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Abstract: We introduce the notion of∧- and∨-pairs of functions on lattices as an abstraction of
the notions of metric and its related entropy for probability distributions. This approach allows us
to highlight the relationships that exist between various properties of metrics and entropies and
opens the possibility of extending these concepts to other algebraic structures.
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1 Introduction

The notion of entropy plays an important role in statisticalphysics and is a corner stone
of information theory. More recently, several applications of entropy in data mining [10,
12], study of biodiversity [4], circuit design [2, 6, 3, 8], etc. have been investigated.
A variety of axiomatizations of the notion of entropy have been developed, including
axiomatizations that have an algebraic flavor [7, 9, 11].

In this paper we undertake a study of the relationships that exists between entropy
and entropy-like concepts, their associated metrics and conditional entropies. The cho-
sen framework is lattice theory, where we show that these notions can be naturally
placed.

A lattice is defined as a partially ordered set(P,≤) such thatsup{x, y} andinf{x, y}

exist for allx, y ∈ P . It is well known that lattices can be regarded as algebras ofthe
form (P,∧,∨), where “∧” and “∨” are commutative, associative and idempotent oper-
ations linked by the absorption laws

x ∨ (x ∧ y) = x andx ∧ (x ∨ y) = x,

for x, y ∈ P . The partial order relation “≤” consists of those pairs(x, y) ∈ P 2 such
thatx = x ∧ y or, equivalently,y = x ∨ y.

If a least element of the partial ordered set(P,≤) exists we denoted it by0; the
largest element of(P,≤) is denoted by1. If a lattice (P,≤) has both a least and a
largest element we denote it as an algebra by(P,∧,∨, 0, 1), where we regard0 and1

as zero-ary operations.
A partition of a setS is a non-empty collection of non-empty subsets ofS, π =

{Bi | i ∈ I} such that
⋃

π = S andBi ∪Bj = ∅ wheni 6= j for i, j ∈ I. The setsBi

are theblocksof π. The set of partitions ofS is denoted byPART(S).



A partial order relation onPART(S) is defined byπ ≤ σ for π, σ ∈ PART(S) if
every block ofB is included in a block ofσ. This is easily seen to be equivalent to
requiring that each block ofσ is a union of blocks ofπ.

The partially ordered set(PART(S),≤) is actually a bounded lattice. The infimum
π∧π′ of two partitionsπ andπ′ is the partition that consists of non-empty intersections
of blocks ofπ andπ′. For a description of the supremumπ ∨ π′ of the partitionsπ, π′

see [5], p. 251. The least element of this lattice is the partition αS = {{s} | s ∈ S};
the largest is the partitionωS = {S}.

The partitionσ coversthe partitionπ if σ is obtained fromπ by fusing two blocks
of this partition. This is denoted byπ ≺ σ. We haveπ ≤ π′, if and only if there exists
a sequence of partitionsσ0, σ1, . . . , σr such thatπ = σ0 ≺ σ1 ≺ · · · ≺ σr = π′.

Let C be a subset of the setS and letπ = {Bi | i ∈ I} ∈ PART(S) be a partition.
Thetraceof π onC is the partitionπC = {Bi ∩ C | Bi ∩ C 6= ∅ andi ∈ I}.

We introduce and study properties of pairs of functions(d, η) defined on lattices
that formalize, in a general background, metrics and entropy-like functions defined on
sets of partitions, which we investigated previously [11, 10]. This study illuminates the
links that exist between various metric properties (non-negativity, definedness, trian-
gular inequality) and monotonicity or modularity properties of entropy or conditional
entropy.

2 Function Pairs on Lattices

Let L = (L,∨,∧, 0, 1) be a lattice that has the least element0 and the largest element
1.

Definition 1. Let d : L2 −→ R, η : L −→ R be two functions defined on the latticeL.
The pair(d, η) is a∧-pair onL if

d(x, y) = 2η(x ∧ y) − η(x) − η(y) (1)

for everyx, y ∈ L.
The pair(d, η) is a∨-pair if

d(x, y) = η(x) + η(y) − 2η(x ∨ y) (2)

for everyx, y ∈ L.
If (d, η) is both a∧-pair and a∨-pair, then we refer to(d, η) as adouble pair.

