
Data Min Knowl Disc
DOI 10.1007/s10618-008-0102-5

Scalable pattern mining with Bayesian networks
as background knowledge

Szymon Jaroszewicz · Tobias Scheffer ·
Dan A. Simovici

Received: 4 December 2007 / Accepted: 14 May 2008
The Author(s) 2008

Abstract We study a discovery framework in which background knowledge on
variables and their relations within a discourse area is available in the form of a graph-
ical model. Starting from an initial, hand-crafted or possibly empty graphical model,
the network evolves in an interactive process of discovery. We focus on the central step
of this process: given a graphical model and a database, we address the problem of find-
ing the most interesting attribute sets. We formalize the concept of interestingness of
attribute sets as the divergence between their behavior as observed in the data, and the
behavior that can be explained given the current model. We derive an exact algorithm
that finds all attribute sets whose interestingness exceeds a given threshold. We then
consider the case of a very large network that renders exact inference unfeasible, and
a very large database or data stream. We devise an algorithm that efficiently finds the
most interesting attribute sets with prescribed approximation bound and confidence
probability, even for very large networks and infinite streams. We study the scalability
of the methods in controlled experiments; a case-study sheds light on the practical
usefulness of the approach.

Responsible editor: M. J. Zaki.

S. Jaroszewicz (B)
National Institute of Telecommunications, Warsaw, Poland
e-mail: s.jaroszewicz@itl.waw.pl

T. Scheffer
Max Planck Institute for Computer Science, Saarbrucken, Germany
e-mail: scheffer@mpi-inf.mpg.de

D. A. Simovici
University of Massachusetts at Boston, Boston, MA, USA
e-mail: dsim@cs.umb.edu

123

S. Jaroszewicz et al.

Keywords Association rule · Background knowledge · Interestingness ·
Bayesian network · Data stream

1 Introduction

Even though the general task of knowledge discovery in databases (KDD) is the
“automatic extraction of novel, useful, and valid knowledge from large sets of data”
(Fayyad et al. 1996), most data mining methods are bound to discover any knowledge
that satisfies the chosen criterion of usefulness and validity. This includes typically
very many rules that are already known to the user.

In order to alleviate this situation, we study a framework in which a model of the
user’s knowledge enters the discovery process. In this framework, background knowl-
edge is expressed as a Bayesian network of causal relations and dependencies between
attributes. Causal relationships are intuitively comprehensible, and inference mecha-
nisms for Bayesian networks can be employed when the model parameters have been
obtained. The availability of a model of the user’s knowledge allows us to include the
aspect of novelty in the definition of interestingness. We will define the interestingness
of an attribute set as the difference between its probability observed in the data, and
the probability that can be inferred from the given graphical model.

The model may initially be empty, or consist of an engineered network. It aggre-
gates discovered knowledge over time, in an interactive process of discovery and model
refinement. At each point in time, attributes whose correlations are not fully explained
by the model have a positive interestingness. Upon inspection, the user may confirm
new, directed causalities. Attribute sets become uninteresting as the correlations are
explained away by causalities that are newly inserted in the model.

Note that while our discovery algorithm does not itself rely on the causality of the
Bayesian network’s structure and only takes into account correlational information,
we assume that the user does indeed want to construct a causal model. The gist of our
method is to show interesting patterns to the users and rely on them to provide causal
explanations.

Prior conference publications have covered two individual facets of our work.
Jaroszewicz and Simovici (2004) study an exact method that finds the greatest discrep-
ancies between a small Bayesian network and a database. Jaroszewicz and Scheffer
(2005) apply sampling to achieve scalability in both, the network and database size.
This work unifies and extends those results. We discuss additional algorithmic aspects.
A detailed discussion on estimation of Bayesian network’s conditional probabilities is
included, as well as results on statistical significance of discovered patterns. A medical
case study strengthens our findings.

The remaining part of the paper is organized as follows: we begin by discussing
previous research in Sect. 2 and providing basic definitions and notation in Sect. 3.
In Sect. 4 our knowledge discovery framework is described. In the following Sects.
5 and 6, two algorithms implementing the framework are presented; first an exact
algorithm which does not scale to large Bayesian networks, then a fast, approximate
algorithm which scales to thousands of variables. Section 7 illustrates the application
of the framework to a small example and to a case study on real medical data. Section 7

123

Scalable pattern mining

also includes performance evaluations. We conclude in Sect. 8, and prove presented
theorems in the Appendix.

2 Previous work

Finding frequent itemsets and association rules in database tables has been an active
research area in recent years. The huge number of patterns that are typically retrieved
is a ubiquitous problem of all discovery methods. A typical result of an application
of an association mining algorithm contains 1,000s of patterns that can be deduced
from other patterns. Additionally, trivial, commonsense, and well-known patterns are
abundant.

2.1 Mining non-redundant rules

This issue has been addressed extensively, mainly in the context of association rules.
Two main approaches are sorting rules based on some interestingness measure, and
pruning redundant rules.

A wide range of interestingness measures for patterns has been studied. Overviews
of interestingness measures can be found for example in Bayardo and Agrawal (1999),
Jaroszewicz and Simovici (2001), Hilderman and Hamilton (1999), and Tan et al.
(2002), some of the papers on rule pruning are Suzuki (1997), Suzuki and Kodratoff
(1998), DuMouchel and Pregibon (2001), Jaroszewicz and Simovici (2002), Shah
et al. (1999), Liu et al. (1997, 1999), and Zaki (2000).

Many interestingness measures are based on the divergence between true prob-
ability distributions and distributions obtained under the independence assumption.
Pruning methods are usually based on comparing the confidence of a rule to the con-
fidence of rules related to it. The main drawback of those methods is that they tend to
generate rules that are either obvious or have already been known by the user. This is
to be expected, since the most striking patterns which those methods select can also
easily be discovered using traditional methods or are known directly from experience.

In Carvalho et al. (2005) and Ohsaki et al. (2004) various interestingness measures
have been compared with real human interest, and the authors found that in many cases
high ranking rules were considered uninteresting by the user. For example in Carvalho
et al. (2005) there was a positive correlation between an interestingness measure and
real human interest only in 35.2% of studied cases. Also, for some datasets almost all
measures gave good results and for others almost none. A possible interpretation of this
finding is that the actual interestingness measure has a much smaller impact on the per-
ceived interestingness than the user’s background knowledge on the particular domain.

2.2 Mining novel rules using background knowledge

Many approaches to using background knowledge in machine learning are focused
on using background knowledge to speed up the hypothesis discovery process and
not on discovering interesting patterns. Those methods often assume strict logical

123

S. Jaroszewicz et al.

relationships, not probabilistic ones. Examples are knowledge based neural networks
(KBANNs) and uses of background knowledge in Inductive Logic Programming. See
Chapter 12 in Mitchell (1997) for an overview of those methods and a list of further
references.

Tuzhilin et al. (Padmanabhan and Tuzhilin 1998, 2000; Silberschatz and Tuzhilin
1995) worked on applying background knowledge to finding interesting rules. In
Silberschatz and Tuzhilin (1995) and Padmanabhan and Tuzhilin (1998), interest-
ingness measures are presented which take prior beliefs into account; in another paper
(Padmanabhan and Tuzhilin 2000), the authors present an algorithm for selecting a
minimum set of interesting rules with respect to given background knowledge.

These methods locally relate rules; that is, they do not use a full joint probability on
the data. Instead, interestingness of a rule is evaluated using rules in the background
knowledge with the same consequent. If no such knowledge is present for a given
rule, the rule is considered uninteresting. This makes it impossible to take transitivity
into account. Indeed, in the presence of the background knowledge represented by the
rules A ⇒ B and B ⇒ C , the rule A ⇒ C is not novel, because it can already be
inferred. However, this cannot be discovered locally. See Pearl (1998) for a detailed
discussion of advantages of global versus local methods. More comparisons can be
found in Mannila (2002).

Jaroszewicz et al. (Jaroszewicz and Simovici 2004; Jaroszewicz and Scheffer 2005)
have used Bayesian networks as a formalism to express background knowledge. The
main advantage of Bayesian networks is that they concisely represent full joint prob-
ability distributions, and allow for practically feasible probabilistic inference from
those distributions (Pearl 1998; Jensen 2001). Other advantages include the ability to
represent causal relationships, easy to understand graphical structure, as well as wide
availability of modeling tools. Bayesian networks are also easy to modify by adding
or deleting edges.

We focus on the interestingness of frequent itemsets instead of association rules,
agreeing with DuMouchel and Pregibon (2001) that directions of dependence should
be decided by the user based on their experience and not suggested by interestingness
measures. There are some analogies between mining emerging patterns (Dong and
Li 1999) and our approach, the main differences being that in our case a Bayesian
network is used instead of a second dataset, and that we use a different measure for
comparing supports.

2.3 Learning bayesian networks from data

An alternative approach to ours is learning causal Bayesian networks from data auto-
matically. There are two main methods of building Bayesian networks from data (Pearl
2000). The first approach is to modify network structure in a greedy way such that
its likelihood score given the data is maximized (Heckerman 1995). The advantage of
this approach is that it works well if the learning sample is small. Its disadvantage is
the difficulty of taking into account latent variables not present in training data.

The second approach (Spirtes et al. 1999; Spirtes and Richardson 1996; TETRAD
project) is based on testing conditional independence between pairs of attributes. The

123

Scalable pattern mining

advantage of this class of methods is that they work well in the presence of latent vari-
ables and sample selection bias. The disadvantage is that they assume that conditional
dependence or independence can be correctly determined. In practice statistical tests
are employed for that purpose. Both type of methods have inherent limitations, i.e.,
they can only determine the causal structure up to the so called Markov equivalence
class—several causal structures are indistinguishable when only observational data is
available (Pearl 2000; Spirtes et al. 1999).

An interesting class of automatic methods has recently been devised which allow
for discovering true causal structure based on a series of experiments (Cooper and Yoo
1999; Eberhardt et al. 2005a,b; Meganck et al. 2006; Murphy 2001; Tong and Koller
2001). The use of experiments allows for correct identification of causal structure in
every case (provided enough data is available from each experiment). Those methods
are not directly applicable to our case, as we assume only observational data to be
available. Such methods could however be used, as a post-processing step, in order to
help the user in finding causal explanations for discovered interesting patterns.

3 Definitions and notation

We denote database attributes with uppercase letters A, B, C, . . .; we use subscripts
A1, A2, . . . where this is more convenient. The domain of an attribute A is denoted by
Dom(A). In this paper we are only concerned with categorical attributes with finite
domains.

We write sets of attributes using uppercase letters I, J, We often use database
notation for representing sets of attributes, i.e., I = A1 A2 . . . Ak instead of the set nota-
tion {A1, A2, . . . , Ak}. The domain of an attribute set I = A1 A2 . . . Ak is defined as

Dom(I) = Dom(A1)× Dom(A2)× · · · × Dom(Ak).

Values from domains of attributes and attribute sets are denoted with corresponding
lowercase boldface letters, e.g., i ∈ Dom(I).

The special set of attributes Z = A1 A2 . . . Am will be used to denote all attributes
of the given dataset and Bayesian network (both will be defined over the same set of
attributes).

Let PI denote a joint probability distribution of the attribute set I . Similarly let
PI |J be a distribution of I conditioned on J . When used in arithmetic operations such
distributions will be treated as functions of attributes in I and I ∪ J respectively, with
values in the interval [0, 1]. For example PI (i) denotes the probability that I = i. An
itemset is a pair (I, i), where I is an attribute set and i ∈ Dom(I).

Let PI be a probability distribution, and let J ⊂ I . Denote by PI
↓J the marginali-

zation of PI onto J , that is

PI
↓J (j) =

∑

i∈Dom(I\J)

PI (i, j), (1)

where the summation is over the domains of all variables from I \ J .

123

S. Jaroszewicz et al.

Fig. 1 An example of marginalizing the distribution PABC onto AC

Figure 1 shows an example probability distribution over three binary attributes ABC
and the result of its marginalization onto AC . For example to get the value of PABC

↓AC

for A = 0 and C = 1 we have to compute PABC
↓AC (0, 1) = PABC (0, 0, 1) +

PABC (0, 1, 1), that is the sum over all values of B for given values of A and C .
The importance of marginalization lies in the fact that it allows for inferring proba-

bilities of specific events (such as A = 0∧C = 1) from joint probability distributions.
Probability distributions computed from a dataset D will be denoted by adding a

superscript D, e.g., P D
I . Note that P D

I (i) corresponds to the standard definition of
support of the itemset (I, i).

A Bayesian network B N over a set of attributes Z = A1 . . . Am is an acyclic
causal network—i.e., a directed acyclic graph B N = (V, E) over vertices V =
{VA1 , . . . , VAm }—where each vertex VAi has an associated conditional probability
distribution PAi |pari

. Here, pari = {A j : (VA j , VAi) ∈ E} is the set of parental attri-
butes of VAi . An edge between VAi and VA j indicates a direct causal relationship
between Ai and A j ; that is, Ai and A j are dependent in such a way that changes to
Ai may (directly, not through other attributes) change the distribution governing A j .
See Pearl (1998) and Jensen (2001) for a detailed discussion of Bayesian networks.

