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Abstract
We investigate a class of metrics on lattices that are cdbipatith the partial
order defined by the lattice using the ternary relation oiveenness that can be
naturally defined on a metric space. The relationships ttveatropy-like func-
tions and metrics defined on lattices are studied and we dhewinks that exists
between various properties of entropies and propertiesetfics. Applications to
metrics defined on the lattice of partitions of finite setsex@mined.

1 Introduction

The notion of entropy that is fundamental for informatioedhy and statistical me-
chanics has been applied in a variety of disciplines ranfyomg circuit design [2, 6, 3,
8], to data mining [10, 12] and biodiversity [4].

A variety of axiomatizations of this notion have been depelb, including axiom-
atizations that have an algebraic flavor [7, 9, 11].

In this paper we examine the interaction between metricatticés, their associ-
ated betweenness relations, and a family of generalizatibentropy. Lattice theory
is the natural framework for this study due to the relatigpshat exists between par-
titions of sets and finite discrete probabilistic distribuas.

Alattice is defined as a partially ordered 6Bt <) such thatup{z, y} andinf{z, y}
exist for allz,y € P. Itis well known that lattices can be regarded as algebraiseof
form (P, A, V), where ‘A" and “Vv” are commutative, associative and idempotent oper-
ations linked by the absorption laws

xV(zAy)=zandz A (zVy) ==z,

for z,y € P. The partial order £” consists of those pairér,y) € P? such that
x = x Ay or, equivalentlyy = 2 v y.

If the least element of the partially ordered $& <) exists we denoted it bg;
the largest element ¢, <) is denoted byl. If a lattice (P, <) has both a least and a



largest element we denote it as an algebrdByn, v, 0, 1), where we regard and1
as zero-ary operations.

A metric on a setS is a mappingl : S x S — R that satisfies the following
conditions:

1. d(z,y) =0ifandonly ifz =y,

2. d(z,y) = d(y,z), and

3. d(z,y) < d(x,z) 4+ d(z,y) (thetriangular inequality,
for everyz, y, z € S. The pair(S, d) will be referred to as anetric space

An elementu of a metric spacés, d) is betweenr andy if d(x,y) = d(x,t) +
d(t,y). The betweenness ternary relat®pn C S x S x S is defined by

By ={(z,t,y) € S° | d(x,y) = d(x,t) +d(t,y)}.

We use this relation to introduce a compatibility requiraifer metrics defined on
lattices. Then, we show that compatible metrics define pgttixe functions on lat-
tices and we examine also the reverse process that stamsefioropy-like functions
and generates compatible metrics on lattices. We claréyctimnections that exist be-
tween various metric properties (non-negativity, defiresgntriangular inequality) and
monotonicity or modularity properties of entropy or coitital entropy.

Finally, we exemplify our results by a study on a family ofrepies on the lattice
of partitions of a finite set.

2 Compatible Metrics on Lattices

LetL = (L,V,A,0,1) be a lattice that has the least elem@iaind the largest element
1.

We say that a metrid : L? — R, is compatiblewith the lattice ifz < u < y
impliesBy(z, u, y).

Let d be a compatible metric on the lattide = (L, V,A,0,1). If u < v, we
haved(u, 1) = d(u,v) + d(v, 1) because oBy(u, v,1). Similarly, B(0, u, v) implies
d(0,v) = d(0,u) + d(u,v), SO

d(u,v) = d(0,v) — d(0,u) = d(u,1) — d(v,1)

foru,v € L.

Define the functions); : L — R and(; : L — R by ng(u) = d(u,1) and
¢(u) = d(0,u). Itis clear that), is an anti-monotonic function, whilg; is a mono-
tonic function onL and thatng(x) + (4(z) = d(0, 1) because we havg(0, =, 1) for
everyz € L.

Note that the triangular inequality implies

dlz,y) < d(z,zAy)+d@nyy),

d(z,y) < d(z,zVy)+dxVy,y),
forz,y € L, henc&d(x,y) < d(z,z ANy)+d(xAy,y)+dxz,zVy)+daVyy) =
2d(z Ay, z Vy). Thus, since we have boBy(z Ay, z,z Vy) andBy(z Ay, y, 2V y)

it follows thatd(z, y) < d(x Ay,z V y) forx,y € L.
We are especially interested in two types of metrics intosdiin the next.