Note that for any∧-pair or∨-pair the functiond is symmetric.
If (d, η) is a∧-pair (a∨-pair) on the latticeL, then(d, k + η) is also an∧-pair (a

∨-pair) on the same lattice for any numberk ∈ R. This shows that the first component
does not determine the second component of an∧-pair or a∨-pair.



Also, observe that for an∧-pair or a∨-pair we haveη(x) = η(1)+d(x, 1) for every
x ∈ L; thus, the first component and the valueη(1) determines the second component
of an∧-pair or a∨-pair.

If η(1) = 0, then we say that the pair(d, η) is regular. In a regular∧-pair each
component determines the other.

The functionη : L −→ R is said to bestrictly anti-monotonicif u < v implies
η(u) > η(v).

The collection of pairs introduced here formalize in the realm of lattices the notions
of partition entropy (η) and metric generated by an entropy (d).

Theorem 2. Let (d, η) be an∧-pair or a ∨-pair on the latticeL = (L,∨,∧, 0, 1). We
have:

1. If x ≤ y, thend(x, y) = η(x) − η(y).

2. If x ≤ t ≤ y, thend(x, t) + d(t, y) = d(x, y).

3. If (d, η) is an∧-pair, then

d(x, x ∧ y) + d(x ∧ y, y) = d(x, y)

and

d(x, y) = 2 · d(x ∧ y, 1) − d(x, 1) − d(y, 1)

= d(x, 0) + d(y, 0) − 2 · d(x ∧ y, 0).

4. If (d, η) is a∨-pair, then

d(x, x ∨ y) + d(x ∨ y, y) = d(x, y)

and

d(x, y) = 2 · d(x ∨ y, 0) − d(x, 0) − d(y, 0)

= d(x, 1) + d(y, 1) − 2 · d(x ∨ y, 1).

Proof. The properties mentioned in the theorem are direct consequences of the defini-
tion of∧-pairs. ut

The purpose of the next two theorems is to show that defining properties of a metric
can be expressed in terms of properties of the functionη.

Theorem 3. Let (d, η) be a∧-pair or a ∨-pair on the latticeL = (L,∨,∧, 0, 1). We
haved(x, y) ≥ 0 for x, y ∈ L if and only ifη is an anti-monotonic function. Further-
more,d(x, y) = 0 impliesx = y if and only ifη is a strictly anti-monotonic function.



Proof. Suppose thatd(x, y) ≥ 0 for everyx, y ∈ L. By the first part of Theorem 2,
x ≤ y impliesη(x) ≥ η(y).

Conversely, suppose thatη is anti-monotonic. If(d, η) is a∧-pair, thenη(x ∧ y) ≥

η(x), η(y), so d(x, y) ≥ 0. If d is a∨-pair the same conclusion can be reached, by
observing thatη(x), η(y) ≥ η(x ∨ y).

Suppose thatd(x, y) = 0, where(d, η) is a∧-pair, whereη is an anti-monotonic
function. Then,2η(x ∧ y) − η(x) − η(y) = 0, soη(x) = η(y) = η(x ∧ y) because
η(x) ≤ η(x ∧ y) andη(y) ≤ η(x ∧ y). Suppose thatx 6= y. Then, at least one of the
strict inequalitiesx ∧ y < x or x ∧ y < y holds. Since this yields a contradiction it
follows thatx = y.

