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Abstract

Clustering categorical databases presents special difficulties due to the absence of natural dissimi-
larities between objects. We present a solution that overcomes these difficulties that is based on an
information-theoretical definition of dissimilarities between partitions of finite sets (applied to partitions
of the set of objects to be clustered which are determined by categorical attributes) and makes use of ge-
netic algorithms for finding an acceptable approximative clustering. We tested our method on databases
for which the clustering of the rows is known in advance and we show that our proposed method finds the
natural clustering of the data with a good classification rate, better than that of the classical algorithm
k-means.
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1 Introduction

Clustering a set of objects with categorical attributes presents a special challenge since natural distances
(like Euclidean or Manhattan distances) between objects are not available. As we shall see, the Hamming
distance (that gives the number of disagreements between the values associated with two objects) is a
blunt instrument that generates clusterings of poor quality. Previous research in clustering categorical data
include [VJR99, SRK99, Hua97, HGV9T7].

The application of genetic algorithms to grouping problems was investigated in [Hol92, Mic99, Fal99,
Mit97, JB91, ECM97]. Our contribution, which results in better performing algorithms, is centered around
a measure of dissimilarity between partitions of a set of objects, introduced in [SCC00b, SCCO00a]. To
search for the best clustering of the data we use a genetic algorithm approach, where the chromosomes
represent possible clustering solutions and the fitness measure captures the dissimilarity between the partition
associated with a chromosome and the partitions determined by the attributes of the input database. The
proposed clustering process involves two phases:

1. Initially, we estimate the influence of each attribute on the decision to place an object in a specific
cluster. This estimation can be obtained from a domain expert or by using a training set of objects.

2. In the second phase, our algorithm searches for a clustering of the entire set of objects such that the
attributes of the objects influence the clustering to the extent obtained in the first phase.

To verify the quality of the clustering obtained through our techniques and to expedite the first phase,
we tested our algorithms on databases for which a classification of the set of objects is already known. For
a broad class of databases, which we characterize in the paper, our approach yields results that are superior
to clusterings obtained with classical clustering methods (such as k-means).

A clustering of the tuples of a table can be regarded as a partition of the set of tuples. Also, each set of
attributes X of a table T determines a partition 7% of the set of tuples such that two tuples belong to the
same block of the partition if they have equal projections on X. A dissimilarity between partitions of a set
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is defined using a generalization of conditional entropy. This dissimilarity helps us estimate the influence of
the attributes on the clustering.

We obtain good results on databases for which there is a strong relationship between attributes and the
“natural” clustering of the data, and we propose a method to determine if the given database is suitable or
not to be well-classified by our approach.

2 Tables and Generalized Entropy

The set of partitions of a set R is denoted by PART(R). For 7,0 € PART(R) we write 7 < o if every class
of ¢ is a union of classes of 7.

Let U be a set whose elements are referred to as attributes. We assume that for every element A of U
there is a set denoted by Dom(A) referred to as the domain of A such that |[Dom(A4)| > 2.

A table is a function T : R x H — |J Dg, where R, a finite set, is referred to as the set of rows of T, H
is a finite subset of U (called the heading of T'), D = {Dom(A) | A € H}, and T(r, A) € Dom(A) for every
re€e Rand A€ H.

The projection of the table T : R x H — |JDpu on the set of attributes L C H is the table T[L] :
R x L — |J Dy, given by T[L](r,A) = T(r,A) for every r € R and A € L. If r is a row of the table
T, then the set {T'(r,A) | A € H} is the content of the row r. This definition of a table allows for the
existence of multiple rows having the same content. The projection of the row r of the table T on L is the
set r[L] = {T(r,A) | A€ L}. For A€ H, Qr[A] ={T(r,A) | r € R} represents the content of the column
associated with the attribute A in the table T'.

The active domain of a set of attributes L in the table T is the set aDomy (L) = r[L]. The cardinality of
the active domain of L in the table T is denoted by a’, or, when there is no risk for confusion, just by ar..

Let T: R x H — |J Dy be a table with n attributes and H = A; A, ... A,. Every attribute set L C H
determines a partition 7% = {Dy,...,D,, } of the set R of rows in table T', where aDomy(L) = {vy, ... ,v4, }
and D; = {r € R | T(r,L) = v;} for 1 <i < ay. Clearly, if L = {A;,,...,4;}, then 7] = {r}y, | 1<
i<t J

We introduce now a generalization of the notion of entropy that plays an essential role in defining partition
dissimilarities.

