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Abstract: We introduce the notion of- andv-pairs of functions on lattices as an abstraction of
the notions of metric and its related entropy for probapditstributions. This approach allows us
to highlight the relationships that exist between variotgpprties of metrics and entropies and
opens the possibility of extending these concepts to oflgebeaic structures.
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1 Introduction

The notion of entropy plays an important role in statistjgaysics and is a corner stone
of information theory. More recently, several applicaafientropy in data mining [10,
12], study of biodiversity [4], circuit design [2, 6, 3, 8]tce have been investigated.
A variety of axiomatizations of the notion of entropy haveebaleveloped, including
axiomatizations that have an algebraic flavor [7, 9, 11].

In this paper we undertake a study of the relationships tkiatsebetween entropy
and entropy-like concepts, their associated metrics anditonal entropies. The cho-
sen framework is lattice theory, where we show that thesemm®etcan be naturally
placed.

Alattice is defined as a partially ordered Bt <) such thatup{z, y} andinf{z, y}
exist for allz,y € P. Itis well known that lattices can be regarded as algebraiseof
form (P, A, V), where “A” and “v” are commutative, associative and idempotent oper-
ations linked by the absorption laws

zV(xAy)=xzandz A (zVy) ==z,

for 2,y € P. The partial order relation<” consists of those pairgr,y) € P? such
thatx = x A y or, equivalentlyy = x v y.

If a least element of the partial ordered $&} <) exists we denoted it bg; the
largest element of P, <) is denoted byl. If a lattice (P, <) has both a least and a
largest element we denote it as an algebrdBy\, v, 0, 1), where we regard and1
as zero-ary operations.

A partition of a setS is a non-empty collection of hon-empty subsetsSofr =
{B; | i € I} suchthat Jm = S andB; U B; = ) wheni # j for i, j € I. The setsB;
are theblocksof 7. The set of partitions aof is denoted byPART(S).



A partial order relation ofPART(S) is defined byr < o for 7,0 € PART(S) if
every block of B is included in a block ot. This is easily seen to be equivalent to
requiring that each block ef is a union of blocks ofr.

The partially ordered s€PART(S), <) is actually a bounded lattice. The infimum
7w Ax’ of two partitionsr andr’ is the partition that consists of non-empty intersections
of blocks ofr and#’. For a description of the supremumv =’ of the partitionsr, 7’
see [5], p. 251. The least element of this lattice is the pamtivs = {{s} | s € S};
the largest is the partitiong = {S}.

The partitiono coversthe partitionr if o is obtained fromr by fusing two blocks
of this partition. This is denoted by < . We haver < =/, if and only if there exists
a sequence of partitions), o1, ...,0,. suchthatr =0y <01 < -+- < o, = 7.

Let C be a subset of the sétand letr = {B; | i € I} € PART(S) be a partition.
Thetraceof = onC is the partitionre = {B;NC | B;NC # B andi € T}.

We introduce and study properties of pairs of functi¢tis;) defined on lattices
that formalize, in a general background, metrics and egttidee functions defined on
sets of partitions, which we investigated previously [1d]. This study illuminates the
links that exist between various metric properties (nogatigity, definedness, trian-
gular inequality) and monotonicity or modularity propestiof entropy or conditional
entropy.

2 Function Pairs on Lattices

Letl = (L,V,A,0,1) be a lattice that has the least elem@mind the largest element
1.

Definition1. Letd : L? — R, n : L — R be two functions defined on the latti€e
The pair(d, n) is aA-pair onL if

d(z,y) = 2n(z ANy) —n(x) —n(y) 1)

for everyx,y € L.
The pair(d, n) is aV-pair if

d(z,y) = n(z) +n(y) — 2n(z Vy) 2

for everyz,y € L.
If (d,n) is both aA-pair and av-pair, then we refer tdd, ) as adouble pair

Note that for any\-pair or v-pair the functiond is symmetric.

If (d,n) is an-pair (aV-pair) on the latticel, then(d, k + n) is also anA-pair (a
V-pair) on the same lattice for any numbiee R. This shows that the first component
does not determine the second component of -goair or av-pair.



Also, observe that for an-pair or av-pair we have)(z) = (1) +d(z, 1) for every
x € L; thus, the first component and the valyg) determines the second component
of an A-pair or av-pair.

If n(1) = 0, then we say that the paftl, ) is regular. In a regularA-pair each
component determines the other.