The argument for∨-pairs is similar. ut

Example 1.Let S be a finite set and let(PART(S),≤) be the partition lattice having
αS as its least element andωS as its largest element. Forβ ∈ R andβ > 1 define the
mappingηβ : PART(S) −→ R as:

ηβ(π) =
1

1 − 21−β

(

1 −
m
∑

i=1

(

|Bi|

|S|

)β
)

,

whereπ is the partitionπ = {B1, . . . , Bm}. Observe thatηβ(ωS) = 0 andηβ(π) > 0

for π ∈ PART(S) − {ωS}.
The functionηβ is strictly anti-monotonic. To prove this property it suffices to con-

sider two partitionsπ, π′ such thatπ ≺ π′. Without loss of generality we can assume
thatπ = {B1, . . . , Bn−2, Bn−1, Bn} andπ′ = {B1, . . . , Bn−2, Bn−1 ∪ Bn}.

Note that forx, y > 0 andβ > 1 we havexβ + yβ < (x + y)β. Therefore,

(

|Bn−1|

|S|

)β

+

(

|Bn|

|S|

)β

<

(

|Bn−1 ∪ Bn|

|S|

)β

,

which impliesηβ(π) < ηβ(π′), that is, the strict anti-monotonicity property. By Theo-
rem 3, the functiondβ of the∧-pair(d, ηβ) given bydβ(π, σ) = 2ηβ(π∧σ)−ηβ(π)−

ηβ(σ) for π, σ ∈ PART(S) is non-negative anddβ(π, σ) = 0 impliesπ = σ.

Example 2.Define the functionη1 : PART(S) −→ R by

η1(π) = −
m
∑

i=1

|Bi|

|S|
log

|Bi|

|S|
,

whereπ = {B1, . . . , Bm} and the logarithm is in base2.
This is the Shannon entropy of the probability distribution

(

|B1|
|S| . . . |Bm|

|S|

)

defined by the partitionπ ∈ PART(S). It is easy to verify thatlimβ→1 ηβ(π) = η1(π),
which implies thatη1 is anti-monotonic. An elementary argument can be used to verify



thatη1 is, in fact, strictly anti-monotonic, so the functiond1 : PART(S)2 −→ R given
by

d1(π, σ) =
m
∑

i=1

|Bi|

|S|
log

|Bi|

|S|
+

n
∑

j=1

|Cj |

|S|
log

|Cj |

|S|
−

m
∑

i=1

n
∑

j=1

|Bi ∩ Cj |

|S|
log

|Bi ∩ Cj |

|S|
,

whereπ = {B1, . . . , Bm} andσ = {C1, . . . , Cn} is non-negative andd1(π, σ) = 0

impliesπ = σ.

Theorem 4. The functiond of an∧-pair (d, η) satisfies the triangular axiom,d(x, y) ≤

d(x, z) + d(z, y) if and only if

η(z) + η(x ∧ y) ≤ η(x ∧ z) + η(y ∧ z) (3)

for x, y, z ∈ L.
If (d, η) is a∨-pair, thend satisfies the triangular inequality if and only if

η(z) + η(x ∨ y) ≥ η(x ∨ z) + η(y ∨ z) (4)

for x, y, z ∈ L.

Proof. Let d be a function that satisfies the triangular inequality. Thisimplies

2η(x ∧ y) − η(x) − η(y) ≤ 2η(x ∧ z) − η(x) − η(z) + 2η(y ∧ z) − η(y) − η(z),

which is easily seen to be equivalent to the Inequality (3). The reverse implication is as
straightforward as the direct implication.

A similar straightforward argument can be made for∨-pairs. ut

Theorem 5. Let (d, η) be an∧-pair on a latticeL = (L,∨,∧, 0, 1), whered is a
non-negative function. Then,d satisfies the triangular inequality if and only ifη is an
anti-monotonic and sub-modular, that is,η(x ∨ y) + η(x∧ y) ≤ η(x) + η(y) for every
x, y ∈ L.

If (d, η) be a∨-pair onL, whered is a non-negative function. The functiond satis-
fies the triangular inequality if and only ifη is an anti-monotonic and supra-modular,
that is,η(x ∨ y) + η(x ∧ y) ≥ η(x) + η(y) for everyx, y ∈ L.

