric properties (non-negativity, definedness, triangular inequality) and
monotonicity or modularity properties of entropy or conditional entropy.

Finally, we exemplify our results by a study on a family of entropies on the lattice
of partitions of a finite set.

2 Compatible Metrics on Lattices

Let L = (L,∨,∧, 0, 1) be a lattice that has the least element0 and the largest element
1.

We say that a metricd : L2 −→ R≥0 is compatiblewith the lattice ifx ≤ u ≤ y

impliesBd(x, u, y).
Let d be a compatible metric on the latticeL = (L,∨,∧, 0, 1). If u ≤ v, we

haved(u, 1) = d(u, v) + d(v, 1) because ofBd(u, v, 1). Similarly, B(0, u, v) implies
d(0, v) = d(0, u) + d(u, v), so

d(u, v) = d(0, v) − d(0, u) = d(u, 1) − d(v, 1)

for u, v ∈ L.
Define the functionsηd : L −→ R andζd : L −→ R by ηd(u) = d(u, 1) and

ζ(u) = d(0, u). It is clear thatηd is an anti-monotonic function, whileζd is a mono-
tonic function onL and thatηd(x) + ζd(x) = d(0, 1) because we haveB(0, x, 1) for
everyx ∈ L.

Note that the triangular inequality implies

d(x, y) ≤ d(x, x ∧ y) + d(x ∧ y, y),

d(x, y) ≤ d(x, x ∨ y) + d(x ∨ y, y),

for x, y ∈ L, hence2d(x, y) ≤ d(x, x∧ y)+ d(x∧ y, y)+ d(x, x∨ y)+ d(x∨ y, y) =
2d(x∧ y, x∨ y). Thus, since we have bothBd(x∧ y, x, x∨ y) andBd(x∧ y, y, x∨ y)
it follows thatd(x, y) ≤ d(x ∧ y, x ∨ y) for x, y ∈ L.

We are especially interested in two types of metrics introduced in the next.



Definition 2.1 Let L = (L,∨,∧, 0, 1) be a lattice and letd : L × L −→ R≥0 be
a metric defined onL. Then,d is a∧-metric if Bd(x, x ∧ y, y) and is a∨-metric if
Bd(x, x ∨ y, y), respectively, for everyx, y ∈ L.

Lemma 2.2 If d is a∧-metric on the latticeL = (L,∨,∧, 0, 1), then

d(x, y) = 2ηd(x ∧ y) − ηd(x) − ηd(y) (1)

for everyx, y ∈ L. If d is a∨-metric then

d(x, y) = ζd(x) + ζd(y) − 2ζd(x ∨ y) (2)

for everyx, y ∈ L.

Proof. Suppose thatd is a∧-metric, sod(x, y) = d(x, x ∧ y) + d(x ∧ y, y) for
x, y ∈ L. Observe thatd(x ∧ y, x) + d(x, 1) = d(x ∧ y, 1), sinced is a compatible
metric and, similarly,d(x ∧ y, y) + d(y, 1) = d(x ∧ y, 1). Therefore,

2ηd(x ∧ y) − ηd(x) − ηd(y)

= 2d(x ∧ y, 1) − d(x, 1) − d(y, 1)

= d(x ∧ y, x) + d(x ∧ y, y) = d(x, y),

becaused is a∧-metric. The argument for∨-metrics is similar.
For reasons that will become here later, ifd is a∧-metric, then we refer toηd as a

∧-entropy; similarly, ifd is a∨-metric we refer toζd as a∨-entropy.

3 Metrics Derived from Entropies

A functionf : L −→ R is said to bestrictly anti-monotonicif u < v impliesf(u) >

f(v).
Let f : L −→ R be a function. Define the mappingsdf : L2 −→ R anddf :

L2 −→ R by
df (x, y) = 2f(x ∧ y) − f(x) − f(y),

and
df (x, y) = f(x) + f(y) − 2f(x ∨ y)

for x, y ∈ L.