Definition 2.1 Let L = (L,V,A,0,1) be a lattice and letl : L x L — R be
a metric defined orl.. Then,d is a A-metricif By(x,2 A y,y) and is av-metricif
Bai(x,x V y,y), respectively, for every,y € L. I

Lemma 2.2 If d is a A-metric on the latticel = (L, V, A, 0, 1), then

d(z,y) = 2na(z A y) — na(x) — na(y) 1)

foreveryx,y € L. If dis aVv-metric then

d(z,y) = Ca(x) + Caly) — 2Ca(z V y) 2

foreveryz,y € L.

Proof. Suppose that is a A-metric, sod(z,y) = d(z,z Ay) + d(z Ay, y) for
z,y € L. Observe thatl(z A y,z) + d(x,1) = d(z Ay, 1), sinced is a compatible
metric and, similarlyd(z A y,y) + d(y, 1) = d(z Ay, 1). Therefore,

2na(x A y) — na(z) —na(y)
= 2d(zANy,1)—d(z,1)—d(y,1)
= d(xzAy,z)+dxAy,y) =d(z,y),

because is aA-metric. The argument for-metrics is similar. |
For reasons that will become here later] i a A-metric, then we refer tg, as a
A-entropy; similarly, ifd is aVv-metric we refer ta; as av-entropy.

3 Metrics Derived from Entropies

A function f : L — R is said to bestrictly anti-monotonidf v < v implies f(u) >
f(v)L.etf : L — R be a function. Define the mappings : L? — R andd’ :
IL? — Rby

df(z,y) =2f(x Ay) — f(z) = f(y),
and

d! (z,y) = f(2) + [(y) = 2f(x Vy)
forx,y € L.

Theorem3.1LetL = (L, V, A,0,1) be alattice and leff : L — R be a function.
The following statements hold:
(i) d¢(z,y) > 0foreveryz,y € L if and only if f is anti-monotonic;
(i) dg(z,y) > 0 for everyz,y € L such thatr # y if and only if f is strictly
anti-monotonic;
(iii) df(x,y) > 0for everyz,y € L if and only if f is anti-monotonic;
(iv) df(x,y) > 0 for everyz,y € L such thatr # y if and only if f is strictly
anti-monotonic;



Proof. Suppose thad(z,y) > 0 for everyz,y € L. If z < y, we have

de(z,y) = 2f(xNy) = f(x) - f(y)
= f(z) - fly) >0,

so f is anti-monotonic. Conversely, suppose tfig anti-monotonic. Thery,(zAy) >
f(@), F(y), sod(x,y) > 0.

Ford’ the same conclusion can be reached, by observingthat f(y) > f(z Vv
Y)-

Suppose thai(z,y) = 0, where(d, n), wheref is an anti-monotonic function.

Then,2f(z Ay) — f(z) — f(y) = 0,s0f(x) = f(y) = f(z Ay) becausef(z) <
flxAny)andf(y) < f(z Ay). Suppose that # y. Then, at least one of the strict
inequalitieszr A y < x orxz Ay < y holds. Since this yields a contradiction it follows
thatx = y.

The argument foil/ is similar. |

Lemma 3.2 The functiond satisfies the triangular inequalityl(z,y) < d(z,z) +
d(z,y) if and only if

f2)+ flany) < flznz)+ flynz) 3)

for z,y, 2 € L. Furthermore, the function’ satisfies the triangular inequality if and
only if

f@+fl@vy) = f@Vvz)+ flyVe) (4)
forz,y,z € L.

Proof. Let d; be a function that satisfies the triangular inequality. Timiglies

2f(x ANy) — flx) — f(y)
< 2f(xAnz) = flz) — f(2)
+2f(y N z) = fly) — f(2),

which is easily seen to be equivalent to the Inequality (3)e Teverse implication is
as straightforward as the direct implication.
A similar argument can be made farpairs. |

Theorem 3.3 LetL = (L,V,A,0,1), f : L — R be a function such that; is a
non-negative. Thenj; satisfies the triangular inequality if and only ffis an anti-
monotonic and sub-modular, that ig(z vV y) + f(z Ay) < f(x) + f(y) for every
z,y € L.