Proof. Suppose thatd is a non-negative function of a∧-pair (d, η) that satisfies the
triangular inequality. Then, by Theorems 3 and 4,η is an anti-monotonic function, and
η(z) + η(x ∧ y) ≤ η(x ∧ z) + η(y ∧ z) for everyx, y, z ∈ L. By replacingz by
x ∨ y and using the absorption properties ofL we obtain the sub-modular inequality
η(x ∨ y) + η(x ∧ y) ≤ η(x) + η(y).

If d is a non-negative function of a∨-pair (d, η) that satisfies the triangular inequal-
ity, thenη is an anti-monotonic function andη(z) + η(x ∨ y) ≥ η(x ∨ z) + η(y ∨ z)



for x, y, z ∈ L. Substitutingx∧ y for z and applying the absorption properties we have
the supra-modular inequalityη(x ∨ y) + η(x ∧ y) ≥ η(x) + η(y).

Conversely, suppose thatη is an anti-monotonic, sub-modular function of a∧-pair
(d, η). The anti-monotonicity ofη implies the non-negativity ofd. We need to show that
the sub-modular inequality implies Inequality (3).

Observe that in every latticeL = (L,∨,∧, 0, 1) we have the sub-distributive in-
equality

(x ∨ y) ∧ z ≥ (x ∧ z) ∨ (y ∧ z), (5)

for everyx, y, z ∈ L. By substitutingx ∧ z for x andy ∧ z for y in the sub-modular
inequality we obtain:

η((x ∧ z) ∨ (y ∧ z)) + η(x ∧ y ∧ z) ≤ η(x ∧ z) + η(y ∧ z).

In view of Inequality (5) and of the anti-monotonicity ofη we can write

η((x ∨ y) ∧ z) ≤ η((x ∧ z) ∨ (y ∧ z)),

and, sincez ≥ (x ∨ y) ∧ z we have

η(z) ≤ η((x ∧ z) ∨ (y ∧ z)).

Sinceη(x ∧ y) ≤ η(x ∧ y ∧ z), we obtain the Inequality (3).
Let nowη be an anti-monotonic, supra-modular function of a∨-pair (d, η).
By replacingx ∨ z for x andy ∨ z for y in the supra-modular inequality we have:

η(x ∨ y ∨ z) + η((x ∨ z) ∧ (y ∨ z)) ≥ η(x ∨ z) + η(y ∨ z)

for everyx, y, z ∈ L. Starting from the inequality

(x ∧ y) ∨ z ≤ (x ∨ z) ∧ (y ∨ z), (6)

that holds in every lattice we obtain

η(x ∨ y ∨ z) + η((x ∧ y) ∨ z) ≥ η(x ∨ z) + η(y ∨ z)

for everyx, y, z ∈ L. Finally, sincez ≤ (x ∧ y) ∨ z andx ∨ y ∨ z ≥ x ∨ y we get the
Inequality 4. ut

We retrieve a well-known property of modular lattices (cf. [1]):

Corollary6. If there exists a double pair(d, η) on a latticeL = (L,∨,∧, 0, 1) such
that d is a metric, thenL is a metric lattice andd(x, y) = η(x ∧ y) − η(x ∨ y) for
x, y ∈ L.

Proof. Since(d, η) is a double pair andd is a metric the strictly anti-monotonic function
η satisfies both the sub-modular and the supra-modular inequalities and therefore we
haveη(x∧y)+ η(x∨y) = η(x)+ η(y), soη is a modular valuation onL. This implies

d(x, y) = η(x ∧ y) − 2η(x ∨ y),

for x, y ∈ L. ut



3 Conditional Function of a Pair

Starting from an∧-pair (d, η), define theconditional functionκ : L2 −→ R of the
pair (d, η) by κ(x, y) = η(x ∧ y) − η(y) for x, y ∈ L. It is immediate thatd(x, y) =

κ(x, y) + κ(y, x) and thatx ≥ y impliesκ(x, y) = 0 for x, y ∈ L. If the pair(d, η) is
regular, thenη(x) = κ(x, 1).