Theorem 3.1 Let L = (L,∨,∧, 0, 1) be a lattice and letf : L −→ R be a function.
The following statements hold:

(i) df (x, y) ≥ 0 for everyx, y ∈ L if and only iff is anti-monotonic;
(ii) df (x, y) > 0 for everyx, y ∈ L such thatx 6= y if and only if f is strictly

anti-monotonic;
(iii) df (x, y) ≥ 0 for everyx, y ∈ L if and only iff is anti-monotonic;
(iv) df (x, y) > 0 for everyx, y ∈ L such thatx 6= y if and only if f is strictly

anti-monotonic;



Proof. Suppose thatdf (x, y) ≥ 0 for everyx, y ∈ L. If x ≤ y, we have

df (x, y) = 2f(x ∧ y) − f(x) − f(y)

= f(x) − f(y) ≥ 0,

sof is anti-monotonic. Conversely, suppose thatf is anti-monotonic. Then,f(x∧y) ≥
f(x), f(y), sod(x, y) ≥ 0.

Fordf the same conclusion can be reached, by observing thatf(x), f(y) ≥ f(x ∨
y).

Suppose thatdf (x, y) = 0, where(d, η), wheref is an anti-monotonic function.
Then,2f(x ∧ y) − f(x) − f(y) = 0, sof(x) = f(y) = f(x ∧ y) becausef(x) ≤
f(x ∧ y) andf(y) ≤ f(x ∧ y). Suppose thatx 6= y. Then, at least one of the strict
inequalitiesx ∧ y < x or x ∧ y < y holds. Since this yields a contradiction it follows
thatx = y.

The argument fordf is similar.

Lemma 3.2 The functiondf satisfies the triangular inequality,d(x, y) ≤ d(x, z) +
d(z, y) if and only if

f(z) + f(x ∧ y) ≤ f(x ∧ z) + f(y ∧ z) (3)

for x, y, z ∈ L. Furthermore, the functiondf satisfies the triangular inequality if and
only if

f(z) + f(x ∨ y) ≥ f(x ∨ z) + f(y ∨ z) (4)

for x, y, z ∈ L.

Proof. Let df be a function that satisfies the triangular inequality. Thisimplies

2f(x ∧ y) − f(x) − f(y)

≤ 2f(x ∧ z) − f(x) − f(z)

+2f(y ∧ z) − f(y) − f(z),

which is easily seen to be equivalent to the Inequality (3). The reverse implication is
as straightforward as the direct implication.

A similar argument can be made for∨-pairs.

Theorem 3.3 Let L = (L,∨,∧, 0, 1), f : L −→ R be a function such thatdf is a
non-negative. Then,df satisfies the triangular inequality if and only iff is an anti-
monotonic and sub-modular, that is,f(x ∨ y) + f(x ∧ y) ≤ f(x) + f(y) for every
x, y ∈ L.

The functiondf satisfies the triangular inequality if and only iff is an anti-monotonic
and supramodular, that is,f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y) for everyx, y ∈ L.

Proof. Suppose thatdf is a non-negative function that satisfies the triangular in-
equality. Then, by Theorem 3.1 and Lemma 3.2,f is an anti-monotonic function, and
f(z) + f(x ∧ y) ≤ f(x ∧ z) + f(y ∧ z) for everyx, y, z ∈ L. By replacingz by
x ∨ y and using the absorption properties ofL we obtain the submodular inequality
f(x ∨ y) + f(x ∧ y) ≤ f(x) + f(y).



If df is a non-negative function that satisfies the triangular inequality, thenf is an
anti-monotonic function andf(z)+f(x∨y) ≥ f(x∨z)+f(y∨z) for x, y, z ∈ L. Sub-
stitutingx ∧ y for z and applying the absorption properties we have the supramodular
inequalityf(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y).

Conversely, suppose thatf is an anti-monotonic, submodular function. The anti-
monotonicity off implies the non-negativity ofdf . We need to show that the submod-
ular inequality implies (3). The definition of suprema and infima implies that

z ≥ (x ∧ z) ∨ (y ∧ z),

for x, y, z ∈ L. From the anti-monotonicity off we have

f(z) ≤ f((x ∧ z) ∨ (y ∧ z)).

Observe that in every latticeL = (L,∨,∧, 0, 1) we have the sub-distributive in-
equality

(x ∨ y) ∧ z ≥ (x ∧ z) ∨ (y ∧ z), (5)

for everyx, y, z ∈ L. By substitutingx ∧ z for x andy ∧ z for y in the submodular
inequality we obtain:

f((x ∧ z) ∨ (y ∧ z)) + f(x ∧ y ∧ z) ≤ f(x ∧ z) + f(y ∧ z).

Sincef(x ∧ y) ≤ f(x ∧ y ∧ z), we obtain the Inequality (3).
Whenf be an anti-monotonic, supramodular function, the Dualization Principle

gives Inequality (4).