The functioni’ satisfies the triangular inequality if and onlyjfifis an anti-monotonic
and supramodular, that isf(x V y) + f(x Ay) > f(x) + f(y) for everyz,y € L.

Proof. Suppose that; is a non-negative function that satisfies the triangular in-
equality. Then, by Theorem 3.1 and Lemma .25 an anti-monotonic function, and
fR)+ fxAy) < flanz)+ f(y A z) foreveryz,y, z € L. By replacingz by
x V y and using the absorption propertieslofwve obtain the submodular inequality

flevy) + flxny) < flx)+ fy).



If d7 is a non-negative function that satisfies the triangulaniradity, thenf is an
anti-monotonic functionand(z)+ f(zVy) > f(zVz)+ f(yVz)forz,y,z € L. Sub-
stitutingx A y for z and applying the absorption properties we have the supralaiod
inequality f(x V) + f(z A y) > f(z) + f(y).

Conversely, suppose thgtis an anti-monotonic, submodular function. The anti-
monotonicity of f implies the non-negativity aff. We need to show that the submod-
ular inequality implies (3). The definition of suprema anfinma implies that

z>(xN2)V(yAz),
for x,y, z € L. From the anti-monotonicity of we have

f2) < f((&n2) Vv (y A 2).

Observe that in every lattice = (L, V, A,0,1) we have the sub-distributive in-
equality
(@Vy) Az (zA2)V(yAz), (5)

for everyz,y, 2z € L. By substitutinge A z for x andy A z for y in the submodular
inequality we obtain:

fllxnz)V(ynz)+flanynz) < fl@hz)+ flyAz).

Sincef(x Ay) < f(x Ay A z), we obtain the Inequality (3).
When f be an anti-monotonic, supramodular function, the DuabraPrinciple
gives Inequality (4). |

Corollary 3.4 LetL = (L,V,A,0,1) be a lattice and letf : L — R be a strictly
anti-monotonic function. If is submodular, thed, is a compatible\-metric and for
the A-entropy we haveg, (z) = f(x) — f(1).

If fis supramodular, thed” is a compatiblev-metric and for thev-entropy we
have¢”' (z) = £(0) - f(x).

Proof. The corollary is an immediate consequence of Theorem 3.3. |

We retrieve a well-known property of modular lattices (dff){
Corollary 3.5 If f is a function such thatl; = d’ is a metric on a latticel =
(L,V,A,0,1), thenL is a metric lattice andi;(x,y) = f(z Ay) — f(z V y) for
x,y € L.

Proof. Sinced; = d/ anddy is a metric the strictly anti-monotonic functigh
satisfies both the submodular and the supramodular indigsaind therefore we have
flexny)+ fzVy) = f(z)+ f(y), sof is a modular valuation ofi. This implies

df(z,y) = f(x Ay) = flzVy),

forz,y € L. |
Starting from a functiorf : L — R, define theconditional functiors; : L? —
R by kr(z,y) = flx Ay) — f(y) for z,y € L. Itis immediate thatl;(z,y) =
kr(x,y) + ks(y,z) and thate > y impliesky(x,y) = 0forz,y € L.
As we shall see, the conditional functian formalizes the notion of conditional
entropy corresponding to an entropy.



Theorem 3.6 The non-negative functiod; satisfies the triangular inequality if and
only if the conditional functior ; is anti-monotonicin its first argument and monotonic
in its second argument.

Proof. Suppose thal; satisfies the triangular inequality. The anti-monotogioit
k in its first argument follows from the anti-monotonicity 6f
Lety,y; € L be suchthay < y;. Itis clear thafx A y1) Vy < y1, SO

fly) < f(xAyr) V). (6)

By Theorem 3.3 we have the submodular inequdlityVy) + f(z Ay) < f(z)+ f(y)
for everyx,y € L. Taking Inequality (6) into account and replacintpy = A y; in the
submodular inequality yields

fleny)+fyp) < fleny)+ f((@Ay) V)
f((@Ay) Ay)+ f(xAy) Vy)
fleny) + fy)

(by the submodular inequality)

IN

The last equality implies ¢ (z,y) < xs(x,y1), that is, the monotonicity of; in its
second argument.