Let R be the set of reals. The k-dimensional simplex is the set

SIMPLEX;_1 = {(p1,... ,pk) €R* | p; > 0and p; +--- 4+ pp = 1}.

A function f: R — R is concave on a set S C Rif f(azx+ (1 —a)y) > af(z)+(1—a)f(y) for a € [0,1] and
z,y € S. The function f is sub-additive (supra-additive) on S if f(z+y) < f(z)+f(y) (f(z+y) > f(z)+f(y))
for z,y € S.

A generator is a concave, subadditive function f : [0,1] — R such that f(0) = f(1) =0 and

f(0ar) +--- + f(0an) < 6(f(a1) +--- + f(an)) + f(6). 1)

for every (ay,...,a,) € SIMPLEX,, ; and 6 € [0,1].

The impurity measure induced by f is i(p1,...,px) = f(p1) + -+ + f(pk), for every (p1,...,pr) €
SIMPLEX;,_;.

It is easy to verify that such functions as fgini(p) = p — p? (the Gini index), fsq(p) = /P — D, fens(p) =
—plogp (the Shannon entropy), or fpeax (given by fpeax(p) = p for 0 < p < 0.5 and fpeax(p) = 1 — p for
0.5 < p < 1) are generators.

Definition 2.1 Let f be a generator, R be the set of rows of a table T, and let 7 = {By,..., B},
o ={C,...,Cpn} be two partitions of R.

The f-impurity of partition m (called also the f-entropy of m) is H/(7) =Y | f (l‘%‘l).
The specific f-impurity of a subset L of R relative to a partition 7 is the quantity

impﬁ(L):f(%) +___+f<%)'




The f-impurity of © relative to o is

 |C}] |B; N Cj|
Wl (o) = ZT”“’” |R|Z'C'Zf< T )

This quantity is also called the f-conditional entropy of w relative to o.

In other words, the conditional entropy H7 (7|o) is the average value of the specific impurity of the classes
of the partition ¢ relative to the partition 7.

We have o < 7, if and only if H¥(n|o) = 0.

If m,0 € PART(R), then

H (7) > H (w|o) > HI (7w A o) — H (o).
If w1, 72,0 € PART(R) are such that m; < g, then
H (m1]0) > H (ma)0).
Similarly, if 7,071,092 € PART(R) are such that oy < o9, then
H (n|or) < HY (w|os).
This allows us to conclude that if 71, 2,0 € PART(R) are such that m; < w2, then

j‘ff(ﬁl) Z j‘ff(WQ).

3 Clustering using Genetic Algorithms

Let T : R x H — |J Dy be a table. A training table for T is a table T : Rs x (HU{C}) — UD#u U D¢,
where C' is an additional attribute that specifies the class of each row of R;.
If R; C R, then T is referred to as a sample table.
The training table can be used to determine the influence of each attribute on the clustering. We adopt
as a measure of this influence the weight
W, . (A) = R (n};

Wg“) + f}{f(ﬂ'g 77:‘2"').

The weight w_r, (A) captures the dissimilarity between the partitions 77}‘ and wgs and thus, the influence of
c

attribute A on the classes of the “natural” clustering. Attributes with small values of (I (A) have a larger

impact on the “natural” clustering. This is justified by the fact that small values for W, (A) indicate that

each class of the partitions 71'}‘ and ﬂ'gs has a high degree of “purity” relative to the other partition.

Our goal is to find a partition 7 of the set of rows R, that has no more classes that a certain prescribed
limit &, such that the weights of the attributes w,(4) = H/(7%|7) + H/ (x|7Y) are as close as possible to
the estimated weights w, T, (A).

A k-chromosome on a table T : R x H — |J Dp is a function K : R — {1,...,k}. An element of the
set {1,...,k} is called a class identifier.

The partition 7% of the set of rows R determined by the k-chromosome K is 7% = {Bj,..., B}, where
Bj={reR| K(r)=j}for1<j<k.

The chromosomes represent possible partitions of the set of rows R into k classes. The population of
chromosomes consists of M k-chromosomes, where M is another input parameter.