A Bayesian network B N over Z uniquely defines a joint probability distribution

P B N
Z =

m∏

i=1

PAi |pari

of Z . For I ⊆ Z the distribution over I marginalized from P B N
Z will be denoted by

P B N
I

P B N
I =

(
P B N

Z

)↓I
.

4 Framework for pattern discovery with background knowledge

In this section, we review our framework of an interactive discovery process in which
knowledge is aggregated in a graphical background model. We discuss two concepts
that are salient to this process: the interestingness of an itemset with respect to a
Bayesian network and the interestingness of an attribute set.

123

Scalable pattern mining

Our framework models the knowledge discovery process as an interactive, iterative
procedure. At each point in time, background knowledge and a database are available.
A discovery algorithm explicates unexplained patterns; the background knowledge is
possibly revised based on manual inspection of the patterns, and the process recurs.

The database over attributes Z = A1 . . . Am can also be a data stream; it is not
assumed that full database passes are feasible. The database constitutes a joint distri-
bution P D over all attributes. The background knowledge includes a (possibly empty)
set of known causal relations between attributes A1 . . . Am . These known causal rela-
tions constitute a causal model over nodes {VA1 . . . VAm }. In the absence of any genuine
background knowledge, the causal model contains no edges. Note that such an empty
model corresponds to a natural assumption of all attributes being independent. The
model grows as patterns are discovered and causalities are confirmed. The causal
relationships define the structure of a Bayesian network over the attributes.

It may seem that providing a full Bayesian network is a big burden for the user.
Our experience shows this is not so. Known direct causal relationships can easily be
identified by a human and added to the model. The omitted ones become apparent
during the first few iterations of the algorithm, and a reasonable model is reached
quickly.

In addition, the background knowledge includes conditional probabilities. These
conditionals may have been provided by the expert, but in practice they are usually
obtained by counting the frequency of events in the database, based on the given
network structure. The background knowledge thus gives rise to a joint probability
distribution P B N of all attributes. Note, however, that even if all conditional probability
tables of the graphical model perfectly correspond to the frequencies in the database,
P D is generally not equal to P B N as long as the causal network is imperfect.

Consider, for instance, a database with binary attributes A and B. The attributes
interact such that A = 1 ⇔ B = 1; both, A and B assume values 0 and 1 for 50%
of the transactions. Assume that the causal model, has no edges. The unconditionals
P(A = 1) = 1

2 and P(B = 1) = 1
2 are in accordance with the database. The resulting

Bayesian network predicts that P B N
AB (1, 0) = P B N

A (1)P B N
B (0) = 1

4 , even though the
combination of A = 1 and B = 0 never occurs and therefore P D

AB(1, 0) = 0. This
illustrates that an incorrect causal model leads to deviating probabilities P D and P B N

for some itemsets, even when all conditionals agree with the data.
Let B N be a Bayesian network over an attribute set Z , and let (I, i) be an itemset

such that I ⊆ Z . We define the interestingness of the itemset (I, i) with respect to
B N as

I(I, i) =
∣∣∣P D

I (i)− P B N
I (i)

∣∣∣

that is, the absolute difference between the probability of I = i estimated from data,
and the same probability computed from the Bayesian network B N . An itemset is
ε-interesting if its interestingness is greater than or equal to some user specified
threshold ε.

123

S. Jaroszewicz et al.

An interesting itemset represents a pattern in the database whose probability is
significantly different from what it is believed to be based on the Bayesian network
model.

Since in Bayesian networks dependencies are modeled using attributes instead of
itemsets, it will often be easier to talk about interesting attribute sets, especially when
the discovered interesting patterns are to be used to update the background knowledge.

Definition 1 Let I be an attribute set. The interestingness of I is defined as

I(I) = max
i∈Dom(I)

I(I, i) = max
i∈Dom(I)

∣∣∣P D
I (i)− P B N

I (i)
∣∣∣ , (2)

analogously, I is ε-interesting if I(I) ≥ ε.

The goal of the algorithms presented further in the paper is to find sets of attributes
I maximizing I(I). We consider such sets to be the most interesting for the user, as
they diverge most from their expected behavior.

We will now discuss further properties of our definition of interestingness.
An obvious alternative to our framework is to employ a Bayesian network learning

algorithm, using the background knowledge network as a starting point. Starting from
the initial model, a Bayesian network learning algorithms could add and remove net-
work edges in a greedy fashion based on the likelihood of the data given the network
structure (Heckerman 1995; Spirtes et al. 1999; Pearl 2000). This more data-driven
approach differs from our iterative discovery model in several fundamental aspects.

First of all, discovery in our model is driven by an interestingness metric that refers
to all possible marginal distributions that can be inferred from the network. When no
interesting attribute sets are left to be found, this implies that every marginal distri-
bution predicted from the network is close to the data. This complements Bayesian
network learning algorithms which are driven by the likelihood of the model and
therefore cannot provide any similar guarantees. The interestingness-driven approach
is adequate for applications in which the model is to be used to make—reliable—
inferences about the system under investigation after the discovery process.

The second salient aspect of our framework emerges from the causal nature in the
data. While correlations can be detected easily in data, automatically identifying the
direction of a causality is a subtle issue. Correlations can be caused by causalities in
either direction, or by causalities that involve additional, latent factors. In general, in
order to correctly identify the nature of a causal relationship, one needs to conduct
experiments in which all random variables involved are controlled. Solely based on
data, causalities can only be identified under strong additional assumptions, or by
using heuristics that may or may not produce the correct results (Pearl 2000; Heck-
erman 1995). Instead, in our framework the algorithm discovers attribute sets whose
correlations are currently unexplained, but adding a directed causality to the model—
possibly after consulting additional external resources—is left to the user. See Sect. 7
for an example of how automatic causal discovery may fail in practice.

123

Scalable pattern mining

5 Exact algorithm for finding interesting attribute sets

In this section we present an exact algorithm using the definition of interestingness
introduced in the previous section to select interesting attribute sets. It is practically
applicable to networks of up to around 60 variables. In the next section we present
an approximate, sampling based algorithm which works for huge Bayesian networks
and datasets.

We begin by describing a procedure for computing marginal distributions for a
large collection of attribute sets from a Bayesian network.

5.1 Computing a large number of marginal distributions from a Bayesian network

Computing the interestingness of a large number of attribute sets requires the com-
putation of a large number of marginal distributions from a Bayesian network. The
problem has been addressed in literature mainly in the context of finding marginals
for every attribute (Pearl 1998; Jensen 2001), while here we have to find marginals for
multiple, overlapping sets of attributes. The approach taken in this paper is outlined
below.

The problem of computing marginal distributions from a Bayesian network is
known to be NP-hard (note that the complexity of Eq. 1 grows exponentially with
|I |), nevertheless in most cases the network structure can be exploited to speed up the
computations. Best known approaches to exact marginalizations are join trees (Huang
and Darwiche 1996) and bucket elimination (Dechter 1999). We choose the bucket
elimination method which is easier to implement and according to (Dechter 1999) as
efficient as join tree based methods. Also, join trees are mainly useful for computing
marginals for single attributes, and not for sets of attributes.

The bucket elimination method, which is based on the distributive law, proceeds
by first choosing a variable ordering and then applying distributive law repeatedly to
simplify the summation. For example suppose that a joint distribution of a Bayesian
network over ABC is expressed as

P B N
ABC = PA PB|A PC|A,

and we want to find P B N
A . We need to compute the sum

∑

b∈Dom(B)

∑

c∈Dom(C)

PA PB|A PC|A (3)

which can be rewritten as

PA

⎛

⎝
∑

b∈Dom(B)

PB|A

⎞

⎠

⎛

⎝
∑

c∈Dom(C)

PC|A

⎞

⎠. (4)

123

S. Jaroszewicz et al.

Assuming that domains of all attributes have size 3, computing the first sum directly
requires 24 additions and 54 multiplications, while the second sum requires only 12
additions and 6 multiplications.

The expression is interpreted as a tree of buckets, each bucket is either a single prob-
ability distribution, or a sum over a single attribute taken over a product of its child
buckets in the tree. In the example above a special root bucket without summation could
be introduced for completeness. The expressions are then moved up the bucket tree.

Let us illustrate the procedure on the example of Eq. 3 above. The original expres-
sion can be represented using six buckets. Each conditional probability distribution
would constitute a bucket: b1 = PA, b2 = PB|A, b3 = PC|A. The bucket b4 contains
the expression

∑
c∈Dom(C) b1b2b3 summing out over C and the fifth bucket b5 =∑

b∈Dom(B) b4 sums out over B. The special broot root bucket would just contain b5.
The bucket elimination algorithm would then proceed by moving b1 = PA up

to the root bucket of the tree. After this step b4 becomes
∑

c∈Dom(C) b2b3 and broot

becomes b1b5. The second step moves b2 = PB|A up one level in the tree. Bucket
b4 becomes

∑
c∈Dom(C) b3, and b5 becomes

∑
b∈Dom(B) b2b4. Notice now that b4 =∑

c∈Dom(C) PC|A is independent of B and thus can be moved up into broot . The buckets
become: broot = b1b4b5, b4 =∑

c∈Dom(C) b3, and b5 =∑
b∈Dom(B) b2. Bucket broot

now corresponds to Eq. 4 above.
In most cases the method significantly reduces the time complexity of the mar-

ginalization. An important problem is choosing the right variable ordering. Unfortu-
nately that problem is itself NP-hard. We thus adopt a heuristic which orders variables
according to the decreasing number of factors in the product depending on the variable.
A detailed discussion of the method can be found in Dechter (1999).

Although bucket elimination can be used to obtain supports of itemsets directly (i.e.,
PI (i)), we use it to obtain complete marginal distributions. This way we can directly
apply marginalization to obtain distributions for subsets of I (see below). Since bucket
elimination is performed repeatedly we use dynamic programming to speed it up, as
suggested in Murphy (1998). We remember each partial sum and reuse it if possible.
In the example above

∑
b∈Dom(B) PB|A,

∑
c∈Dom(C) PC|A, and the computed P B N

A
would have been remembered.

Another method of obtaining a marginal distribution PJ is marginalizing it from
PI where J ⊂ I using Eq. 1, provided that PI is already known. If |Dom(I \ J)|
is small, this procedure is almost always more efficient than bucket elimination, so
whenever some PI is computed by bucket elimination, distributions of all subsets of
I are computed using Eq. 1.

To summarize, there are two ways to obtain marginal distributions from a joint
distribution: bucket elimination (or similar techniques such as join trees) and direct
summation (using Eq. 1). Bucket elimination works efficiently for large joint distri-
butions such as the full joint distribution described by a Bayesian network, and direct
summation is more efficient when marginalizing from small distributions, such as the
one in Fig. 1, where the overhead of bucket elimination would be too high. Here we
combine the advantages of both approaches; we first obtain medium sized marginal
distributions from the Bayesian network using bucket elimination, then obtain several
small marginals from each medium sized one using direct summation (Eq. 1).

123

Scalable pattern mining

Definition 2 Let C be a collection of attribute sets. The positive border of C (Mannila
and Toivonen 1997), denoted by Bd+(C), is the collection of those sets from C which
have no proper superset in C:

Bd+(C) = {I ∈ C: there is no J ∈ C such that I ⊂ J }.

It is clear from the discussion above that we only need to use bucket elimination
to compute distributions of itemsets in the positive border. We are going to go further
than this; we will use bucket elimination to obtain supersets of sets in the positive
border, and then use Eq. 1 to obtain marginals even for sets in the positive border.
Experiments show that this approach can give substantial savings, especially when
many overlapping attribute sets from the positive border can be covered by a single
set only slightly larger then the covered ones.

The algorithm for selecting the marginal distribution to compute is motivated by
the algorithm from Harinarayan et al. (1996) for computing views that should be
materialized for OLAP query processing. Bucket elimination corresponds to creating
a materialized view, and marginalizing thus obtained distribution to answering OLAP
queries.

We first need to define costs of marginalization and bucket elimination. In our case
the cost is defined as the total number of additions and multiplications used to compute
the marginal distribution.

The cost of marginalizing PJ from PI , J ⊆ I using Eq. 1 is

cost (PI
↓J) = |Dom(J)| (|Dom(I \ J)| − 1) .

It follows from the fact that each value of PI
↓J requires adding |Dom(I \ J)| values

from PI .
The cost of bucket elimination can be computed cheaply without actually execut-

ing the procedure. Each bucket is either an explicitly given probability distribution, or
computes a sum over a single variable of a product of functions (computed in buckets
contained in it) explicitly represented as multidimensional tables, see Dechter (1999)
for details. If the bucket is an explicitly given probability distribution, the cost is zero.

Consider now a bucket b containing child buckets b1, . . . , bn yielding functions
f1, . . . , fn respectively. Let Var(fi) the set of attributes on which fi depends. Let
f = f1 f2 . . . fn denote the product of all factors in b. We have Var(f) = ∪n

i=1
Var(fi), and since each value of f requires n − 1 multiplications, computing f
requires |Dom(Var(f))|(n − 1) multiplications. Let Ab be the attribute over which
summation in b takes place. Computing the sum will require |Dom(Var(f) \ {Ab})|
(|Dom(Ab)| − 1) additions.

So the total cost of computing the function in bucket b (including costs of computing
its children) is thus

cost (b) =
n∑

i=1

cost (bi)+ |Dom(Var(f))|(n − 1)

+ |Dom(Var(f) \ {Ab})|(|Dom(Ab)| − 1).