Conversely, suppose thaf is anti-monotonic in its first argument and monotonic
in its second argument. Sineg(1,y) = Oitfollowsthats;(z,y) = f(xAy)—f(y) >
0. Similarly, f(z Ay) — f(z) > 0, sody(z,y) > 0.

If y <wy1,wehavef(zAy)— f(y) < flx Ay1) — f(y1). Choosingy; =z Vy
we obtain the submodular inequality fér which shows that satisfies the triangular
inequality by Theorem 3.3. |

In a similar manner one can define the conditional functiéfw, y) = n(x) —
n(x V y). This time, we can prove the following statement:

Theorem 3.7 The non-negative functiof satisfies the triangular inequality if and
only if the conditional functior/ is monotonic in its first argument and anti-monotonic
in its second argument.

Proof. The proof is analogous to the argument of Theorem 3.6. |

4 Applications to Partition Lattices

A partition of a setS is a non-empty collection of non-empty subsetSofr = {B; |
i € I} suchthatJm = S andB; N B; = § wheni # j fori,j € I. The setsB, are
theblocksof 7. The set of partitions of is denoted byPART(S).

A partial order onPART(S) is defined byr < o for m,0 € PART(S) if every
block of 7 is included in a block of. This is easily seen to be equivalent to requiring
that each block of is a union of blocks ofr.

The partially ordered s PART(S), <) is actually a bounded lattice. The infimum
w A’ of two partitionsr andr’ is the partition that consists of non-empty intersections
of blocks ofr and~=’. For a description of the supremumy =’ of the partitionsr, 7/



see [5], p. 251. The least element of this lattice is the pamtivg = {{s} | s € S};
the largest is the partitiong = {S}.

The partitiono coversthe partitionr if o is obtained fromr by fusing two blocks
of this partition. This is denoted by < 0. We haver < #/, if and only if there exists
a sequence of partitions), o1, ...,0. suchthatr =09 < 01 < --- < 0. = 7.

Let C be a subset of the sStand letr = {B; | i € I} € PART(S) be a partition.
Thetraceof = onC is the partitionre = {B;NC | B,NC # B andi € T}.

For partition lattices of finite sets the metriég play a special role because they
allow us to formalize the notion of entropy for a partitioredfinite set and to introduce
simultaneously a notion of metric on the partition lattibatthas many applications in
data mining and in other areas.

Let S be a finite set and I§PART(.S), <) be the partition lattice havings as its
least element andg as its largest element. Fgre R andg > 1 define the mapping
fs: PART(S) — Ras:

_ ! o~ (1B
fB(ﬂ—m(l—Z(m))a (7)

=1

wherer = {Bi,...,B,,}. Observe thatfg(ws) = 0 and fg(m) > 0 for = €
PART(S) — {ws}.

Lemma 4.1 Let S be a finite sety € PART(S) and letC, D be two disjoint subsets
of S. For 3 > 1 we have:

(192 fyrcun

> (%)ﬁ fo(me) + (%)Bfﬁ(m),

wherefs : PART(S) — R is the function introduced in Equality (7).

Proof. The proof is elementary and is omitted. |
The functionfz is strictly anti-monotonic. To prove this property it sué&to
consider two partitionsr, 7’ such thatr < #'. Without loss of generality we can
assume that = {B,...,B,—2,B,-1,B,} andx’ = {By,...,B,—2,B,-1 U B,}.
Note that forz, y > 0 ands > 1 we havex” + y® < (z + y)”. Therefore,

() (R < (P™)

+ < | =,

|S] S| |S]

which impliesfg(m) < fs(n’), thatis, the strict anti-monotonicity property. By The-

orem 3.1, the functionly, given bydy,(r,0) = 2fs(m A o) — fa(m) — fa(o) for
7,0 € PART(S) is non-negative and;, (7, o) = 0 impliest = o.