The conditional function of a pair(d, η) formalizes the notion of conditional entropy
corresponding to the entropyη.

Example 3.The conditional function of the∧-pair (dβ , ηβ) introduced in Example 1 is
given by

κβ(π, σ) = ηβ(π ∧ σ) − ηβ(σ)

=
1

1 − 21−β
·





n
∑

j=1

(

|Cj |

|S|

)β

−
m
∑

i=1

n
∑

j=1

(

|Bi ∪ Cj |

|S|

)β



 ,

whereπ = {B1, . . . , Bm} andσ = {C1, . . . , Cn} are two partitions ofPART(S).
This function can be written alternatively as

κβ(π, σ) =
1

1 − 21−β
·

n
∑

j=1

(

|Cj |

|S|

)β
(

1 −
m
∑

i=1

(

|Bi ∪ Cj |

|Cj |

)β
)

=
1

1 − 21−β
·

n
∑

j=1

(

|Cj |

|S|

)β

ηβ(πCj
),

whereπCj
is the trace ofπ on the blockCj of σ.

Theorem 7. Let (d, η) be an∧-pair on L. The non-negative functiond satisfies the
triangular inequality if and only if the conditional function κ is anti-monotonic in its
first argument and monotonic in its second argument.

Proof. Suppose thatd satisfies the triangular inequality. The anti-monotonicity of κ in
its first argument follows from the first part of Theorem 2. Lety, y1 ∈ L be such that
y ≤ y1. It is clear that(x ∧ y1) ∨ y ≤ y1, so

η(y1) ≤ η((x ∧ y1) ∨ y). (7)

By Theorem 5 we have the sub-modular inequalityη(x∨ y) + η(x∧ y) ≤ η(x) + η(y)

for everyx, y ∈ L. Taking into account Inequality 7 and replacingx by x ∧ y1 in the
sub-modular inequality yields

η(x ∧ y) + η(y1) ≤ η(x ∧ y) + η((x ∧ y1) ∨ y)

= η((x ∧ y1) ∧ y) + η((x ∧ y1) ∨ y)

≤ η(x ∧ y1) + η(y)

(by the sub-modular inequality).



The last equality impliesκ(x, y) ≤ κ(x, y1), that is, the monotonicity ofκ in its second
argument.

Conversely, suppose thatκ is anti-monotonic in its first argument and monotonic in
its second argument. Sinceκ(1) = 0 it follows thatκ(x, y) = η(x ∧ y) − η(y) ≥ 0.
Similarly, η(x ∧ y) − η(x) ≥ 0, sod(x, y) ≥ 0.

If y ≤ y1, we haveη(x ∧ y) − η(y) ≤ η(x ∧ y1) − η(y1). Choosingy1 = x ∨ y

we obtain the sub-modular inequality forη, which shows thatd satisfies the triangular
inequality by Theorem 5. ut

In a similar manner one can define the conditional function ofa∨-pair byκ(x, y) =

η(x) − η(x ∨ y). This time, we can prove the following statement:

Theorem 8. Let (d, η) be an∨-pair on L. The non-negative functiond satisfies the
triangular inequality if and only if the conditional function κ is monotonic in its first
argument and anti-monotonic in its second argument.

Proof. The proof is analogous to the argument of Theorem 7. ut

4 ∧-Pairs on Partition Lattices

For partition lattices of finite sets the∧-pairs play a special role because they allow
us to formalize the notion of entropy for a partition of a finite set and to introduce
simultaneously a notion of metric on the partition lattice that has many applications in
data mining and in other areas.

Lemma 9. LetS be a finite set,π ∈ PART(S) and letC, D be two disjoint subsets of
S. For β ≥ 1 we have:

(

|C ∪ D|

|S|

)β

ηβ(πC∪D) ≥

(

|C|

|S|

)β

ηβ(πC) +

(

|D|

|S|

)β

ηβ(πD),

whereηβ : PART(S) −→ R is the function introduced in Example 1.