123

S. Jaroszewicz et al.

The cost of computing P B N
I through bucket elimination, denoted costB E (P B N

I), is
the cost of the root bucket of the summation used to compute P B N

I .
Let C be a collection of attribute sets. The gain of using bucket elimination to

find P B N
I for some I while computing interestingness of attribute sets from C can be

expressed as:

gain(I) = −costB E

(
P B N

I

)
+

∑

J∈Bd+(C), J⊂I

[
costB E

(
P B N

J

)
− cost

(
P B N

I
↓J

)]
.

An attribute set to which bucket elimination will be applied is found using a greedy
procedure by adding in each iteration the attribute giving the highest increase of gain.
The complete algorithm is presented in Fig. 2.

5.2 Finding all attribute sets with given minimum interestingness

In this section we will present an algorithm for finding all attribute sets with inter-
estingness greater than or equal to a specified threshold ε given a dataset D, and a
Bayesian network B N .

Let us first give a definition of support of a set of attributes and make some
observations.

Fig. 2 Algorithm for computing a large number of marginal distributions from a Bayesian network

123

Scalable pattern mining

Definition 3 Let I be an attribute set. The support of I in dataset D, support of I in
Bayesian network B N , and the support of I are defined respectively as

suppD(I) = max
i∈Dom(I)

P D
I (i),

suppB N (I) = max
i∈Dom(I)

P B N
I (i),

supp(I) = max{suppD(I), suppB N (I)}. (5)

It is easy to see that all supports defined above are downward closed, i.e., adding
attributes to the set cannot increase its support. This allows for application of frequent
itemsets mining algorithms such as Apriori (Agrawal et al. 1993) to finding all attribute
sets with high support.

Lemma 1 The support of an attribute set I upper-bounds its interestingness:
supp(I) ≥ I(I).

Corollary 1 If an attribute set I has interestingness greater than or equal to ε with
respect to a Bayesian network B N then its support must be greater than or equal to
ε either in the data or in the Bayesian network.

It follows that if an attribute set is ε-interesting, it must then be ε-frequent in the
data or in the Bayesian network. The algorithm works in two stages. First all frequent
attribute sets with minimum support ε are found in the dataset and their interestingness
is computed. The first stage might have missed itemsets which are ε-interesting but
do not have sufficient support in the data, so a second stage follows which finds those
attribute sets.

In the second stage all itemsets frequent in the Bayesian network are found, and their
joint probability distributions in the data are computed using an extra database scan.
To find all itemsets frequent in the Bayesian network we use the Apriori algorithm

Fig. 3 The AprioriBN algorithm

123

S. Jaroszewicz et al.

Fig. 4 Algorithm ExactInter for finding all ε-interesting attribute sets

(Agrawal et al. 1993) with a modified support counting part, which we call AprioriBN.
The sketch of the algorithm is shown in Fig. 3, except for step 3 it is identical to the
original algorithm.

We now have all the elements needed to present the ExactInter algorithm for finding
all ε-interesting attribute sets, which is given in Fig. 4. Note that step 3 of the algorithm
can reuse marginal distributions found in step 2.

The following is a direct consequence of Lemma 1, Corollary 1, and the correctness
and completeness of the Apriori algorithm (Agrawal et al. 1993).

Theorem 1 Given a dataset D, a Bayesian network B N and an interestingness
threshold ε, algorithm ExactInter correctly returns all ε-interesting attribute sets.

6 Fast, approximate discovery of interesting attribute sets

The definition of interestingness (Definition 1) refers to P B N
I , the exact probability

distribution of I inferred from the network, and P D
I , the probability distribution of

I in the (potentially very large) database. In the previous section, exact probabilities
P B N

I have been inferred from the network and P D
I have been determined by counting

events in the database. We will now study the case of large networks that render exact
inference infeasible, and of large databases or data streams in which events cannot be
counted.

In principle, P B N
I can be estimated by sampling from the network, and P D

I by
sampling from the database. However, in approximating the probabilities we would
forfeit the guarantee of identifying the most interesting patterns. Therefore, we will
design a procedure that samples from database and the network but is still guaranteed
to find a near-optimal set of patterns with high probability. A possible approach to
an approximate, sampling based algorithm would be to find all attribute sets whose
interestingness exceeds some ε with some given probability.

However, from the user’s point of view it is often more natural to look only at top
n most interesting patterns, so for an approximate algorithm it is more important to
guarantee that the top patterns are correct, instead of guaranteeing that all patterns will
be discovered. In the approximate case, discovering all patterns with given minimum
interestingness does not guarantee that the top patterns can be identified correctly!

123

Scalable pattern mining

Also, considering only n top attribute sets gives more speed benefits for a sampling
based algorithm then for an exact one.

Any solution to the n most interesting attribute sets problem has to calculate the
I(I) which requires exact inference in the Bayesian network and at least one pass
over the entire database. We would like to find an alternative optimality property that
can be guaranteed by an efficient algorithm. We therefore define the n approximately
most interesting attribute sets problem as follows.

Definition 4 Let D be a database over attributes Z and BN a Bayesian network.
The n approximately most interesting attribute sets problem is to find n attribute sets
H = {I1, . . . , In}; I j ⊆ Z , such that, with high probability 1 − δ, there is no other
attribute set I ′ which is ε more interesting than any of H (Eq. 6).

with confidence 1− δ, there is no I ′ ⊆ Z such that

I ′ �∈ H and I(I ′) > min
I∈H

I(I)+ ε. (6)

6.1 A sampling-based fast, approximate algorithm

We are now ready to present our solution to the n approximately most interesting
attribute sets problem. The ApproxInter algorithm is presented in Fig. 5; it refers to
confidence bounds provided in Table 1. We will now briefly sketch the algorithm, then
state our main theorem, and finally discuss some additional details and design choices.

ApproxInter generates candidate attribute sets like the Apriori algorithm does: start-
ing from all one-element sets in step 1, candidates with i + 1 attributes are generated
in step 2g by merging all sets which differ in only the last element, and pruning those
with infrequent subsets.

In each iteration of the main loop, we draw a batch of database records and obser-
vations from the Bayesian network. Only one such batch is stored at a time and the
sample size and frequency counts of all patterns under considerations are updated; the
batch is deleted after an iteration of the loop and a new batch is drawn. Based on the
updated counts, estimates Î(I) of I(I) are computed using the equation below

Î(I) = max
i∈Dom(I)

∣∣∣P̂ D
I (i)− P̂ B N

I (i)
∣∣∣ , (7)

where P̂ D
I and P̂ B N

I are sample estimates of respective probability distributions. The
interestingness of each attribute set I is estimated based on N B N (I) observations
from the network and N D(I) database records. Note that since we are adding new
attribute sets in the course of the algorithm, those numbers will in general be different
for different attribute sets.

A special case occurs when the Bayesian network is too large for exact inference
but the database is compact and P D

I can be determined exactly. In this case, only P B N
I

has to be approximated by P̂ B N
I , but SD can be the entire database D and therefore

P̂ D
I = P D

I .

123

S. Jaroszewicz et al.

Fig. 5 ApproxInter: fast discovery of the approximately most interesting attribute sets

123

Scalable pattern mining

Table 1 Confidence bounds used by ApproxInter

Based on Hoeffding inequality, sampling from Bayesian network and data

EI (I, δ) =
√

1
2

N B N (I)+N D (I)
N B N (I)N D (I)

log 2|Dom(I)|
δ

,

Es (I, δ) =
√

log 4|Dom(I)|
δ max

{
1√

2N B N (I)
, 1√

2N D (I)

}

Ed (nB N , nD, δ) =
√

1
2

nB N+nD

nB N nD log 2
δ

Based on Hoeffding inequality, all data used, sampling from Bayesian
network only

Es (I, δ) = EI (I, δ) =
√

1
2N B N (I)

log 2|Dom(I)|
δ

, Ed (nB N , δ) =
√

1
2nB N log 2

δ

Based on normal approximation, sampling from Bayesian network and data
EI (I, δ) = z1− δ

2|Dom(I)|
max

i∈Dom(I)

√
VB N + VD ,

Es (I, δ) = z1− δ
4|Dom(I)|

max
i∈Dom(I)

max
{√

VB N ,
√

VD

}
,

where VB N = P̂ B N
I (i)(1−P̂ B N

I (i))

N B N (I)
, and VD = P̂ D

I (i)(1−P̂ D
I (i))

N D (I)
|D|−N D (I)
|D|−1 ,

Ed (nB N , nD, δ) = 1
2 z1− δ

2

√
1

nB N + 1
nD
|D|−nD

|D|−1

Based on normal approximation, all data used, sampling from Bayesian
network only

Es (I, δ) = EI (I, δ) = z1− δ
2|Dom(I)|

maxi∈Dom(I)

√
P̂ B N

I (i)(1−P̂ B N
I (i))

N B N (I)

Ed (nB N , nD, δ) = 1
2 z1− δ

2

1√
nB N

There are two mechanisms for eliminating patterns which are not among the n best
ones. These rejection mechanisms are data dependent: if some attribute sets are very
uninteresting, only few observations are needed to eliminate them from the search
space and the algorithm requires few sampling operations. Step 2c is analogous to the
pruning of low support itemsets in Apriori. Lemma 1 is used here—the interestingness
can be bounded from above by support. No superset of I can be more frequent than I
and therefore all supersets can be removed from the search space, if this upper bound
is below the currently found n-th most interesting attribute set. Since only estimates
P̂ B N

I (i) and P̂ D
I (i) are known, we add a confidence bounds EI and Es to account for

possible misestimation.
The pruning step is powerful because it removes an entire branch, but it can only

be executed when an attribute set is very infrequent. Therefore, in step 2d, we delete
an attribute set I ′ if its interestingness (plus confidence bound) is below that of the
currently n-th most interesting pattern (minus confidence bound). We can then delete
I ′ but since interestingness does not decrease monotonically with the number of attri-
butes, we cannot prune the entire branch, and supersets of I ′ still need to be considered.

There are two alternative stopping criteria. If every attribute set in the current set of
“champions” H∗i (minus an appropriate confidence bound) outperforms every attribute
set outside (plus confidence bound), then the current estimates are sufficiently accu-
rate to end the search (step 2e). This stopping criterion is data dependent: If there are
hypotheses which clearly set themselves apart from the rest of the hypothesis space,
then the algorithm terminates early.

123

S. Jaroszewicz et al.

The above criterion does not guarantee that the algorithm will always terminate. In
order to ensure the termination in all cases an additional test is introduced. Namely,
the algorithm terminates when enough samples have been collected to guarantee that
the estimates of interestingness of all attribute sets are tight up to ε

2 . This worst-case
criterion uses bounds which are independent of specific hypotheses (data independent)
and one third of allowable error is set aside for it. This level of accuracy guarantees
that the current top attribute sets are a solution to the n approximately most interesting
attribute sets problem.

ApproxInter refers to error bounds which are detailed in Table 1. We provide both,
exact but loose confidence bounds based on Hoeffding’s inequality, and their practi-
cally more relevant normal approximation. Statistical folklore says normal approxima-
tions can be used for sample sizes from 30 onwards; in our experiments, we encounter
sample sizes of 1,000 or more. z Denotes the inverse standard normal cumulative dis-
tribution function and nB N , nD the minimum sample size (from Bayesian network and
database, respectively) for any I ∈ H . We furthermore distinguish the general case
in which samples are drawn from both, the Bayesian network and database, from the
special case in which the database is feasibly small and therefore P̂ D

I = P D
I , samples

are drawn only from the network.
We are now ready to state our main result on the optimality of the collection of

attribute sets returned by our approximate discovery algorithm.

Theorem 2 Given a database D, a Bayesian network B N over nodes Z, and parame-
ters n, ε, and δ, the ApproxInter algorithm will output a set H∗ of the n approximately
most interesting attribute sets (according to Definition 4). That is, with probability
1 − δ, there is no I ′ ⊆ Z with I �∈ H∗ and I(I ′) > minI∈H∗ I(I) + ε. Further-
more, the algorithm will always terminate (even if the database is an infinite stream);
the number of needed sampling operations from the database and from the Bayesian
network is upper-bounded by O(|Z | 1

ε2 log 1
δ
).

The proof of Theorem 2 is given in Appendix A. We will conclude this section
by providing additional design decisions underlying the algorithm’s implementation.
A copy of the source code is available from the authors for research purposes.

6.2 Implementation

Sampling from the Network. Sampling from the probability distribution defined by
the Bayesian network is achieved as follows. First, the nodes of the network are sorted
in the topological order; since the network has no cycles this is always possible. Each
node in the network is then visited in topological order and the value for its variable
is drawn according to one of the distributions from the node’s conditional distribution
table selected based on the values of its parents. The order of visiting nodes guar-
antees that values of each node’s parents have already been drawn when the node is
visited, the selection of the sampling distribution for the node is thus always possible.
By repeating the procedure we obtain a sample SB N of independent assignments of
values to the attributes according to P B N .

123

Scalable pattern mining

Updating probability distributions. Updating the probability distributions of a large
number of attribute sets based on the samples drawn is the most time consuming part
of the algorithm. In order to speed it up we use a method similar to the one used for
computing a large number of marginals from a Bayesian network, shown in Fig. 2,
described in Sect. 5.1. In short, instead of counting the distribution of each attribute
set directly from the samples we first generate a collection of supersets of attribute
sets considered. We compute probability distributions for those supersets based on
samples and then marginalize distributions for all attribute sets from distributions of
their supersets. Since the marginalized distributions are small, the marginalization cost
is often smaller than the cost of computing the distribution directly from the sample,
and substantial savings can be achieved.