Example 4.2 Define the functiory; : PART(S) — R by

- |B; B;
i=1




wherer = {Bj, ..., B} and the logarithm is in base
This is the Shannon entropy of the probability distribution

| B1] 1Bm]|
(B - )
defined by the partitiom € PART(S). Itis easy to verify thalimgs_; f5(7) = fi(n),
which implies thatf; is anti-monotonic. An elementary argument can be used tfyver
that f, is, in fact, strictly anti-monotonic, so the functidp, : PART(S)? — R given
by

d Vi itvil}
7(m) £ |S| Z; S| 5
izua NGl |Bij|
Pt Bl
wherer = {By,..., By} ando = {C},...,C,} is non-negative and; (r,o) = 0
impliesm = o. i

The conditional function of 3 introduced in Equality (7) is given by

Kpy(m,0) = fg(mAo)— fa(o)
e (B0 EE ()

wherer = {Bj,..., By} ando = {C1,...,C,} are two partitions oPART(.S).
This function can be written alternatively as

- e (B (-2 ()

wherer, is the trace ofr on the blockC; of o.

The nextresult shows tha, (7, o), the conditional function of 3 is anti-monotonic
with respect to its first argument and is monotonic with respeits second argument.
Theorem 4.3 Let m,0,0’ € PART(S), whereS is a finite set. Ifc < o/, then
Kfs (o,m) > Kfs (¢/,m) and Kfs (m,0) < Kfg (m,0”).

Proof. Sinceo < o’ we haver Ao < mAc’,sofg(mAo) > fg(mAc’). Therefore,
Ky (o,m) > Ky, (o, m).

For the monotonicity of: s, in its second argument it suffices to prove the mono-
tonicity for partitionso, o’ such thatr < ¢’. Without restricting the generality we may

ka(m, o)



assume that = {C4,...,Cp—2,Cph_1,Cp} @ando’ = {C1,...,Cp_2,Cr_1 UC,}.
Thus, we can write:

kg (m,0’)
n—2 8 p
(&1 |Cp1 UCy|

= ; (m) fﬁ(ﬂc,.)‘f' (FT) fﬁ(ﬂ—cn—lucn)
n—2 C On, B C’n 3

Z (||S||) )+ (| |S|1|) fﬁ(ﬂcn1)+<%) fﬁ(ﬂcn)
Jj=1
(by Lemma 4.1)

= "ffﬁ(ﬂ',o).

Corollary 4.4 Let f3 be the function introduced in Equality (7). Thep, is a metric
on the lattice of partitiongPART(.S), <).

Proof. This statement follows from Theorems 3.1, 3.6, and 4.3. 1

By Corollary 3.4, sincefg(ws) = 0, we see thalfg = 73, that is, fz is actually
the A-entropy associated to themetricd;,. An independent axiomatization of this
entropy was presented in [11].

5 Function Pairs on Graded Lattices

A graded poset (cf. [1]) is a tripleP, <, g), where(P, <) is a partially ordered set, and
g : P — Zis afunction defined o such that forz, y € L we have

(i) = <yimpliesg(z) < g(y) (strict monotonicity);

(ii) if y coverse, theng(y) = g(z) + 1.
If (P, <) is alattice, then we refer P, <, ¢) as agraded lattice

In a graded poset all maximal chains between the same elsrhew¢ the same
finite length (the Jordan-Dedekind condition).

Let (P, <) be a poset that has the least elenfenfThe supremum of the lengths
of all chains that joir0 to an element: is the heightof 2 denoted byheight(z). If
(P, <) has the largest element then the height of P, <) is defined aseight(1). A
poset(P, <) satisfies the Jordan-Dedekind condition if and only if it iaded by the
functionheight.

It is known that a graded lattice of finite height is upper saodular if height
satisfies the submodular inequality and is lower semimadtilaeight satisfies the
supramodular inequality (cf. Theorem 11.15, p. 40 of [1]).

The functionf : P — R defined byf(x) = height(P) — height(z) satis-
fies the supramodular inequality and the associated fumdticsatisfies the triangu-
lar inequality and, therefore, it is a pseudometric on thck L given bydz,y) =
h(z) + h(y) —2h(x Ay) forz,y € L.



6 Conclusions

We present an lattice-theoretical framework for the stubdgrdaropy and entropy-like

functions and the metrics and conditional entropies that loa associated to these
entropies. This approach clarifies the dependencies tlistt tween properties of
these concepts and opens the possibility of extending thiygo broader classes of
lattices, Boolean algebras, and partially ordered sets.
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