Proof. Suppose thatπ = {B1, . . . , Bm} is a partition ofS. Define the numbers

wi =
|Bi ∩ (C ∪ D)|

|C ∪ D|

for 1 ≤ i ≤ m. It is clear that
∑m

i=1 wi = 1. Let

ai =
|Bi ∩ C|

|Bi ∩ (C ∪ D)|
,

for 1 ≤ i ≤. It is immediate that1 − ai = |Bi∩D|
|Bi∩(C∪D)| .



Applying Lemma 12 to the numbersw1, . . . , wm anda1, . . . , am we obtain:

1 −

(

n
∑

i=1

|Bi ∩ C|

|C ∪ D|

)β

−

(

n
∑

i=1

|Bi ∩ D|

|C ∪ D|

)β

≥
n
∑

i=1

(

|Bi ∩ (C ∪ D)|

|C ∪ D|

)β
(

1 −

(

|Bi ∩ C|

|Bi ∩ (C ∪ D)|

)β

−

(

|Bi ∩ D|

|Bi ∩ (C ∪ D)|

)β
)

.

Since
n
∑

i=1

|Bi ∩ C|

|C ∪ D|
=

|C|

|C ∪ D|
and

n
∑

i=1

|Bi ∩ D|

|C ∪ D|
=

|D|

|C ∪ D|
,

the last inequality can be written:

1 −

(

|C|

|C ∪ D|

)β

−

(

|D|

|C ∪ D|

)β

≥
n
∑

i=1

(

|Bi ∩ (C ∪ D)|

|C ∪ D|

)β

−
n
∑

i=1

(

|Bi ∩ C|

|C ∪ D|

)β

−
n
∑

i=1

(

|Bi ∩ D|

|C ∪ D|

)β

,

which is equivalent to

1 −
n
∑

i=1

(

|Bi ∩ (C ∪ D)|

|C ∪ D|

)β

≥

(

|C|

|C ∪ D|

)β
(

1 −
n
∑

i=1

(

|Bi ∩ C|

|C|

)β
)

+

(

|D|

|C ∪ D|

)β
(

1 −
n
∑

i=1

(

|Bi ∩ D|

|D|

)β
)

,

which yields the inequality of the lemma. ut

The next result shows thatκβ(π, σ), the conditional function of the∧-pair (dβ , ηβ)

is anti-monotonic with respect to its first argument and is monotonic with respect to its
second argument.

Theorem 10. Letπ, σ, σ′ ∈ PART(S), whereS is a finite set. Ifσ ≤ σ′, thenκβ(σ, π) ≥

κβ(σ′, π) andκβ(π, σ) ≤ κβ(π, σ′).

Proof. Sinceσ ≤ σ′ we haveπ ∧ σ ≤ π ∧ σ′, soηβ(π ∧ σ) ≥ ηβ(π ∧ σ′). Therefore,
κβ(σ, π) ≥ κβ(σ′, π).

For the monotonicity ofκβ in its second argument it suffices to prove the mono-
tonicity for partitionsσ, σ′ such thatσ ≺ σ′. Without restricting the generality we may
assume thatσ = {C1, . . . , Cn−2, Cn−1, Cn} andσ′ = {C1, . . . , Cn−2, Cn−1 ∪ Cn}.



Thus, we can write:

κβ(π, σ′)

=

n−2
∑

j=1

(

|Cj |

|S|

)β

ηβ(πCj
) +

(

|Cn−1 ∪ Cn|

|S|

)β

κβ(πCn−1∪Cn
)

≥

(

|Cj |

|S|

)β

ηβ(πCj
) +

(

|Cn−1|

|S|

)β

ηβ(πCn−1
) +

(

|Cn|

|S|

)β

ηβ(πCn
)

(by Lemma 9)

= κβ(π, σ).

ut

Corollary11. Let (d, ηβ) be the∧-pair on the lattice(PART(S),≤), whereηβ is
the function introduced in Example 1. Thendβ is a metric on the lattice of partitions
(PART(S),≤).