The exact procedure is identical to that in Sect. 5.1, except that different cost func-
tions are used. It is easy to see that the cost of computing PI directly from a sample
of size N is N · |I |. So by computing the distribution of a superset I directly from the
sample, the amount of computations we gain is

gain(I) = −N · |I | +
∑

J∈Bd+(C),J⊂I

[
N · |J | − cost (PI

↓J)
]
,

where C is the collection of attribute sets whose distributions we want to update.
The above equation is then used in algorithm analogous to that in Fig. 2 to find an
appropriate collection of supersets.

Choosing the sample size. In step 2a, we are free to choose any size of the batch
to draw from the network and database. As long as Ci �= ∅, the greatest benefit
is obtained by pruning attribute sets in step 2c (all supersets are removed from the
search space). When Ci = ∅, terminating early in step 2e becomes possible, and
rejecting attribute sets in step 2d is as beneficial as pruning in step 2c, but easier
to achieve. We select the batch size such that we can expect to be able to prune a
substantial part of the search space (Ci �= ∅), terminate early, or reject substantially
many hypotheses (Ci = ∅).

We estimate the batch size required to prune 25% of the hypotheses by compar-
ing the least interesting hypothesis in H∗i to a hypothesis at the 75th percentile of
interestingness. We find the sample size that satisfies the precondition of step 2c for
these two hypotheses (this is achieved easily by inverting EI and Es). If Ci = ∅, then
we analogously find the batch size that would allow us to terminate early in step 2e
and the batch size that would allow to reject 25% of the hypotheses in step 2d and take
the minimum.

Delaying candidate generation. Since pruning may significantly reduce the
number of new candidates generated, it may be beneficial to delay candidate gen-
eration (step 2g) until we have had a chance to prune more attribute sets currently
under consideration.

In general if sample size needed to prune a significant number of attribute sets (see
paragraph above) is relatively small, it is better to delay candidate generation until
after we have seen that sample and tried to prune attribute sets. If on the other hand we

123

S. Jaroszewicz et al.

would require a very large number of samples in order to prune some attribute sets, it
is better to generate new candidates, where we hope to have more chance for pruning
or rejecting.

The heuristic we used was to generate more candidates when the number of samples
needed to prune candidates was greater than |Ci ||Z |. That number can be seen as a
rough estimate of new attribute sets that would be generated in step 2g. It may seem
that the two numbers are incompatible, and comparing them is not well justified, but
we found the heuristic to work well in practice for both large and small networks and
datasets.

Pruning versus rejecting. As noted above, pruning is a much more powerful opera-
tion than rejecting. However it is much easier to reject an attribute set than to prune it.
It might thus be beneficial to delay rejecting an attribute set in hope that we may later
be able to prune it together with all its supersets. We adopt a very simple strategy for
that, namely, we do not reject candidates generated during the last invocation of step
2g (only pruning is done on those attribute sets), while older candidates are subject to
both pruning and rejecting.

Estimation of conditional probabilities from data. While expert may be able to pro-
vide conditional probabilities for the network in some cases, they are usually estimated
based on the dataset. So far these probabilities were assumed to be correct, but the
question arises, whether estimation errors for those probabilities should be taken into
account. This could for instance be achieved by propagating error estimates through
the network during inference; algorithms can be found in Kleiter (1996) and Van Allen
et al. (2001). Some remarks can also be found in Pearl (1998).

We chose however not to take estimation errors explicitly into account, for the fol-
lowing reasons. Notice first, that after taking estimation errors into account, providing
a guarantee on solution quality is no longer possible in the general case. Indeed, con-
sider a Bayesian network A→ Y ← B, where A, B, Y are binary attributes. Assume
that P D

A = P D
B = (1

2 , 1
2), but P D

AB(1, 1) = ε, where ε ≈ 0. In this case P D
Y |AB cannot

be estimated with any guaranteed accuracy for A = B = 1, since there is no limit on
how small ε can be. Now P D

ABY (1, 1, 1) ≈ 0 but P B N
ABY (1, 1, 1) can in principle be any

number between 0 and 1
4 . As a result no guarantees can be given on Î(ABY).

Secondly, estimating conditional probabilities is a relatively cheap operation, so it
is possible to perform it on the whole dataset (or a very large sample in case of a data
stream), even if the interesting patterns have to be discovered from a (smaller) sample.
It is thus not difficult to obtain excellent estimates for most conditional probabilities
in the network, and the influence of a potential misestimation is in practice limited.

6.3 Statistical significance of discovered patterns

Very often users are interested in discovering patterns which are statistically signif-
icant; that is, patterns that in fact characterize the reality that has generated the data
with a prescribed confidence level. This is best achieved through testing on a separate
test set, but the sampling version of our algorithm can be easily adapted to guarantee

123

Scalable pattern mining

Table 2 Confidence bounds based on normal approximation guaranteeing statistical significance on the
whole population

EI (I, δ) = z1− δ
2|Dom(I)|

max
i∈Dom(I)

√
VB N + VD

Es (I, δ) = z1− δ
4|Dom(I)|

max
i∈Dom(I)

max
{√

VB N ,
√

VD

}
,

where VB N = P̂ B N
I (i)(1−P̂ B N

I (i))

N B N (I)
, and VD = P̂ D

I (i)(1−P̂ D
I (i))

N D (I)
,

Ed (nB N , nD, δ) = 1
2 z1− δ

2

√
1

nB N + 1
nD

that discovered patterns are the most interesting not only in available data but in the
whole (possibly infinite) population.

In the remaining part of this subsection we assume that conditional probabilities
are correct (see discussion above). Note that a similar assumption is made in many
statistical tests which assume correctness of marginal distributions.

If Hoeffding inequality based bounds are used, the guarantee we give automatically
holds in the whole population, since those bounds do not use in any way the assumption
that the dataset we sample from is finite. The bounds based on normal approxima-
tion can easily be adapted by replacing bounds based on the normal approximation to
the hypergeometric distribution by bounds based on the normal approximation to the
binomial distribution. These new bounds are given in Table 2.

Note that we obtain not only the guarantee that discovered patterns are approxi-
mately most interesting in the whole population, but also provide confidence intervals
for their interestingness.

7 Experimental results

In this section we present experimental evaluation of the exact and sampling-based
discovery algorithms. One problem we were faced with was the lack of publicly avail-
able datasets with nontrivial background knowledge that could be represented as a
Bayesian network.

We first show the intended application of the algorithm in the discovery process on
two datasets, the first one using authors’ knowledge on basic relationships between
health and lifestyle. The second example is based on real data and a real, expert built
Bayesian network describing symptoms and test results for Borreliosis (Lyme disease).

For the performance evaluation we relied on artificially generated data or networks.
This allowed us to generate networks and data of various sizes in a controlled envi-
ronment. The details are described in a later section.

7.1 An illustrative example

We first present a simple example demonstrating the usefulness of the method. We
use the KSL dataset of Danish 70-year-olds, distributed with the DEAL Bayesian net-
work package (Bøttcher and Dethlefsen 2003). There are nine attributes, described in

123

S. Jaroszewicz et al.

Table 3 Attributes of the KSL
dataset

FEV Forced ejection volume of person’s lungs
Kol Cholesterol level
Hyp Hypertension (no/yes)
BMI Body Mass Index
Smok Smoking (no/yes)
Alc Alcohol consumption (seldom/frequently)
Work Working (yes/no)
Sex Male/female
Year Survey year (1967/1984)

(a) (b)

Fig. 6 Network structures for the KSL dataset constructed by the authors

Table 3, related to the person’s general health and lifestyle. All continuous attributes
have been discretized into 3 levels using the equal weight method.

We begin by designing a network structure based on authors’ (non-expert) knowl-
edge. The network structure is given in Fig. 6a.

Conditional probabilities were estimated directly from the KSL dataset. Recall that
this is a valid approach since even when the conditional probabilities match the data
perfectly, interesting patterns can still be found because the network structure usually
is not capable of representing the full joint distribution of the data. The interesting
patterns can then be used to update the network’s structure. Of course if both the
structure and the conditional probabilities are given by the expert, then the discovered
patterns can be used to update both the network’s structure and conditional probabil-
ities.

We apply the algorithm for finding all interesting attribute sets to the KSL dataset
and the network, using the ε threshold of 0.01. The attribute sets returned are sorted
by interestingness, and top 10 results are kept.

The two most interesting attribute sets are {F EV, Sex}with interestingness 0.0812
and {Alc, Y ear} with interestingness 0.0810.

Indeed, it is known (see Gray 1977) that women’s lungs are on average 20–25%
smaller than mens’ lungs, so sex influences the forced ejection volume (FEV) much
more than smoking does (which we thought was the primary influence). This fact,
although not new in general, was overlooked by the authors, and we suspect that,

123

Scalable pattern mining

due to large amount of literature on harmful effects of smoking, it might have been
overlooked even by many domain experts.

The data itself implies a growth in alcohol consumption between 1967 and 1984,
which we consider to be a plausible finding. We now decide to modify the network
structure based on our findings by adding edges Sex → F EV and Y ear → Alc.

As a method of scoring network structures we use the natural logarithm of the prob-
ability of the structure conditioned on the data, see Heckerman (1995) and Myllymäki
et al. (2002) for details on computing the score. The modified network structure has a
score of −7162.71 which is better than that of the original network: −7356.68.

With the modified structure, the most interesting attribute set became {K ol, Sex,

Y ear}with interestingness 0.0665. We find in the data that cholesterol levels decreased
between the 2 years in which the study was made, and that cholesterol level depends
on sex. We find similar trends in the US population based on data from American
Heart Association (2003). Adding edges Y ear → K ol and Sex → K ol improves the
network score to −7095.25.
{F EV, Alc, Y ear} becomes the most interesting attribute set with the interesting-

ness of 0.0286. Its interestingness is however much lower than that of previous most
interesting attribute sets. Also, we are not able to get any improvement in network
score after adding edges related to that attribute set.

We thus finish the interactive network structure improvement process with the final
result given in Fig. 6b. The computation of interestingness for this example takes only
a few seconds, so an interactive use of the program is possible.

7.2 Borreliosis case study

In this section we present an application of the algorithm to a real example. Dr. Ram
Dessau from Næstved Hospital, Næstved, Denmark provided us with a Bayesian net-
work relating various symptoms of Borreliosis (Lyme disease) with clinical test results
and patient data. The Bayesian network has 71 nodes and was built based on experts
knowledge about Borreliosis. The network is accompanied by a dataset on 3,267
patients tested for Lyme disease. The attributes in the dataset are a subset of those in
the network, our method can nevertheless still be applied.

The most important attributes present in the data, whose meaning is not obvious,
are briefly summarized in Table 4.

Table 4 Attributes of the
Borreliosis dataset

Attribute name Description

Exposure Exposure to ticks, e.g., patient visited a forest
Duration Duration of the disease
Month Month the patient reported to a doctor
Rash Whether the patient developed rash
IgM, IgG Serological tests
Neuro Neurological symptoms
ACA, KNB, Carditis, Various other symptoms

Lymphocytom, Andet

123

S. Jaroszewicz et al.

The first finding is that probabilities of many symptoms were incorrect, e.g., the
probability of a patient having arthritis differed by 0.57. After consultations with the
expert, those probabilities have been updated in the network to match the data.

The most interesting event then becomes the case when a patient has no symptoms
at all. The network predicts a much higher probability for such an event than the prob-
ability estimated from data (by about 0.25). After some thought the reason becomes
clear: people with no symptoms are generally less likely to see a doctor and be tested
for Borreliosis. Since the database contains only people who did get tested, most of
them had at least one of the symptoms present. Of course some people do get tested
even though they do not have any symptoms (e.g., after they get bitten by a tick and
request a test), but such events are not too frequent.

In order to modify the network to predict this case correctly, we add an extra node
named Tested? and permanently set it to Yes as evidence in the network. Edges are
added to the new node from all the symptoms. The node’s joint probability distribution
is modeled by a NoisyOR gate (see Jensen 2001) with an appropriate leak probability
to accommodate people who are tested despite the lack of symptoms. Figure 7 depicts
the modification.

As a result, the presence of any of the symptoms causes the Tested? node to be
in state Yes, and since such a state is set as an evidence in the network, it makes the
event that no symptoms are present much less likely. This is in fact a typical case of
reject inference where only biased a subset of the cases is observable, see Smith and
Elkan (2004).

We know of no automatic Bayesian network construction algorithm that is capable
of performing such a modification. Even if such an algorithm existed, it would not be
able to provide the underlying semantics. Note that algorithms in Spirtes et al. (1999)
and Spirtes and Richardson (1996) are only able to work under sample selection bias,
not to explain the nature of the bias.

For a comparison, Fig. 8 shows a “not so naive” causal model learned using the
B-course website (Myllymäki et al. 2002). Solid arcs on the graph show relationships
considered to be certain direct causal influences, dashed arcs are influences which
exist but whose nature is unknown.