The idea of genetic evolution is to modify the chromosomes in the current population by using mutation
and crossover as genetic operators such that in the new population we have chromosomes that will be
increasingly closer to the partition determined by the “natural” clustering of the data.

We use the classical single point crossover operator. Starting from two chromosomes, a random crossing
point (called a crossover site) is selected as a number [ between 1 and N (the number of rows in the table T').



The offsprings will contain the first 1 to [ positions from the first parent and the last [+ 1 to N positions from
the second parent and vice versa. Also, the classical mutation operator which involves changing randomly a
number of max{1,0.1N} positions in the chromosomes is used. The new value for each chromosome position
is chosen randomly from 1 to k.

The input parameters of the genetic algorithm are summarized in Figure 1.

M cardinality of the chromosomial population

N number of rows in the table T

n number of columns in the table T

k number of classes in the median partition

r percent of chromosomes that are used for crossover

m percent of chromosomes that undergo a mutation

Npez | maximum number of consecutive iterations without improvement
€ margin error for the fitness function

Figure 1: Genetic algorithm input parameters

Beside these parameters, the genetic algorithm is characterized also by the measure fitness(K), used in
assessing the fitness of chromosomes, that is discussed in the next section.

If in the chromosomial population there exists a chromosome with sufficiently large fitness, then the
algorithm stops and produces the natural clustering generated by this chromosome.

The initial population of chromosomes is filled randomly with values between 1 and k. For each chro-
mosome K we compute the value fitness(K). In each population exists a chromosome which has the largest
fitness(K) value. We denote this chromosome by Kyesy and its fitness by fitnesspest -

If in N4, consecutive iterations there is no improvement in the best fitness, then the algorithm will halt
and the resulting partition is the one corresponding to Kpest-

If the above exit condition does not hold, a new population is computed using the elite selection
(see [Mic99]). The fittest (1 — r — m)M chromosomes are copied directly in the new population, since
the fitness value indicates how close is the chromosome partition to the “natural” clustering of the data, and
we want to preserve the best partitions discovered so far. This selection ensures that we will never lose the
best chromosome from the old population.

Next, a number of max{2,rM} chromosomes from the old generation are selected probabilistically, to be
used in generating new offsprings by crossover. The selection method used is a roulette wheel strategy (or
fitness-proportionate selection) in which the chromosomes having greater values of their fitness have also a
greater chance of being selected. The newly generated offsprings are copied into the new population.

Finally, a number of max{1,mM} chromosomes are selected with uniform probability and subjected to
mutation. The mutation operator is not biased toward the fittest chromosomes and therefore the chromo-
somes that will suffer a mutation are selected with uniform probability.

The pseudocode of the algorithm is the following:

initialize the population of genetic algorithm
while (true)
compute the fitness of chromosomes in the population;
if (there has been no relative
improvement in best fitness value for N, iterations)
then
output the partition of Kpegt;
exit;
copy fittest (1 — r — m)M chromosomes to new population;
select probabilistically max{2,7M} chromosomes to cross over;
apply crossover operator to the selected chromosomes
and copy the offsprings to the new population;
select with uniform probability max{1, mM} chromosomes to mutate;



apply mutation operator to the selected chromosomes
and copy the modified chromosomes to the new population;
replace old population by the new one;

3.1 Genetic Algorithm Fitness Measure

The fitness of a chromosome K is based on the similarity between the weights w,r (4) of attributes A € H
and the estimated weights w, s (A), where 7% is the partition determined by each chromosome K. The
closer the weights w,r (A) are to W, (A), the closer the partition 7% is to the “natural clustering” of the
data. Thus, we seek to determine a partition 7 of the set of rows R of the table T such that:

wr(Ar) _ wr(Az) _ _ wr(Ayn) _ ZAeH'wW(A)

wyzs (A1) - wyza (A2) S w, . (An) " Yaen Wi s (4)

If we normalize the values w,(A) by replacing them with

wr(A)
wr(A) =
ZAeH wwgs (A)
the last series of equalities can be written as:
wa (A1) wa(A2) Wr(An)
= =...=——" = wy(A).
wwgs (A1) wﬂgs (A2) w,rgs (An) f;{

We denote by W/ () = 3 4 iy lwa(A) — w, s (A) X 3 gcm wr(A)|. The smaller the quantity W/ (), the
closer the partition 7 is to the “natural” clustering of the data. As fitness measure we use the measure:
max{W7(r%.)|1 <i < n}

WH(rk) ’

ﬁtness{,\, (K)

for every chromosome K, whose associated partition is w%.