Proof. This statement follows from Theorems 3, 7, and 10. ut

The functionηβ is actually the entropyHβ that we axiomatized in [11] anddβ is
its associated distance.

5 Function Pairs on Graded Lattices

A graded poset (cf. [1]) is a triple(P,≤, g), where(P,≤) is a partially ordered set, and
g : P −→ Z is a function defined onP such that forx, y ∈ L we have

(i) x < y impliesg(x) < g(y) (strict monotonicity);

(ii) if y coversx, theng(y) = g(x) + 1.

If (P,≤) is a lattice, then we refer to(P,≤, g) as agraded lattice.
In a graded poset all maximal chains between the same elements have the same

finite length (the Jordan-Dedekind condition).
Let (P,≤) be a poset that has the least element0. The supremum of the lengths

of all chains that join0 to an elementx is the heightof x denoted byheight(x). If
(P,≤) has the largest element1, then the height of(P,≤) is defined asheight(1). A
poset(P,≤) satisfies the Jordan-Dedekind condition if and only if it is graded by the
functionheight.

It is known that a graded lattice of finite height is upper semimodular if height

satisfies the sub-modular inequality and is lower semimodular if height satisfies the
supra-modular inequality (cf. Theorem II.15, p. 40 of [1]).

The functionη : P −→ R defined byη(x) = height(P ) − height(x) satisfies
the supra-modular inequality and the associated functiond in the∧-pair (d, η) satisfies
the triangular inequality and, therefore, it is a pseudometric on the latticeL given by
d(x, y) = h(x) + h(y) − 2h(x ∧ y) for x, y ∈ L.



6 Conclusions

We present an lattice-theoretical framework for the study of entropy and entropy-like
functions and the metrics and conditional entropies that can be associated to these en-
tropies. This approach clarifies the dependencies that exist between properties of these
concepts and opens the possibility of extending this study to broader classes of lattices,
Boolean algebras, and partially ordered sets.
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A A Technical Result

Lemma 12. Letβ ≥ 1. If w1, . . . , wn aren positive numbers such that
∑n

k=1 wk = 1,
anda1, . . . , an ∈ [0, 1], then

1 −

(

n
∑

i=1

wiai

)β

−

(

n
∑

i=1

wi(1 − ai)

)β

≥
n
∑

i=1

wβ
i

(

1 − aβ
i − (1 − ai)

β
)

.



Proof. Let φ : [0, 1] −→ R be the function given by:φ(x) = xβ + (1 − x)β for
x ∈ [0, 1]. It is easy to see thatφ(0) = φ(1) = 1 and thatφ has a minimum for
x = 1/2, φ(1/2) = 1/21−β. Thus, we have:

xβ + (1 − x)β ≤ 1 (8)

for x ∈ [0, 1].
Inequality (8) implies

wi(1 − aβ
i − (1 − ai)

β) ≥ wβ
i (1 − aβ

i − (1 − ai)
β),

becausewi ∈ [0, 1] andβ ≥ 1.
By applying Jensen’s inequality for the convex functionf(x) = xβ we obtain the

inequalities:

(

n
∑

i=1

wiai

)β

≤
n
∑

i=1

wia
β
i ,

(

n
∑

i=1

wi(1 − ai)

)β

≤
n
∑

i=1

wi(1 − ai)
β .

Thus, we can write

1 −

(

n
∑

i=1

wiai

)β

−

(

n
∑

i=1

wi(1 − ai)

)β

=

n
∑

i=1

wi −

(

n
∑

i=1

wiai

)β

−

(

n
∑

i=1

wi(1 − ai)

)β

≥
n
∑

i=1

wi −
n
∑

i=1

wia
β
i −

n
∑

i=1

wi(1 − ai)
β

=

n
∑

i=1

wi

(

1 − aβ
i − (1 − ai)

β
)

≥
n
∑

i=1

wβ
i

(

1 − aβ
i − (1 − ai)

β
)

,

which is the desired inequality. ut