Fig. 7 Modification made to the Borreliosis network

123

Scalable pattern mining

Fig. 8 A “not so naive” causal model learned using the B-course website

All of the arcs deemed certain direct causal influences are in fact incorrect. For
example, exposure to insects causes an insect bite, not the other way around. Rash
is not a direct cause of arthritis, or neurological symptoms, they are all symptoms
caused by Borreliosis. It can also be seen that various other symptoms are connected
with dashed edges which do not reflect true causal relationships. Such wrong causal
relationships are easily detected by a human and under no circumstances would have
been added to the network.

Another comparison is given in Fig. 9. This network was constructed using the
FCI (Spirtes et al. 1999) algorithm implemented in the TETRAD package (TETRAD
project). The maximum depth of 8 and the default significance level of 0.05 were
used. The results for other algorithms and/or parameter values were similar. Three
symptoms (Lymphocytom, Carditis, Neuro) were unconnected and are omitted from
the graph.

The edges have the following meaning (see Spirtes et al. 1999 for a full description):
a directed edge (→) means that there is a (possibly indirect) causal relationship in the
direction of the edge; a bidirectional edge (↔) means that there is a latent common
cause of the vertices it connects or a sample bias affecting them, and an o at an end of
an edge means that the type of arrowhead could not be determined.

It can be seen in the figure that the causal chain: exposure causes insect bite which
in turn (indirectly) causes rash has been discovered at the dependence level, but the
causal structure has not been identified. In fact there are only two directed edges in the
graph (given in bold): rash→ arthritis, which is not correct as these symptoms have a
latent common cause (Borreliosis), and month→ duration, which looks questionable,
as the month the patient reported to a doctor seems unlikely to causally influence dis-
ease duration. Most other edges are classified as having a latent common cause. This
is essentially correct (e.g., all symptoms have a common latent cause: the disease) but
does not really help an analyst, as there is no indication that the hidden cause is in
most cases the same: Borreliosis. Also many pairs of nodes having this common cause
are left unconnected.

123

S. Jaroszewicz et al.

Fig. 9 A model build by the FCI algorithm from the TETRAD package

7.3 Performance evaluation: exact algorithm

In order to study the performance of ExactInter and ApproxInter over a range of
network sizes, we need a controlled environment with Bayesian networks of vari-
ous sizes and corresponding datasets. We have to be able to control the divergence
of background knowledge and data, and, in order to assure that our experiments are
reproducible, we would like to restrict our experiments to publicly available data. We
create an experimental setting which satisfies these requirements. For the first set of
experiments, we use data sets from the UCI repository and learn networks from the
data using the B-Course (Myllymäki et al. 2002) website. These generated networks
play the role of expert knowledge in our experimentation.

In order to conduct experiments on a larger scale, we start from large Bayesian
networks, generate databases by sampling from the network, and then learn a slightly
distorted network from the data which again serves as expert knowledge (see below for
a detailed description). For the small UCI datasets, the algorithm processes the entire
database whereas, for the large-scale problems, ApproxInter samples from both, the
database and the network. Conditional probabilities are always estimated based on the
whole dataset.

123

Scalable pattern mining

Table 5 Performance evaluation of the algorithm for finding all ε-interesting attribute sets

Dataset |Z | ε maxk #Marginals Time [s] max I
KSL 9 0.01 5 382 1.12 0.032
Soybean 36 0.075 3 7,633 1,292 0.064
Soybean 36 0.075 4 61,976 7,779 0.072
Breast-cancer 10 0.01 5 638 3.49 0.082
Annealing 40 0.01 3 9,920 1,006 0.048
Annealing 40 0.01 4 92,171 6,762 0.061
Mushroom 23 0.01 3 2,048 132.78 0.00036
Mushroom 23 0.01 4 10,903 580.65 0.00036
Lymphography 19 0.067 3 1,160 29.12 0.123
Lymphography 19 0.067 4 5,036 106.13 0.126
Splice 61 0.01 3 37,882 8,456 0.036

We now present the performance evaluation of the exact algorithm for finding all
attribute sets with given minimum interestingness. We use the UCI datasets and Bayes-
ian networks learned from data using B-Course (Myllymäki et al. 2002). The results
are given in Table 5. The algorithms are implemented in Python and executed on a
1.7 GHz Pentium 4 machine.

The maxk column gives the maximum size of frequent attribute sets considered.
The #Marginals column gives the total number of marginal distributions computed
from the Bayesian network. The attribute sets whose marginal distributions have been
cached between the two stages of the algorithm are not counted twice.

Time does not include the initial run of the Apriori algorithm used to find frequent
itemsets in the data (the time of the AprioriBN algorithm is included though). The
times for larger networks can be substantial; however the proposed method has still
a huge advantage over manually evaluating 1,000s of frequent patterns, and remains
practical for networks of up to 60 variables.

The maximum interestingness (max I) column gives the interestingness of the most
interesting attribute set found for a given dataset. It can be seen that there are still highly
interesting patterns to be found after using classical Bayesian network learning meth-
ods. This proves that frequent pattern and association rule mining has the capability
to discover patterns which traditional methods might miss.

To give a better understanding of how the algorithm scales as the problem size
increases we present two additional figures. Figure 10 shows how the computation
time increases with the number of marginal distributions that must be computed from
the Bayesian network. It is obtained by varying the maximum size of attribute sets
between 1 and 5. The value of ε = 0.067 is used (equivalent to one row in the data-
base). It can be seen that the computation time grows slightly slower than the number
of marginal distributions. The reason for that is that the more marginal distributions
we need to compute, the more opportunities we have to avoid using bucket elimination
by using direct marginalization from a superset instead.

Determining how the computation time depends on the size of the network is dif-
ficult, because the time depends also on the network structure and the number of
marginal distributions computed (which in turn depends on the maximum size of
attribute sets considered). We nevertheless show in Fig. 11 the numbers of attributes

123

S. Jaroszewicz et al.

Fig. 10 Time of computation depending on the number of marginal distributions computed for the
lymphography database

Fig. 11 Time of computation depending on the number of attributes for datasets from Table 5

and computation times plotted against each other for some of the datasets from
Table 5. Data corresponding to maximum attribute set sizes equal to 3 and 4 are
plotted separately.

It can be seen that the algorithm remains practically usable for fairly large networks
of up to 60 variables, even though the computation time grows exponentially. For larger
networks the use of the approximate algorithm is necessary. The performance of the
approximate algorithm is evaluated in the following section.

123

Scalable pattern mining

7.4 Performance evaluation: approximate algorithm

Theorem 2 already guarantees that the attribute sets returned by the algorithm are,
with high probability, nearly optimal with respect to the interestingness measure. But
we still have to study the practical usefulness of the method for large-scale problems.
In our experiments, we will first focus on problems that can be solved with ExactInter
and investigate whether the sampling approach speeds up the discovery process. More
importantly, we will then turn toward discovery problems with large-scale Bayes-
ian networks that cannot be handled by known exact methods. We will investigate
whether any of these problems can be solved using our sampling-based discovery
method.

We first compare the performance of ExactInter and ApproxInter using the UCI
data sets. For all experiments, we use ε = 0.01, δ = 0.05, and n = 5. We constrain
the cardinality of the attribute sets to maxk . Here, the databases are small and therefore
only the network is sampled and P̂ D

I = P D
I for all I . Table 6 shows the performance

results. The |Z | column contains numbers of attributes in each dataset, t[s] com-
putation time (shorter times are indicated in bold), N B N the number of samples drawn
from the Bayesian network, max Î and max I are the estimated and actual interest-
ingness of the most interesting attribute set found by ApproxInter and ExactInter,
respectively.

We refrain from drawing conclusions on the absolute running time of the algorithms
because of a difference in the problems that ExactInter and ApproxInter solve (finding
all sufficiently versus finding the most interesting rules). We do, however, conclude
from Table 6 that the relative benefit of ApproxInter over ExactInter increases with
growing network size. For 61 nodes, ApproxInter is many times faster than Exact-
Inter. More importantly, ApproxInter finds a solution for the audiology problem;
ExactInter exceeds time and memory resources for this case.

The most interesting attribute set has always been picked correctly by the sampling
algorithm and its estimated interestingness was close to the exact value. The remain-
ing 4 most interesting sets were not always picked correctly, but remained within the
bounds guaranteed by the algorithm.

Table 6 Evaluation on networks learned from UCI datasets

Dataset |Z | maxk N B N ApproxInter ExactInter

max Î t[s] max I t[s]
KSL 9 5 205,582 0.03229 55 0.03201 1
Lymphography 19 3 88,333 0.09943 43 0.12308 29
Lymphography 19 4 159,524 0.12343 83 0.12631 106
Soybean 36 3 282,721 0.06388 409 0.06440 1,292
Soybean 36 4 292,746 0.07185 1,748 0.07196 7,779
Annealing 40 3 273,948 0.04985 407 0.04892 1,006
Annealing 40 4 288,331 0.06159 2,246 0.06118 6,762
Splice 61 3 190,164 0.03652 1,795 0.03643 8,456
Audiology 70 3 211,712 0.09723 727 – –
Audiology 70 4 228,857 0.10478 9,727 – –

Bold values indicate better time

123

S. Jaroszewicz et al.

Fig. 12 Computation time versus maximum attribute set size maxk for lymphography data

We will now study how the execution time of ApproxInter depends on the maxi-
mum attribute set size maxk . Figure 12 shows the computation time for various values
of maxk for the lymphography data set. Note that the search space size grows
exponentially in maxk and this growth would be maximal for maxk = 10 if no pruning
was performed. By contrast, the runtime levels off after maxk = 7, indicating that the
pruning rule (step 2c of ApproxInter) is effective and reduces the computation time
substantially.

Let us now investigate whether ApproxInter can solve discovery problems that
involve much larger networks than ExactInter can handle. We draw 1 million observa-
tions governed by the Munin1 network (Andreassen et al. 1989). We then use a small
part of the resulting dataset to learn a Bayesian network. Thus, the original network
plays the role of a real world system (from which the dataset is obtained) and the net-
work learned from a subset of the data plays the role of our imperfect knowledge about
the system. By varying the sample size M used to build the network we can affect
the quality of our ‘background’ knowledge. The Munin1 network has 189 attributes.
Exact inference from networks of this size is very hard in practice.

Table 7 shows the results for various values of M and maxk = 2, 3. We sample
at equal rates from the Bayesian network and from data; both numbers of examples
are therefore equal and denoted by N in the table. We use the same setting for the
next experiment with the Munin2 network containing 1,003 attributes. The problem
is huge both in terms of the size of Bayesian network and the size of data: The file con-
taining 1 million rows sampled from the original network is over 4 GB, and 239,227
rows sampled by the algorithm amount to almost 1 GB. The experiment took 4 h and
50 min for maxk = 2.

Figure 13 summarizes Tables 6 and 7. It details the relationship between the number
of nodes in the network and the computation time of ExactInter and ApproxInter. We
observe a roughly linear relationship between logarithm of network size and the log-
arithm of execution time, Fig. 13 shows a model fitted to the data. From these exper-
iments, we conclude that the ApproxInter algorithm scales to very large Bayesian

123

Scalable pattern mining

Table 7 Results for the Munin networks

Dataset |Z | M maxk t[s] N max Î
Munin1 189 100 2 874 136,972 0.4138
Munin1 189 150 2 1,754 312,139 0.2882
Munin1 189 200 2 1,004 139,500 0.2345
Munin1 189 250 2 2,292 373,191 0.1819
Munin1 189 500 2 2,769 431,269 0.1174
Munin1 189 1000 2 3,502 480,432 0.0674
Munin1 189 100 3 14,375 375,249 0.4603
Munin1 189 150 3 16,989 450,820 0.3272
Munin2 1003 100 2 17,424 239,227 0.3438

Fig. 13 Network size and computation time

Fig. 14 Maximum interestingness and computation time

123

S. Jaroszewicz et al.

networks and databases, yet it is guaranteed to find a near-optimal solution to the
most interesting attribute set problem with high confidence. We can apply the exact
ExactInter algorithm to networks of up to about 60 nodes. Using the same computer
hardware, we can solve discovery problems over networks of more than 1,000 nodes
using the sampling-based ApproxInter method.

Figure 14 shows the relationship between the interestingness of the most interesting
attribute set (i.e., how well the network matches the data) and the running time, for
the Munin network with maxk = 2. The data were obtained by varying the parameter
M described above and are taken from Table 7. It can be seen that the time becomes
longer when the network fits the data well. This is to be expected, since more precise
estimates of interestingness are needed in this case. We do not know the reason for
a sudden jump for the maximum interestingness of 0.23, we suspect a random distri-
bution of data caused the program to terminate earlier and skip one whole batch of
samples.

8 Conclusions

We discussed the interestingness of attribute sets with respect to background knowl-
edge encoded as a Bayesian network. We stressed the importance of incorporating the
user in the data mining process, and proposed a methodology to achieve that.

We presented efficient exact and approximate algorithms for finding attribute sets
which are interesting with respect to a Bayesian network. The exact algorithm finds
all attribute sets with given minimum interestingness, and works well for up to 60
variables. The approximate, sampling based algorithm, scales to huge Bayesian net-
works and unlimited database sizes. We provided a rigorous proof that the sampling
based algorithm, even though approximate, guarantees that the results will be close to
optimal with high probability.

Experimental evaluation on real and benchmark examples support the conclusion
that the exact algorithm (for small networks) and the approximate algorithm (for large
networks and large databases) are effective and practically useful for finding interest-
ing, unexpected patterns.