3.2 Training for Clustering

Our clustering approach is suitable for databases that have a strong relationship between the attribute
partitions and the “natural” clustering of the data. To evaluate this relationship, we compute the weights
w7 (A) from the training table Ts. The value w e (A) consists of the sum of two quantities H/ (72 |75)

and HS (nl |xls). We will focus on the ﬁrst quantlty HS (zl: ) that represents the generalized conditional
entropy between the partltlons 7% and 5. We have 0< fJ-Cf (nf|my) < HF(n). The closer this value is
to 0, the closer the partition 7 is to the partition 77 . The closer thls value to fo (7&), the more distant
the partition 7* is from the partition 7rC Thus, when the expression H* ( ) — HS (Wg“ |7 %) is closer to
0, the importance of attribute A in the ﬁndlng of the natural clustering of the data is smaller. Another
interpretation of the value H/ (7}7) — H/ (nf: |7’y?) is the following: if attribute A has no relationship with
the natural classes, then knowing the class of the attribute A brings no information on the class of the
partition 7., and in this case H/ (757) — H/ (n 2 |7%¢) is close to 0.

Thus, given a training database, we compute for each attribute the values H7(7%*) — H/ (n3;
maxgen {H (nle) -3 (ale |nhe

HI(xZe)

to the proposed clustering algorithm. If the value indrs is very small, than there is no point in applying our
algorithm, since there is no relationship between the attribute partitions and the partition associated with
the “natural” clustering of the data.

1) and

)} This last quantity is an indicator of how suitable is the given database

inde =



4 Experimental results

We tested the proposed clustering algorithm on different categorical databases from the UCI Machine Learn-
ing Repository (see [BM98]). These databases have an attribute, denoted target attribute, whose values
represent the classes of the “natural” clustering of the rows. We extracted the sample database, from the
input database, by randomly choosing a certain number of rows, computed in terms of an input parameter
of our algorithm, which specifies the percent of the original database to be used for sampling. In all our
experiments, we used a sample database of 40% of the input database.

To test the proposed algorithm we first analyzed the datasets and then we continued with the search for
the “natural” clustering only on the suitable databases.

Using the sample database, we estimate the relationship between the partition determined by each at-
tribute and the partition determined by the target attribute. As it was explained in the previous section,
for each attribute A different than the target attribute, we compute the value 3/ (75*) — 3/ (r*|7%*) and
the value w,_r, (4) = H (5 |7Le) + K (n7 |7%). The larger the value Hf (n5) — Hf (w2 |7%¢), the stronger
the relationship between attribute A and the target attribute, and the more important is attribute A in the
search for the “natural” clustering.

attribute and its value H/ (7)) — H/ (v 32 |7y)
hair 0.258 | feathers | 0.224
eggs 0.264 | milk 0.281
airborne 0.112 | aquatic | 0.110
predator 0.03 | toothed | 0.203
backbone | 0.117 | breathes | 0.161
venomous | 0.031 | fins 0.185
legs 0.465 | tail 0.095
domestic | 0.016 | catsize 0.115

Figure 2: Estimated attribute influence for zoo.data

The first experiment involved the database zoo.data (from the UCI Repository), that contains the records
of 101 animals, characterized by 17 attributes and classified in 7 classes. We removed the name attribute,
since it has unique values for each row in the database, and it does not bring any useful information to the
clustering process.

attribute and its value H/ (75) — H/ (v |7 y)
date 0.296 | plant-stand 0.157 | precip 0.232
temp 0.309 | hail 0.040 | crop-hist 0.05
area-damaged | 0.264 | severity 0.117 | seed-tmt 0.018
germination 0.101 | plant-growth 0 leaves 0.271
leafspots-halo | 0 leafspots-marg | 0 leafspot-size 0
leaf-shread 0 leaf-malf 0 leaf-mild 0
stem 0 lodging 0.046 | stem-cankers 0.507
canker-lesion | 0.507 | fruiting-bodies | 0.196 | external decay | 0.158
mycelium 0.121 | int-discolor 0.136 | sclerotia 0.136
fruit-pods 0.209 | fruit-spots 0 seed 0
mold-growth | 0 seed-discolor 0 seed-size 0
shriveling 0 roots 0.212