Corollary 3.4 Let L = (L,∨,∧, 0, 1) be a lattice and letf : L −→ R be a strictly
anti-monotonic function. Iff is submodular, thendf is a compatible∧-metric and for
the∧-entropy we haveηdf

(x) = f(x) − f(1).
If f is supramodular, thendf is a compatible∨-metric and for the∨-entropy we

haveζdf

(x) = f(0) − f(x).

Proof. The corollary is an immediate consequence of Theorem 3.3.
We retrieve a well-known property of modular lattices (cf. [1]):

Corollary 3.5 If f is a function such thatdf = df is a metric on a latticeL =
(L,∨,∧, 0, 1), thenL is a metric lattice anddf (x, y) = f(x ∧ y) − f(x ∨ y) for
x, y ∈ L.

Proof. Sincedf = df anddf is a metric the strictly anti-monotonic functionf
satisfies both the submodular and the supramodular inequalities and therefore we have
f(x ∧ y) + f(x ∨ y) = f(x) + f(y), sof is a modular valuation onL. This implies

df (x, y) = f(x ∧ y) − f(x ∨ y),

for x, y ∈ L.
Starting from a functionf : L −→ R, define theconditional functionκf : L2 −→

R by κf (x, y) = f(x ∧ y) − f(y) for x, y ∈ L. It is immediate thatdf (x, y) =
κf (x, y) + κf (y, x) and thatx ≥ y impliesκf (x, y) = 0 for x, y ∈ L.

As we shall see, the conditional functionκf formalizes the notion of conditional
entropy corresponding to an entropy.



Theorem 3.6 The non-negative functiondf satisfies the triangular inequality if and
only if the conditional functionκf is anti-monotonic in its first argument and monotonic
in its second argument.

Proof. Suppose thatdf satisfies the triangular inequality. The anti-monotonicity of
κf in its first argument follows from the anti-monotonicity off .

Let y, y1 ∈ L be such thaty ≤ y1. It is clear that(x ∧ y1) ∨ y ≤ y1, so

f(y1) ≤ f((x ∧ y1) ∨ y). (6)

By Theorem 3.3 we have the submodular inequalityf(x∨y)+f(x∧y) ≤ f(x)+f(y)
for everyx, y ∈ L. Taking Inequality (6) into account and replacingx by x∧ y1 in the
submodular inequality yields

f(x ∧ y) + f(y1) ≤ f(x ∧ y) + f((x ∧ y1) ∨ y)

= f((x ∧ y1) ∧ y) + f((x ∧ y1) ∨ y)

≤ f(x ∧ y1) + f(y)

(by the submodular inequality).

The last equality impliesκf (x, y) ≤ κf (x, y1), that is, the monotonicity ofκf in its
second argument.

Conversely, suppose thatκf is anti-monotonic in its first argument and monotonic
in its second argument. Sinceκf (1, y) = 0 it follows thatκf (x, y) = f(x∧y)−f(y) ≥
0. Similarly,f(x ∧ y) − f(x) ≥ 0, sodf (x, y) ≥ 0.

If y ≤ y1, we havef(x ∧ y) − f(y) ≤ f(x ∧ y1) − f(y1). Choosingy1 = x ∨ y

we obtain the submodular inequality forf , which shows thatd satisfies the triangular
inequality by Theorem 3.3.

In a similar manner one can define the conditional functionκf(x, y) = η(x) −
η(x ∨ y). This time, we can prove the following statement:
Theorem 3.7 The non-negative functiondf satisfies the triangular inequality if and
only if the conditional functionκf is monotonic in its first argument and anti-monotonic
in its second argument.

Proof. The proof is analogous to the argument of Theorem 3.6.

4 Applications to Partition Lattices

A partition of a setS is a non-empty collection of non-empty subsets ofS, π = {Bi |
i ∈ I} such that

⋃

π = S andBi ∩ Bj = ∅ wheni 6= j for i, j ∈ I. The setsBi are
theblocksof π. The set of partitions ofS is denoted byPART(S).

A partial order onPART(S) is defined byπ ≤ σ for π, σ ∈ PART(S) if every
block ofπ is included in a block ofσ. This is easily seen to be equivalent to requiring
that each block ofσ is a union of blocks ofπ.