The algorithms have been designed to work with knowledge represented by Bayes-
ian networks. There are however no obstacles to apply them to other models such
as log-linear models, chain graphs etc. One could apply the algorithms to find pat-
terns whose probability distributions differ in two datasets, thus providing a version
of emerging patterns, as presented in Dong and Li (1999) but based on a different
interestingness metric. The method is also highly valuable to model verification as it
can guarantee that any marginal probability distribution which can be inferred from
the model is indeed close to the data.

Acknowledgements The authors would like to thank Dr. Ram Dessau from Næstved Hospital, Næstved,
Denmark, for providing the Borreliosis network and data. T.S. is supported by the German Science Foun-
dation.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

123

Scalable pattern mining

Appendix A: Proof of Theorem 2

The proof of Theorem 2 has two parts: we will first prove the guaranteed sample bound
of O(|Z | 1

ε2 log 1
δ
). We will then show that ApproxInter in fact solves the approximately

most interesting attribute sets problem.

A.1 ApproxInter samples only polynomially many observations

Theorem 3 The number of sampling operations of ApproxInter from the database
and from the Bayesian network is bounded by O(|Z | 1

ε2 log 1
δ
).

Proof We can disregard the possibility of early stopping and show that the worst-case
stopping criterion in step 2f is sufficient to guarantee that we only perform polyno-
mially many sampling operations. Taking the second stopping criterion into account
would not improve the worst case behavior (even though it does help in practice).

Let r = maxA∈Z |Dom(A)|. First note that

∑

I∈Himax

|Dom(I)| ≤
∑

I⊆Z

r |I | =
|Z |∑

k=0

(|Z |
k

)
rk = (r + 1)|Z |. (8)

For clarity of the presentation, let nB N = nD = N . The stopping condition becomes
Eq. 9.

√√√√ 1

N
log

2
∑

I∈Himax
|Dom(I)|

δ
(

1− 2
3

∑imax
j=1

1
j (j+1)

) ≤ ε

2
(9)

After taking (8) into account we obtain the following upper bound

√√√√ 1

N
log

2
∑

I∈Himax
|Dom(I)|

δ
(

1− 2
3

∑imax
j=1

1
j (j+1)

) ≤
√√√√

1

N
log

2(r + 1)|Z |

δ
(

1− 2
3

∑imax
j=1

1
j (j+1)

) ,

and further
(

since
∑imax

j=1
1

j (j+1)
< 1

)

√√√√
1

N
log

2(r + 1)|Z |

δ
(

1− 2
3

∑imax
j=1

1
j (j+1)

) ≤
√

1

N
log

2(r + 1)|Z |
1
3δ

≤
√

1

N
log

6(r + 1)|Z |
δ|Z |

.

Due to the upper bound, if N satisfies the equation

√
1

N
log

[
6(r + 1)

δ

]|Z |
≤ ε

2
(10)

123

S. Jaroszewicz et al.

Table 8 Notation used in the proof

G “Good” hypotheses output by ApproxInter in step 3
Ri Attribute sets rejected before iteration i . Note that if an attribute set is pruned (step 2c) then R

will contain that set and all of its supersets
Hi Collection of attribute sets still under consideration in iteration i
H∗i n most interesting attribute sets in Hi
Ci Collection of candidate attribute sets in iteration i
Ui Collection of unseen attribute sets: Ui = 2Z \ ({∅} ∪ Hi ∪ Ri)

imax Value of i after the main loop terminates
H∗imax

n most interesting attribute sets after the main loop terminates. This is what the algorithm
returns

Î(I) Estimate of interestingness of attribute set I during current iteration
ŝupp(I) Estimate of support of attribute set I during current iteration
nB N , nD Minimum sample size (from Bayesian network and database, respectively) for any I ∈ Hi

it will also satisfy Eq. 9. From algebraic transformations, it follows that Eq. 10 is
satisfied for every N given in Eq. 11.

N ≥ 4

ε2 log

[
6(r + 1)

δ

]|Z |
= 4

ε2 |Z | log
6(r + 1)

δ
. (11)

This completes the proof of Theorem 3. ��

A.2 ApproxInter solves approximately most interesting attribute sets problem

Throughout the proof,
∑

i and maxi are abbreviations for respectively
∑

i∈Dom(I) and
maxi∈Dom(I). Table 8 defines additional notation that we use during the proof. Ui is
the set of unseen attribute sets in iteration i . It is important to note that no hypotheses
remain unseen when the candidate set Ci is empty.

Lemma 2 For every 1 ≤ i ≤ imax , Ci = ∅ implies Ui = ∅.
Proof Lemma 2 follows primarily from the completeness of Apriori’s candidate gen-
eration procedure invoked in step 2g: if no attribute set was ever pruned, then ∪i Ci =
2Z \{∅}. We need to show that every set from ∪i Ci will eventually end up in Hi or Ri

for some i .
In step 2h, the candidates Ci are accumulated in Hi+1. In step 2d, one or more

hypotheses I ′ can be removed from Hi . By the definition of Ri , each removed I ′
is then an element of Ri . In step 2c, hypotheses I ′ and all their supersets are removed
from Ci and Hi . In this case, supersets of Ci will not be generated in step 2g but,
by the definition of Ri all of them become members of Ri . This implies that Ui =
2Z \ {∅} \ Hi \ Ri = ∅. ��

The proof heavily relies on confidence intervals for estimates of the interesting-
ness, support, and the difference of interestingness values. We have to show that the
confidence bounds given in Table 1 are in fact valid. In the rest of the proof we use

123

Scalable pattern mining

Pr to denote probability of single events, while P denotes probability distributions
as before.

Lemma 3 All versions of EI defined in Table 1 are valid confidence bounds:

Pr
[
|I(I)− Î(I)| > EI(I, δ)

]
≤ δ.

Proof Let us begin by giving a bound on the difference of two estimated probabili-
ties. Let X1, . . . , Xn be independent (not necessarily identically distributed) random
variables and let Xi ∈ [ai , bi]. Let Sn =∑n

i=1 Xi . Hoeffding’s inequality states that

Pr [|Sn − E(Sn)| ≥ ε] ≤ 2 exp

(
− 2ε2

∑n
i=1(bi − ai)2

)
, (12)

where E(Sn) denotes the expected value of Sn . Since P̂ B N
I (i) − P̂ D

I (i) is a sum of

N B N (I) random variables taking values in
{

0, 1
N B N (I)

}
, and N D(I) random variables

taking values in
{

0,− 1
N D(I)

}
, Eq. 13 follows.

Pr
[∣∣∣(P̂ B N

I (i)− P̂ D
I (i))− (P B N

I (i)− P D
I (i))

∣∣∣ ≥ ε
]

≤ 2 exp

(
−2ε2 N B N (I)N D(I)

N B N (I)+ N D(I)

)
. (13)

In Eq. 14 we expand the definition of I. We remove the absolute value in Eq. 15
by summing over the two possible ways in which the absolute value can exceed the
bound EI . Since maxi {ai }−maxi {bi } ≤ maxi {ai −bi }, Eq. 16 follows. We apply the
union bound in Eq. 17, replace the two symmetric differences by the absolute value
in Eq. 18. Since ||a| − |b|| ≤ |a − b|, Eq. 19 follows; we expand EI , apply (13) and
arrive in Eq. 20

Pr
[
|I(I)− Î(I)| ≥ EI(I, δ)

]

= Pr

[∣∣∣∣max
i
|P̂ B N (i)− P̂ D(i)| −max

i
|P B N (i)− P D(i)|

∣∣∣∣ ≥ EI
]

(14)

= Pr

[
max

i
|P̂ B N (i)− P̂ D(i)| −max

i
|P B N (i)− P D(i)| ≥ EI

]

+Pr

[
max

i
|P B N (i)− P D(i)| −max

i
|P̂ B N (i)− P̂ D(i)| ≥ EI

]
(15)

≤ Pr

[
max

i

(
|P̂ B N (i)− P̂ D(i)| − |P B N (i)− P D(i)|

)
≥ EI

]

+Pr

[
max

i

(
|P B N (i)− P D(i)| − |P̂ B N (i)− P̂ D(i)|

)
≥ EI

]
(16)

123

S. Jaroszewicz et al.

≤
∑

i

(
Pr

[
|P̂ B N (i)− P̂ D(i)| − |P B N (i)− P D(i)| ≥ EI

]

+Pr
[
|P B N (i)− P D(i)| − |P̂ B N (i)− P̂ D(i)| ≥ EI

])
(17)

=
∑

i

Pr
[∣∣∣|P B N (i)− P D(i)| − |P̂ B N (i)− P̂ D(i)|

∣∣∣ ≥ EI
]

(18)

≤
∑

i

Pr

⎡

⎣
∣∣∣(P B N (i)− P D(i))− (P̂ B N (i)− P̂ D(i))

∣∣∣

≥
√

1

2

N B N (I)+ N D(I)

N B N (I)N D(I)
log

2|Dom(I)|
δ

⎤

⎦ (19)

=
∑

i

δ

|Dom(I)| = δ. (20)

To prove the bounds based on normal approximation notice that P̂ B N
I (i) follows

the binomial distribution, which can be approximated by the normal distribution with
mean P B N

I (i) and standard deviation

√
P B N

I (i)(1− P B N
I (i))

N B N (I)
. (21)

When sampling from data, P̂ D
I (i) follows the hypergeometric distribution which can

be approximated by the normal distribution with mean P D
I (i), and standard deviation

√
P D

I (i)(1− P D
I (i))

N D(I)

|D| − N D(I)

|D| − 1
. (22)

Recall that by subtracting a normal variable with mean µ2 and standard deviation
σ2 from a normal variable with mean µ1 and standard deviation σ1 we get a normal

variable with mean µ1 − µ2 and standard deviation
√

σ 2
1 + σ 2

2 . Applying this fact to

the normal approximations of P̂ B N
I (i) and P̂ D

I (i) we obtain

Pr

[∣∣∣(P̂ B N (i)− P̂ D(i))− (P B N (i)− P D(i))
∣∣∣ ≥ z1− δ

2

√
P̂ B N

I (i)(1− P̂ B N
I (i))

N B N (I)
+ P̂ D

I (i)(1− P̂ D
I (i))

N D(I)

|D| − N D(I)

|D| − 1

]
≤ δ. (23)

Since we use the estimates of probabilities to compute the standard deviation, Stu-
dent’s t distribution governs the exact distribution, but for large sample sizes used in
the algorithm the t distribution is very close to normal.

123

Scalable pattern mining

The proof is identical to the Hoeffding case until Eq. 19, where the Hoeffding bound
needs to be replaced by the above expression. The special case of sampling only from
the Bayesian network (P̂ D

I = P D
I) follows immediately from the more general case

discussed in detail. ��
Lemma 4 All versions of Es defined in Table 1 are valid confidence bounds for the
support: Pr

[|supp(I)− ŝupp(I)| > Es(I, δ)
] ≤ δ.

Proof In Eq. 24, we expand the support defined in Eq. 5. To replace the absolute value,
we sum over both ways in which the absolute difference can exceed Es in Eq. 25. In
Eq. 26, we exploit maxi {ai }−maxi {bi } ≤ maxi {ai−bi }; we then use the union bound
and introduce the absolute value again in Eq. 27. Equation 28 expands the definition of
Es . By dropping one of the terms in each maximum Eq. 29 is obtained which is greater
than or equal to (28). By substituting right hand sides of each inequality (within the
sum) for ε in the Hoeffding bound (Eq. 12) each probability is bounded by δ

2|Dom(I)|
leading to Eq. 30, which after performing the summation proves that the confidence
is in fact δ.

Pr
[|ŝupp(I)− supp(I)| ≥ Es(I, δ)

]

= Pr

[
|max

i
max{P̂ B N

I (i), P̂ D
I (i)} −max

i
max{P B N

I (i), P D
I (i)}| ≥ Es

]
(24)

= Pr

[
max

i
max{P̂ B N

I (i), P̂ D
I (i)} −max

i
max{P B N

I (i), P D
I (i)} ≥ Es

]

+Pr

[
max

i
max{P B N

I (i), P D
I (i)} −max

i
max{P̂ B N

I (i), P̂ D
I (i)} ≥ Es

]
(25)

≤ Pr

[
max

i
max{P̂ B N

I (i)− P B N
I (i), P̂ D

I (i)− P D
I (i)} ≥ Es

]

+Pr

[
max

i
max{P B N

I (i)− P̂ B N
I (i), P D

I (i)− P̂ D
I (i)} ≥ Es

]
(26)

≤
∑

i

Pr
[
|P̂ B N

I (i)− P B N
I (i)| ≥ Es

]
+ Pr

[
|P̂ D

I (i)− P D
I (i)| ≥ Es

]
(27)

≤
∑

i

Pr

[
|P̂ B N

I (i)− P B N
I (i)|

≥
√

log
4|Dom(I)|

δ
max

{
1√

2N B N (I)
,

1√
2N D(I)

}]

+Pr

[
|P̂ D

I (i)− P D
I (i)| ≥

√
log

4|Dom(I)|
δ

max

{
1√

2N B N (I)
,

1√
2N D(I)

}]

(28)

≤
∑

i

Pr

[
|P̂ B N

I (i)− P B N
I (i)| ≥

√
1

2N B N (I)
log

4|Dom(I)|
δ

]
(29)

123

S. Jaroszewicz et al.

+Pr

[
|P̂ D

I (i)− P D
I (i)| ≥

√
1

2N D(I)
log

4|Dom(I)|
δ

]

=
∑

i

[
2

δ

2|Dom(I)|
]
= δ. (30)

For the normal approximation based bounds we start with Eq. 29 above which becomes

∑

i

Pr

[
|P̂ B N

I (i)− P B N
I (i)| ≥ z1− δ

4|Dom(I)|

√
P̂ B N

I (i)(1− P̂ B N
I (i))

N B N (I)

]

+
∑

i

Pr

[
|P̂ D

I (i)− P D
I (i)| ≥ z1− δ

4|Dom(I)|

√
P̂ D

I (i)(1− P̂ D
I (i))

N D(I)

|D| − N D(I)

|D| − 1

]

=
∑

i

[
2

δ

2|Dom(I)|
]
= δ.