Figure 3: Estimated attribute influence for soybean-small.data

The results of the analysis process for zoo.data are summarized in Figure 2. Note that attribute legs plays
the most important role in the classification of animals and attribute domestic has the weakest influence on



0.465

determining the class of an animal. For this dataset, the value ind,oo.data = = 0.59 reflects a strong

0.777
relationship between attribute partitions and the target partition.
attribute and its value H/ (75°) — H/ (v |7y)
handicapped infants 0.063 | water project cost sharing | 0.069
adoption of the budget 0.006 physician fee 0.299
resolution freeze
el-salvador aid 0.403 | religious groups in schools | 0.223
anti satellite test ban 0.093 | aid to nicaraguan contras | 0.120
mx-missile 0.165 | immigration 0.177
synfuels corporation cutback | 0.011 | education spending 0.054
superfund right to sue 0.221 | crime 0.105
export administration
duty-free exports 0.147 act south-africa 0.089

Figure 4: Estimated attribute influence for house-votes-84.data

Next, we analyzed soybean-small.data, documenting 4 soybean diseases, having 47 rows and 35 attributes,
including also the target attribute. The estimated attribute influences in the clustering process are sum-
marized in Figure 3. Attributes leafspots-halo, leafspots-marg, leafspot-size, leaf-shread, leaf-malf, leaf-mild,
stem, fruit-spots, seed, mold-growth, seed-discolor, seed-size, shriveling have only one value in the sample
database, so they play no role in the clustering process and in Figure 3 we see that their influence value is 0.
Attributes stem-cankers and canker-lesion play the most important role in determining the type of soybean
disease. The value indsoybean-small.data = % = 0.74 indicates also a strong connection between attributes
and the target attribute.

We also analyzed the database house-votes-84.data, documenting Congressional Voting Records in 1984
and having 435 votes on 16 issues. Each row is characterized by a classification label of democrat or
republican. The results of the analysis are summarized in Figure 4. Attribute el-salvador-aid has the
greatest importance in the democrat /republican classification and attribute adoption-of-the-budget-resolution
the smallest importance. The value indhouse-votes-84.data = g:j% = 0.83 reflects a strong connection between
attributes and the target attribute.

The second phase of our algorithm represents the actual search for the partition reflecting the “natural”
clustering of the data. In this phase, we applied the proposed clustering method based on a genetic algorithm
approach, to the input databases, from which we eliminated the target attribute. We denote by miarget the
partition associated with the target attribute as it appears in the input database.

For all the following experiments, the parameters of the genetic algorithm are as follows. The crossover
and mutation rate are set to 0.8 and 0.1 respectively. The number of consecutive iterations without improve-
ment is set to 500.

For each dataset, we executed 10 times our genetic algorithm using the Gini index and the Shannon
entropy, and the k-means clustering algorithm from the WEKA package, for each experiment using different
values for the random number generator. We searched for partitions 7 with |7| = k classes with k = 7 for
z00.data, k = 4 for soybean-small.data and k = 2 for house-votes-84.data.

The results for the z00.data with 100 chromosomes are presented in Figure 5, where we specify the average
classification rate obtained over all 10 runs, and characteristics of the best partition found, the number of
classes, the associated classification rate and the number of elements classified as in the target attribute.

The best classification rate obtained for the Gini index is 0.84, obtained for a partition that grouped
together 39 out of 41 mammals, all 20 birds, all 13 fishes, all 8 insects, 2 out of 4 amphibians and 3 out of
10 invertebrates. For Shannon entropy the best partition grouped together 39 out of 41 mammals, all 20
birds, all 13 fishes, all 10 invertebrates and 7 out of 8 insects, leading to a classification rate of 0.89. The
best clustering obtained by k-means classified correctly 85 out of 101 animals, leading to a classification rate
of 0.84.