The partially ordered set(PART(S),≤) is actually a bounded lattice. The infimum
π∧π′ of two partitionsπ andπ′ is the partition that consists of non-empty intersections
of blocks ofπ andπ′. For a description of the supremumπ ∨ π′ of the partitionsπ, π′



see [5], p. 251. The least element of this lattice is the partition αS = {{s} | s ∈ S};
the largest is the partitionωS = {S}.

The partitionσ coversthe partitionπ if σ is obtained fromπ by fusing two blocks
of this partition. This is denoted byπ ≺ σ. We haveπ ≤ π′, if and only if there exists
a sequence of partitionsσ0, σ1, . . . , σr such thatπ = σ0 ≺ σ1 ≺ · · · ≺ σr = π′.

Let C be a subset of the setS and letπ = {Bi | i ∈ I} ∈ PART(S) be a partition.
Thetraceof π onC is the partitionπC = {Bi ∩ C | Bi ∩ C 6= ∅ andi ∈ I}.

For partition lattices of finite sets the metricsdf play a special role because they
allow us to formalize the notion of entropy for a partition ofa finite set and to introduce
simultaneously a notion of metric on the partition lattice that has many applications in
data mining and in other areas.

Let S be a finite set and let(PART(S),≤) be the partition lattice havingαS as its
least element andωS as its largest element. Forβ ∈ R andβ > 1 define the mapping
fβ : PART(S) −→ R as:

fβ(π) =
1

1 − 21−β

(

1 −
m
∑

i=1

(

|Bi|

|S|

)β
)

, (7)

whereπ = {B1, . . . , Bm}. Observe thatfβ(ωS) = 0 and fβ(π) > 0 for π ∈
PART(S) − {ωS}.

Lemma 4.1 Let S be a finite set,π ∈ PART(S) and letC, D be two disjoint subsets
of S. For β ≥ 1 we have:

(

|C ∪ D|

|S|

)β

fβ(πC∪D)

≥

(

|C|

|S|

)β

fβ(πC) +

(

|D|

|S|

)β

fβ(πD),

wherefβ : PART(S) −→ R is the function introduced in Equality (7).

Proof. The proof is elementary and is omitted.
The functionfβ is strictly anti-monotonic. To prove this property it suffices to

consider two partitionsπ, π′ such thatπ ≺ π′. Without loss of generality we can
assume thatπ = {B1, . . . , Bn−2, Bn−1, Bn} andπ′ = {B1, . . . , Bn−2, Bn−1 ∪ Bn}.

Note that forx, y > 0 andβ > 1 we havexβ + yβ < (x + y)β . Therefore,

(

|Bn−1|

|S|

)β

+

(

|Bn|

|S|

)β

<

(

|Bn−1 ∪ Bn|

|S|

)β

,

which impliesfβ(π) < fβ(π′), that is, the strict anti-monotonicity property. By The-
orem 3.1, the functiondfβ

given bydfβ
(π, σ) = 2fβ(π ∧ σ) − fβ(π) − fβ(σ) for

π, σ ∈ PART(S) is non-negative anddfβ
(π, σ) = 0 impliesπ = σ.

Example 4.2 Define the functionf1 : PART(S) −→ R by

f1(π) = −
m
∑

i=1

|Bi|

|S|
log

|Bi|

|S|
,



whereπ = {B1, . . . , Bm} and the logarithm is in base2.
This is the Shannon entropy of the probability distribution

(

|B1|
|S| . . .

|Bm|
|S|

)

defined by the partitionπ ∈ PART(S). It is easy to verify thatlimβ→1 fβ(π) = f1(π),
which implies thatf1 is anti-monotonic. An elementary argument can be used to verify
thatf1 is, in fact, strictly anti-monotonic, so the functiondf1

: PART(S)2 −→ R given
by

df1
(π, σ) =

m
∑

i=1

|Bi|

|S|
log

|Bi|

|S|
+

n
∑

j=1

|Cj |

|S|
log

|Cj |

|S|

−
m
∑

i=1

n
∑

j=1

|Bi ∩ Cj |

|S|
log

|Bi ∩ Cj |

|S|
,

whereπ = {B1, . . . , Bm} andσ = {C1, . . . , Cn} is non-negative andd1(π, σ) = 0
impliesπ = σ.