The special case of P̂ D
I = P D

I follows immediately from the general case. ��
Lemma 5 All versions of Ed defined in Table 1 are valid, data independent confidence

bounds for the interestingness value of an itemset (I, i): Pr
[
|I(I, i)− Î(I, i)| >

Ed(nB N , nD, δ)
]
≤ δ.

Proof The proof for the Hoeffding inequality based bound follows directly from (13)
in the proof of Lemma 3. For the normal case, it follows from (23) by substitut-
ing P̂ B N

I (i) = P̂ D
I (i) = 1

2 which corresponds to the maximum possible standard
deviation. ��
Theorem 4 Let G be the collection of attribute sets output by the algorithm. After the
algorithm terminates the following condition holds with the probability of 1− δ:

there is no I ′ ∈ 2Z \{∅} such that I ′ �∈ G and I(I ′) > min
I∈G

I(I)+ ε. (31)

Proof We will first assume that, throughout the course of the algorithm, the estimates
of all quantities lie within their confidence intervals (assumptions A1a, A1b, and A2).
We will show that under this assumption the assertion in Eq. 31 is always satisfied
when the algorithm terminates. We will then quantify the risk that over the entire
execution of the algorithm at least one estimate lies outside of its confidence interval;
we will bound this risk to at most δ. These two parts prove Theorem 4.

(A1a) ∀i ∈ {1, . . . , imax }∀I ∈ Hi : |Î(I)− I(I)| ≤ EI
(

I, δ
3|Hi |i(i+1)

)

(A1b) ∀i ∈ {1, . . . , imax }∀I ∈ Hi : |ŝupp(I)− supp(I)| ≤ Es

(
I, δ

3|Hi |i(i+1)

)

(A2) If Ed

(
nB N

imax
, nD

imax
,

δ
(

1− 2
3

∑i
j=1

1
j (j+1)

)

∑
I∈Himax

|Dom(I)|
)
≤ ε

2 then ∀I ∈ H∗imax

∀I ′ ∈ (Himax \H∗imax
) : I(I) ≥ I(I ′)− ε

123

Scalable pattern mining

Equation (Inv1) shows the main loop invariant which, as we will now show, is satisfied
after every iteration of the main loop as well as when the loop is exited.

(Inv1) ∀K ∈ Ri there exist distinct I1, . . . , In ∈ Hi : ∀ j ∈ {1, . . . , n}I(I j) ≥
I(K)

We will prove the loop invariant (Inv1) by induction. For the base case (Ri = ∅),
(Inv1) is trivially true. For the inductive step, let us assume that (Inv1) is satisfied for
Ri and Hi before the loop is entered and show that it will hold for Ri+1 and Hi+1 after
the iteration. (Inv1) refers to R and H , so we have to study steps 2c, 2d, and 2h, which
alter these sets. Note that, by the definition of R, Ri+1 is always a superset of Ri ; it
contains all elements of Ri in addition to those that are added in steps 2c and 2d.
Step 2c
Let K be an attribute set pruned in this step. The pruning condition together with our
definition of support (Eq. 5) implies Eq. 32; we omit the confidence parameter of Es for
brevity. Eq. 32 is equivalent to Eq. 33. Assumption (A1a) says that Î(I ′′)− EI(I ′′) ≤
I(I ′′); from assumption (A1b) we can conclude that ŝupp(K) + Es(K) ≥ supp(K)

which leads to Eq. 34. From the definition of support, it follows that all supersets J
of K must have a smaller or equal support (Eq. 35); Lemma 1 now implies that if the
support of K is lower than that of J , so must be the interestingness (Eq. 36).

ŝupp(K) ≤ min
I∈H∗i

{
Î(I)− EI(I)

}
− Es(K) (32)

⇔ ∀I ′′ ∈ H∗i : ŝupp(K)+ Es(K) ≤ Î(I ′′)− EI(I ′′) (33)

⇒ ∀I ′′ ∈ H∗i : supp(K) ≤ I(I ′′) (34)

⇒ ∀I ′′ ∈ H∗i ∀J ⊇ K : supp(J) ≤ I(I ′′) (35)

⇒ ∀I ′′ ∈ H∗i ∀J ⊇ K : I(J) ≤ I(I ′′) (36)

K cannot be an element of H∗i because, in order to satisfy Eq. 32, the error bound Es

would have to be zero or negative which can never be the case. Since K �∈ H∗i , and
|H∗i | = n, we can choose I1, . . . , In to lie in H∗i . ApproxInter now prunes K and all
supersets J ⊇ K , but Eq. 36 implies that for any J ⊇ K : I(J) ≤ I(I1), . . . , I(In).
Therefore, (Inv1) is satisfied for Ri+1 = Ri ∪ (supersets of K) and the “new” Hi (Hi\
rejected hypotheses).
Step 2d
Let K be one of the attribute sets rejected in this step. The condition of rejection
implies Eq. 37; we omit the confidence parameter of EI for brevity. Let I ′′ be any
attribute set in H∗i . Equation 37 implies Eq. 38. Together with assumption (A1a), this
leads to Eq. 39.

Î(K) ≤ min
I∈H∗i

{
Î(I)− EI(I)

}
− EI(K) (37)

⇔ ∀I ′′ ∈ H∗i : Î(K)+ EI(K) ≤ Î(I ′′)− EI(I ′′) (38)

⇒ ∀I ′′ ∈ H∗i : I(K) ≤ I(I ′′) (39)

123

S. Jaroszewicz et al.

Note also that a rejected hypothesis K cannot be an element of H∗i because otherwise
the error bounds EI and Es would have to be zero or negative which can never be the
case. Since K �∈ H∗i , and |H∗i | = n, we can choose I1, . . . , In to lie in H∗i and Eq. 39
implies 40. Since furthermore Ri+1 = Ri ∪ {K }, Eq. 40 implies (Inv1) for Ri+1 and
the “new” Hi (Hi\ rejected hypotheses); below “∃∗” abbreviates “there exist distinct”.

∃∗ I1, . . . , In ∈ Hi \ {K } : ∀ j ∈ {1, . . . , n}I(I j) ≥ I(K) (40)

This implies that (Inv1) holds for Ri+1 and the current state of Hi after step 2d.
Step 2h
Ri+1 is not altered, Hi+1 is assigned a superset of Hi . (Inv1) requires the existence of n
elements in H . If it is satisfied for Ri+1 and Hi (which we have shown in the previous
paragraph), it also has to be satisfied for any superset Hi+1 ⊇ Hi . This proves that the
loop invariant (Inv1) is satisfied after each loop iteration.
Final step (immediately before Step 3)

The main loop terminates only when Ci = ∅, from Lemma 2 we know that Uimax = ∅.
Since Uimax = ∅, and G = H∗imax

we have 2Z \({∅} ∪ G) = Rimax ∪ (Himax \H∗imax
)

and it suffices to show that all attribute sets in G are better than all sets in Rimax and
in Himax \H∗imax

. We distinguish between the two possible termination criteria of the
main loop.
Case (a): early stopping in Step 2e
The stopping criterion, we are assured the Eq. 41 is satisfied. By assumption (A1a),
this implies Eq. 42.

∀I ∈ H∗i , I ′ ∈ Hi \ H∗i : Î(I)+ EI(I) > Î(I ′)− EI(I ′)− ε (41)

⇒ ∀I ∈ H∗i , I ′ ∈ Hi \ H∗i : I(I) > I(I ′)− ε (42)

From the invariant (Inv1) we know that

∀K ∈ Rimax∃∗ I1, . . . , In ∈ Himax : ∀ j ∈ {1, . . . , n}I(I j) ≥ I(K),

that is, for every rejected hypothesis there are n hypotheses in Hi which are at least as
good. Take any such S = {I ′1, . . . , I ′n}. For every I ′ ∈ S either I ′ ∈ H∗imax

or I ′ �∈ H∗imax
.

In the former case it follows immediately that I ′ ∈ G; that is, I ′ is better than the
rejected K and I ′ is in the returned set G. If I ′ �∈ H∗imax

, then Eq. 42 guarantees that
every hypothesis I ∈ H∗imax

is “almost as good as I ′”: ∀I ∈ H∗imax
: I(I) ≥ I(I ′)− ε.

This proves case (a) of Theorem 4.
Case (b): stopping in Step 2f
Assumption (A2) assures Eq. 43.

∀I ∈ H∗imax
∀I ′ ∈ (Himax \H∗imax

)I(I) ≥ I(I ′)− ε (43)

Analogously to case (a), we can argue that (Inv1) guarantees that

∀K ∈ Rimax∃∗ I1, . . . , In ∈ Himax : ∀ j ∈ {1, . . . , n}I(I j) ≥ I(K).

123

Scalable pattern mining

Identically to case (a), this implies Theorem 4.
We have shown that if the main loop terminates, the output will be correct. It is

easy to see that the loop will in fact terminate after finitely many iterations: Since Z
is finite, the candidate generation has to stop at some point i with Ci = ∅. When the
sample size becomes large enough, the loop will be exited in step 2f. This is guaran-
teed because a fraction δ

3 of the allowable probability of error is reserved for the error
bound of step 2f and the error bound (Table 1) vanishes for large sample sizes.
Risk of violation of (A1a), (A1b), and (A2)

We have proven Theorem 4 under assumptions (A1a), (A1b), and (A2). We will now
bound the risk of a violation of any of these assumptions during the execution of Ap-
proxInter. We first focus on the risk of a violation of (A1a). A violation of |I(I) −
Î(I)| ≤ EI can occur in any iteration of the main loop and for any I ∈ Hi (Eq.
44). We use the union bound to take all of these possibilities into account (Eq. 45).
Lemma 3 implies Eq. 46.

Pr [(A1a) is violated for some I in some iteration]

= Pr

⎡

⎣
imax∨

i=1

∨

I∈Hi

∣∣∣Î(I)− I(I)
∣∣∣ > EI (I)

⎤

⎦ (44)

≤
imax∑

i=1

∑

I∈Hi

Pr

[∣∣∣Î(I)− I(I)
∣∣∣ > EI

(
I,

δ

3|Hi |i(i + 1)

)]
(45)

≤
imax∑

i=1

∑

I∈Hi

δ

3|Hi |i(i + 1)
= δ

3

imax∑

i=1

1

i(i + 1)
(46)

The risk of violating assumption (A1b) can be bounded similarly in Eqs. 47 and 48.

Pr [(A1b) is violated for some I in some iteration]

= Pr

⎡

⎣
imax∨

i=1

∨

I∈Hi

∣∣ŝupp(I)− supp(I)
∣∣ > Es (I)

⎤

⎦ (47)

≤
imax∑

i=1

∑

I∈Hi

Pr

[∣∣ŝupp(I)− supp(I)
∣∣ > Es

(
I,

δ

3|Hi |i(i + 1)

)]
(48)

= δ

3

imax∑

i=1

1

i(i + 1)

We now address the risk of a violation of (A2). In step 2b, H∗i is assigned the hypoth-

eses with highest values of Î(I); i.e., for all I ∈ H∗i and I ′ �∈ H∗i : Î(I) ≥ Î(I ′). For
(A2) to be violated, there has to be an I ∈ H∗imax

and an I ′ ∈ Himax \H∗imax
such that

I(I) < I(I ′)−ε but Eq. 49 is satisfied in spite. This is only possible if there is at least
one hypothesis I ∈ Himax with |I(I)− Î(I)| > ε

2 . Intuitively, Eq. 49 assures that all
elements of Himax have been estimated to within a two-sided confidence interval of ε

2 ;

123

S. Jaroszewicz et al.

since all I ∈ H∗imax
appear at least as good as I ′ �∈ H∗imax

, I ′ can be at most ε better
than I .

Ed

⎛

⎝nB N
imax

, nD
imax

,
δ
(

1− 2
3

∑i
j=1

1
j (j+1)

)

∑
I∈Hi
|Dom(I)|

⎞

⎠ ≤ ε

2
(49)

In Eq. 50 we substitute Eq. 49 into this condition and expand the definition of inter-
estingness in Eq. 51.