The best result of k-means is similar to the best result obtained using the Gini index, and is worst than
the best result obtained using the Shannon entropy. Overall, in these experiments our approach found a more



Gini index as generator

Shannon entropy as generator

Average classification rate: 0.805

Average classification rate: 0.783

Best Partition Characteristics
Cardinalities: 40 231613441
Classification rate: 0.84
Elements classified as in Tgarget:

Best Partition Characteristics
Cardinalities: 39 20 20 11 9 2
Classification rate: 0.89
Elements classified as in mgarget:

39 out of 41 13 out of 13 39 out of 41 13 out of 13
20 out of 20 3 out of 10 20 out of 20 10 out of 10
8 out of 8 2 out of 4 7 out of 8 1 out of 5

k-means

Average classification rate: 0.754
Best Partition Characteristics
Cardinalities: 39 19 18 136 6
Classification rate: 0.84
Elements classified as in Tgarget:

39 out of 41 13 out of 13
19 out of 20 4 out of 10
6 out of 8 4 out of 4

Figure 5: Results for zoo.data

robust clustering. The average classification rate is 0.805 for the Gini index, 0.783 for the Shannon entropy,
and 0.754 for k-means. Thus, we can conclude that on average our algorithm finds a better clustering of the
input data.

We repeated the previous tests for soybean-small.data, with the number of chromosomes set to 50. The
results for Gini index, Shannon entropy and k-means are presented in Figure 6.

For the Gini index and the Shannon entropy algorithms, the classification rate was 0.97 (only one row
was misclassified) and was obtained in all 10 experiments with a single exception in the case of the Shannon
entropy. The best k-means clustering has a classification rate of 1. The average classification rate is 0.97 for
Gini index, 0.945 for Shannon entropy and 0.882 for k-means. Again, we can conclude that on average our
algorithm performed better than k-means.

Last, we repeated our experiments on house-votes-84.data, with the number of chromosomes set to 100.
The results are presented in Figure 7.

On this dataset the best classification rate obtained using the Gini index was 0.91, and resulted in a
partition which grouped together 160 out of the 168 republicans, and 237 out of 267 democrats, so only 38
rows were misclassified. The best partition for Shannon entropy as generator had a classification rate of
0.92, it grouped together 154 out of the 168 republicans and 250 out of 267 democrats, leading to only 31
rows misclassified. The best partition found by the k-means algorithm had a classification rate of 0.87, since
54 rows are misclassified. The average classification rate is 0.904 for Gini index, 0.911 for Shannon entropy
and 0.860 for k-means. We can conclude again that our algorithm performed better than k-means.

5 Conclusions

We proposed a clustering method based on a genetic algorithm, using information theoretical measures to
determine the quality of the resulting clustering. Our algorithm involves two phases. The first phase consists
in estimating the degree of influence of each attribute on the “natural” classification of the rows of the
database; the second phase consists in searching for a partition that provides the same degree of influence of
the attributes. We showed that the generalized entropy is a powerful tool in assessing the similarity between
two partitions, and that we obtained better results than the classical k-means algorithm for both Gini index
and Shannon entropy generators. Our proposed method produces best results for databases for which there



Gini index as generator

Shannon entropy as generator

Average classification rate: 0.97

Average classification rate: 0.945

Best Partition Characteristics
Cardinalities: 16 11 10 10
Classification rate: 0.97
Elements classified as in myarget:

Best Partition Characteristics
Cardinalities: 1711 10 9
Classification rate: 0.97
Elements classified as in Tyarget:

10 out of 10 10 out of 10 10 out of 10 10 out of 10
10 out of 10 16 out of 17 9 out of 10 17 out of 17
k-means

Average classification rate: 0.882
Best Partition Characteristics
Cardinalities: 17 10 10 10
Classification rate: 1
Elements classified as in mgarget:
10 out of 10 10 out of 10
10 out of 10 17 out of 17

Figure 6: Results for soybean-small.data

is a strong relationship between attributes and the “natural” clustering of the data. To determine this
relationship we proposed a measure based also on a generalized conditional entropy. This measure can be
used also as an indication of how useful is an attribute in the process of determining the class associated
with a row. Attributes that have small influence in the natural clustering can be ignored from the clustering
process, and thus we have a method of reducing the dimensionality of the data without diminishing the
quality of the clustering. In our experiments we did not ignore the weakest influence attributes, but this can
be done easily, by adding a minor modification to the proposed algorithm.
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