The conditional function offβ introduced in Equality (7) is given by

κfβ
(π, σ) = fβ(π ∧ σ) − fβ(σ)

=
1

1 − 21−β
·





n
∑

j=1

(

|Cj |

|S|

)β

−
m
∑

i=1

n
∑

j=1

(

|Bi ∩ Cj |

|S|

)β



 ,

whereπ = {B1, . . . , Bm} andσ = {C1, . . . , Cn} are two partitions ofPART(S).
This function can be written alternatively as

κβ(π, σ)

=
1

1 − 21−β
·

n
∑

j=1

(

|Cj |

|S|

)β
(

1 −
m
∑

i=1

(

|Bi ∩ Cj |

|Cj |

)β
)

=
n
∑

j=1

(

|Cj |

|S|

)β

fβ(πCj
),

whereπCj
is the trace ofπ on the blockCj of σ.

The next result shows thatκfβ
(π, σ), the conditional function offβ is anti-monotonic

with respect to its first argument and is monotonic with respect to its second argument.
Theorem 4.3 Let π, σ, σ′ ∈ PART(S), whereS is a finite set. Ifσ ≤ σ′, then
κfβ

(σ, π) ≥ κfβ
(σ′, π) andκfβ

(π, σ) ≤ κfβ
(π, σ′).

Proof. Sinceσ ≤ σ′ we haveπ∧σ ≤ π∧σ′, sofβ(π∧σ) ≥ fβ(π∧σ′). Therefore,
κfβ

(σ, π) ≥ κfβ
(σ′, π).

For the monotonicity ofκfβ
in its second argument it suffices to prove the mono-

tonicity for partitionsσ, σ′ such thatσ ≺ σ′. Without restricting the generality we may



assume thatσ = {C1, . . . , Cn−2, Cn−1, Cn} andσ′ = {C1, . . . , Cn−2, Cn−1 ∪ Cn}.
Thus, we can write:

κfβ
(π, σ′)

=
n−2
∑

j=1

(

|Cj |

|S|

)β

fβ(πCj
) +

(

|Cn−1 ∪ Cn|

|S|

)β

fβ(πCn−1∪Cn
)

≥
n−2
∑

j=1

(

|Cj |

|S|

)β

fβ(πCj
) +

(

|Cn−1|

|S|

)β

fβ(πCn−1
) +

(

|Cn|

|S|

)β

fβ(πCn
)

(by Lemma 4.1)

= κfβ
(π, σ).

Corollary 4.4 Let fβ be the function introduced in Equality (7). Thendfβ
is a metric

on the lattice of partitions(PART(S),≤).

Proof. This statement follows from Theorems 3.1, 3.6, and 4.3.
By Corollary 3.4, sincefβ(ωS) = 0, we see thatfβ = ηβ , that is,fβ is actually

the∧-entropy associated to the∧-metricdfβ
. An independent axiomatization of this

entropy was presented in [11].

5 Function Pairs on Graded Lattices

A graded poset (cf. [1]) is a triple(P,≤, g), where(P,≤) is a partially ordered set, and
g : P −→ Z is a function defined onP such that forx, y ∈ L we have

(i) x < y impliesg(x) < g(y) (strict monotonicity);
(ii) if y coversx, theng(y) = g(x) + 1.

If (P,≤) is a lattice, then we refer to(P,≤, g) as agraded lattice.
In a graded poset all maximal chains between the same elements have the same

finite length (the Jordan-Dedekind condition).
Let (P,≤) be a poset that has the least element0. The supremum of the lengths

of all chains that join0 to an elementx is theheightof x denoted byheight(x). If
(P,≤) has the largest element1, then the height of(P,≤) is defined asheight(1). A
poset(P,≤) satisfies the Jordan-Dedekind condition if and only if it is graded by the
functionheight.

It is known that a graded lattice of finite height is upper semimodular if height

satisfies the submodular inequality and is lower semimodular if height satisfies the
supramodular inequality (cf. Theorem II.15, p. 40 of [1]).

The functionf : P −→ R defined byf(x) = height(P ) − height(x) satis-
fies the supramodular inequality and the associated function df satisfies the triangu-
lar inequality and, therefore, it is a pseudometric on the lattice L given byd(x, y) =
h(x) + h(y) − 2h(x ∧ y) for x, y ∈ L.



6 Conclusions

We present an lattice-theoretical framework for the study of entropy and entropy-like
functions and the metrics and conditional entropies that can be associated to these
entropies. This approach clarifies the dependencies that exist between properties of
these concepts and opens the possibility of extending this study to broader classes of
lattices, Boolean algebras, and partially ordered sets.
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