Pr
[
∃I ∈ Himax : |Î(I)− I(I)| > ε

2

]

≤ Pr

⎡

⎣∃I ∈ Himax : |Î(I)− I(I)| > Ed

⎛

⎝nB N
imax

, nD
imax

,
δ
(

1− 2
3

∑imax
j=1

1
j (j+1)

)

∑
I∈Hi
|Dom(I)|

⎞

⎠

⎤

⎦

(50)

≤ Pr

⎡

⎣∃I ∈ Himax , i ∈ Dom(I) :
∣∣∣|P̂ B N

I (i)− P̂ D
I (i)| − |P B N

I (i)− P D
I (i)|

∣∣∣

> Ed

⎛

⎝nB N
imax

, nD
imax

,
δ
(

1− 2
3

∑imax
j=1

1
j (j+1)

)

∑
I∈Hi
|Dom(I)|

⎞

⎠

⎤

⎦ (51)

We now use the union bound in Eq. 52 and refer to Lemma 5 in Eq. 53.

≤
∑

I∈Himax ,

i∈Dom(I)

Pr

⎡

⎣
∣∣∣|P̂ B N

I (i)− P̂ D
I (i)| − |P B N

I (i)− P D
I (i)|

∣∣∣

> Ed

⎛

⎝nB N
imax

, nD
imax

,
δ
(

1− 2
3

∑imax
j=1

1
j (j+1)

)

∑
I∈Hi
|Dom(I)|

⎞

⎠

⎤

⎦ (52)

≤
∑

I∈Himax ,

i∈Dom(I)

δ
(

1− 2
3

∑imax
j=1

1
j (j+1)

)

∑
I∈Hi
|Dom(I)| = δ

⎛

⎝1− 2

3

imax∑

j=1

1

j (j + 1)

⎞

⎠ (53)

Notice that the use of the whole remaining portion of δ is justified in step 2f, since
we do not perform any statistical tests in this step. We merely compute the width of
the data independent confidence interval we could obtain if we decided to stop at this
stage.

We can now calculate the combined risk of any violation of (A1a), (A1b), or (A2)
using the union bound in Eq. 54; this risk can be bounded to at most δ in Eq. 55 (note
that

∑∞
i=1

1
i(i+1)

= 1).

123

Scalable pattern mining

Pr [(A1a), (A1b), or (A2) violated during execution]

≤ 2δ

3

imax∑

i=1

1

i(i + 1)
+ δ

(
1− 2

3

imax∑

i=1

1

i(i + 1)

)
(54)

= δ

imax∑

i=1

1

i(i + 1)
< δ (55)

This completes the proof of Theorem 4. ��
Together, Theorems 4 and 3 prove Theorem 2. ��

References

Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large dat-
abases. In: Proceedings of the ACM SIGMOD conference on management of data, Washington, DC,
pp 207–216

American Heart Association (2003) Risk factors: high blood cholesterol and other lipids. http://www.
americanheart.org/downloadable/heart/1045754065601FS13CHO3.pdf

Andreassen S, Jensen FV, Andersen SK, Falck B, Kjærulff U, Woldbye M, Sørensen AR, Rosenfalck A,
Jensen F (1989) MUNIN—an expert EMG assistant. In: John E. Desmedt (ed) Computer-aided elec-
tromyography and expert systems, Chap. 21. Elsevier Science Publishers, Amsterdam

Bayardo RJ, Agrawal R (1999) Mining the most interesting rules. In: Proceedings of the 5th ACM SIGKDD
international conference on knowledge discovery and data mining, August 1999, pp 145–154

Bøttcher SG, Dethlefsen C (2003) Deal: a package for learning bayesian networks. www.math.auc.dk/novo/
Publications/bottcher:dethlefsen:03.ps

Carvalho D, Freitas A, Ebecken N (2005) Evaluating the correlation between objective rule interesting-
ness measures and real human interest. In: 9th European conference on principles of data mining and
knowledge discovery (PKDD 2005), pp 453–461

Cooper GF, Yoo C (1999) Causal discovery from a mixture of experimental and observational data. In:
Proceedings of the fifteenth conference on uncertainty in artificial intelligence, UAI, pp 116–125

Dechter R (1999) Bucket elimination: a unifying framework for reasoning. Arti Intell 113(1–2):41–85
Dong G, Li J (1999) Efficient mining of emerging patterns: discovering trends and differences. In: Pro-

ceedings of the 5th International conference on knowledge discovery and data mining (KDD’99), San
Diego, CA, pp 43–52

DuMouchel W, Pregibon D (2001) Empirical bayes screening for multi-item associations. In: Proceedings
of the seventh international conference on knowledge discovery and data mining (KDD’01), pp 67–76

Eberhardt F, Glymour C, Scheines R (2005a) N-1 experiments suffice to determine the causal relations
among n variables. Technical report, Carnegie Mellon University

Eberhardt F, Glymour C, Scheines R (2005b) On the number of experiments sufficient and in the worst case
necessary to identify all causal relations among n variables. In: Proceedings of the 21st conference on
uncertainty in artificial intelligence, UAI, pp 178–184

Fayyad U, Piatetski-Shapiro G, Smyth P (1996) Knowledge discovery and data mining: towards a unifying
framework. In: Proceedings of the second ACM SIGKDD International conference on knowledge
discovery and data mining (KDD-1996), pp 82–88

Gray H (1977) Gray’s anatomy. Grammercy Books, New York
Harinarayan V, Rajaraman A, Ullman JD (1996) Implementing data cubes efficiently. In: Proceedings of

the ACM SIGMOD, pp 205–216
Heckerman D (1995) A tutorial on learning with Bayesian networks. Technical Report MSR-TR-95-06,

Microsoft Research, Redmond, WA
Hilderman R, Hamilton H (1999) Knowledge discovery and interestingness measures: a survey. Technical

Report CS 99-04, Department of Computer Science, University of Regina
Huang C, Darwiche A (1996) Inference in belief networks: a procedural guide. Int J Approx Reason

15(3):225–263

123

http://www.americanheart.org/downloadable/heart/1045754065601FS13CHO3.pdf
http://www.americanheart.org/downloadable/heart/1045754065601FS13CHO3.pdf
www.math.auc.dk/novo/Publications/bottcher:dethlefsen:03.ps
www.math.auc.dk/novo/Publications/bottcher:dethlefsen:03.ps

S. Jaroszewicz et al.

Jaroszewicz S, Scheffer T (2005) Fast discovery of unexpected patterns in data, relative to a Bayesian
network. In: 11th ACM SIGKDD international conference on knowledge discovery and data mining
(KDD-2005), Chicago, IL, August 2005, pp 118–127

Jaroszewicz S, Simovici DA (2001) A general measure of rule interestingness. In: 5th European conference
on principles of data mining and knowledge discovery (PKDD 2001), pp 253–265

Jaroszewicz S, Simovici DA (2002) Pruning redundant association rules using maximum entropy princi-
ple. In: Advances in knowledge discovery and data mining, 6th Pacific-Asia conference, PAKDD’02,
Taipei, Taiwan, May 2002, pp 135–147

Jaroszewicz S, Simovici DA (2004) Interestingness of frequent itemsets using bayesian networks as back-
ground knowledge. In: 10th ACM SIGKDD international conference on knowledge discovery and
data mining (KDD 2004), Seattle, WA, August 2004, pp 178–186

Jensen FV (2001) Bayesian networks and decision graphs. Springer Verlag, New York
Kleiter GD (1996) Propagating imprecise probabilities in bayesian networks. Artif Intell 88(1–2):143–161
Liu B, Hsu W, Chen S (1997) Using general impressions to analyze discovered classification rules. In: Pro-

ceedings of the third international conference on knowledge discovery and data mining (KDD-97).
AAAI Press, p 31

Liu B, Jsu W, Ma Y, Chen S (1999) Mining interesting knowledge using DM-II. In: Proceedings of the
fifth ACM SIGKDD international conference on knowledge discovery and data mining, NY, 15–18
August 1999, pp 430–434

Mannila H (2002) Local and global methods in data mining: basic techniques and open problems. In: ICALP
2002, 29th international colloquium on automata, languages, programming, Malaga, Spain, July 2002.
Springer-Verlag

Mannila H, Toivonen H (1997) Levelwise search and borders of theories in knowledge discovery. Data Min
Knowl Disc 1(3):241–258

Meganck S, Leray P, Manderick B (2006) Learning causal bayesian networks from observations and exper-
iments: a decision theoretic approach. In: Proceedings of the Third International Conference on Mod-
elling Decisions in Artificial Intelligence, MDAI, pp 58–69

Mitchell TM (1997) Machine learning. McGraw-Hill
Murphy K (1998) A brief introduction to graphical models and bayesian networks. http://www.ai.mit.edu/

murphyk/Bayes/bnintro.html
Murphy KP (2001) Active learning of causal bayes net structure. Technical report, Department of Computer

Science, UC Berkeley
Myllymäki P, Silander T, Tirri H, Uronen P (2002) B-course: a web-based tool for bayesian and causal data

analysis. Int J Artif Intelli Tools 11(3):369–387
Ohsaki M, Kitaguchi S, Okamoto K, Yokoi H, Yamaguchi T (2004) Evaluation of rule interestingness

measures with a clinical dataset on hepatitis. In: 8th European conference on principles of data mining
and knowledge discovery (PKDD 2004), pp 362–373

Padmanabhan B, Tuzhilin A (1998) Belief-driven method for discovering unexpected patterns. In: Pro-
ceedings of the 4th International Conference on Knowledge Discovery and Data Mining (KDD’98),
August 1998, pp 94–100

Padmanabhan B, Tuzhilin A (2000) Small is beautiful: discovering the minimal set of unexpected patterns.
In: Proceedinmgs of the 6th ACM SIGKDD international conference on knowledge discovery and
data mining (KDD’00), NY, August 2000, pp 54–63

Pearl J (1998) Probabilistic reasoning in intelligent systems. Morgan Kaufmann, Los Altos, CA
Pearl J (2000) Causality: models, reasoning, and inference. Cambridge University Press, Cambridge, UK
Shah D, Lakshmanan LVS, Ramamritham K, Sudarshan S (1999) Interestingness and pruning of mined

patterns. In: 1999 ACM SIGMOD workshop on research issues in data mining and knowledge dis-
covery

Silberschatz A, Tuzhilin A (1995) On subjective measures of interestingness in knowledge discovery. In:
Knowledge discovery and data mining, pp 275–281

Smith A, Elkan C (2004) A bayesian network framework for reject inference. In: Proceedings of the tenth
ACM SIGKDD international conference on knowledge discovery and data mining (KDD-2004), pp
286–295

Spirtes P, Richardson T (1996) A polynomial time algorithm for determining DAG equivalence in the
presence of latent variables and selection bias. In: Proceedings of the sixth international workshop on
artificial intelligence and statistics

123

http://www.ai.mit.edu/murphyk/Bayes/bnintro.html
http://www.ai.mit.edu/murphyk/Bayes/bnintro.html

Scalable pattern mining

Spirtes P, Meek C, Richardson T (1999) An algorithm for causal inference in the presence of latent variables
and selection bias. In: Glymour C, Cooper G (eds) Causation, computation and discovery, Chap. 6.
MIT/AAAI Press, pp 211–252

Suzuki E (1997) Autonomous discovery of reliable exception rules. In: Proceedings of the third international
conference on knowledge discovery and data mining (KDD-97). AAAI Press, p 259

Suzuki E, Kodratoff Y (1998) Discovery of surprising exception rules based on intensity of implication. In:
Proceedings of PKDD-98, Nantes, France, pp 10–18

Tan P-N, Kumar V, Srivastava J (2002) Selecting the right interestingness measure for association patterns.
In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and
data mining (KDD-2002), pp 32–41

The TETRAD project: causal models and statistical data. http://www.phil.cmu.edu/projects/tetrad
Tong S, Koller D (2001) Active learning for structure in bayesian networks. In: Proceedings of the 17th

international joint conference on artificial intelligence, IJCAI, pp 863–869
Van Allen T, Greiner R, Hooper P (2001) Bayesian error-bars for belief net inference. In: UAI ’01: proceed-

ings of the 17th conference in uncertainty in artificial intelligence, San Francisco, CA, USA, Morgan
Kaufmann Publishers Inc., pp 522–529

Zaki MJ (2000) Generating non-redundant association rules. In: Proceedings of the 6th ACM SIGKDD
international conference on knowledge discovery and data mining (KDD-00), NY, August 20–23 2000,
pp 34–43

123

http://www.phil.cmu.edu/projects/tetrad

	Scalable pattern mining with Bayesian networksas background knowledge
	Abstract
	1. Introduction
	2. Previous work
	2.1. Mining non-redundant rules
	2.2. Mining novel rules using background knowledge
	2.3. Learning bayesian networks from data

	3. Definitions and notation

	4. Framework for pattern discovery with background knowledge
	5. Exact algorithm for finding interesting attribute sets
	5.1. Computing a large number of marginal distributions from a Bayesian network
	5.2. Finding all attribute sets with given minimum interestingness

	6. Fast, approximate discovery of interesting attribute sets
	6.1. A sampling-based fast, approximate algorithm
	6.2. Implementation
	6.3. Statistical significance of discovered patterns

	7. Experimental results
	7.1. An illustrative example
	7.2. Borreliosis case study
	7.3. Performance evaluation: exact algorithm
	7.4. Performance evaluation: approximate algorithm

	8. Conclusions
	Acknowledgements
	Appendix A:. Proof of Theorem 2
	A.1. ApproxInter samples only polynomially many observations
	A.2. ApproxInter solves approximately most interesting attribute sets problem

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