The functionn : L — R is said to bestrictly anti-monotonidf © < v implies

n(u) > n(v).
The collection of pairs introduced here formalize in thdireaf lattices the notions
of partition entropy ) and metric generated by an entrogy.(

Theorem 2. Let (d, ) be anA-pair or a VV-pair on the latticeC = (L, V,A,0,1). We
have:

1. Ifz <y, thend(z,y) = n(z) — n(y).
2. Ifx <t <y, thend(z,t) + d(t,y) = d(z,y).
3. If (d, n) is anA-pair, then
d(z,z Ny) +d(z ANy,y) =d(z,y)
and

d(z,y) =2-d(z Ny,1) —d(z,1) —d(y,1)
=d(x,0) +d(y,0) — 2 - d(x A y,0).

4. If (d,n) is aVv-pair, then
dz,z Vy)+dxVyy) =dzy)
and

d(z,y) =2-d(z Vy,0) — d(z,0) — d(y,0)
=d(z,1) +d(y,1) —2-d(zVy,l).

Proof. The properties mentioned in the theorem are direct conseggef the defini-
tion of A-pairs. a

The purpose of the next two theorems is to show that definioggaties of a metric
can be expressed in terms of properties of the funation

Theorem 3. Let (d,n) be aA-pair or a \VV-pair on the latticel = (L, V, A, 0,1). We
haved(z,y) > 0 for z,y € L if and only ifn is an anti-monotonic function. Further-
more,d(z,y) = 0 impliesz = y if and only ify is a strictly anti-monotonic function.



Proof. Suppose that(x,y) > 0 for everyz,y € L. By the first part of Theorem 2,
z <y impliesn(z) > n(y).

Conversely, suppose thais anti-monotonic. Ifd, ) is aA-pair, themy(z A y) >
n(x),n(y), sod(z,y) > 0. If d is aVv-pair the same conclusion can be reached, by
observing thag(z), n(y) > n(x Vy).

Suppose that(z,y) = 0, where(d, n) is a A-pair, wheren is an anti-monotonic
function. Then2n(x A y) — n(xz) — n(y) = 0, son(x) = n(y) = n(x A y) because
n(z) < n(x Ay)andn(y) < n(x A y). Suppose that # y. Then, at least one of the
strict inequalitiest A y < z orz Ay < y holds. Since this yields a contradiction it
follows thatx = y.

The argument fox/-pairs is similar. O

Example 1.Let S be a finite set and IPART(S), <) be the partition lattice having
ag as its least element ang; as its largest element. Fgre R andg > 1 define the
mappingns : PART(S) — Ras:

05 () = ﬁ (1 _Em: (Iéi”)ﬁ) |

i=1

wherer is the partitionm = { By, ..., B;,}. Observe thatz(ws) = 0 andng(n) > 0
for m € PART(S) — {ws}.

The functiormj is strictly anti-monotonic. To prove this property it suéf&cto con-
sider two partitionsr, 7’ such thatr < «’. Without loss of generality we can assume
thatr = {Bl7 ceey Bn_g, Bn—h Bn} andn’ = {Bl7 ceey Bn_g, B,_1U Bn}

Note that forz, y > 0 andg > 1 we havex® + y° < (z + y)®. Therefore,

(|Bn_1|)ﬁ+ (|Bn|)5 B (|Bn_1u3n|)ﬁ
S| 5] S| ’
which impliesns(m) < ng(n’), thatis, the strict anti-monotonicity property. By Theo-

rem 3, the functiomlg of the A-pair (d, ng) given bydg(m, o) = 2ng(m Ao) —ng(m) —
ng(o) for m,o € PART(S) is non-negative ands(m, o) = 0 impliest = o.

Example 2.Define the functiom); : PART(S) — R by

" |B; B,
i=1

wherer = {By, ..., By} and the logarithm is in base
This is the Shannon entropy of the probability distribution

|B1] [Bm|
[ST - 18]

defined by the partitiom € PART(SS). Itis easy to verify thalimg_.; nz(m) = 1 (7),
which implies thaty; is anti-monotonic. An elementary argument can be used iéyver




thatz, is, in fact, strictly anti-monotonic, so the functidn : PART(S)? — R given
by

—~|Bil, Bl 1G], 0] <=~x=1BinC|, |BinCy
d - 1 il 12l 1
() = 3 o OB g+ R B ] T e

i=1 j=1

wherer = {Bs,..., By} ando = {C4,...,C,} is non-negative and; (r,c) = 0
impliest = o.

Theorem 4. The functioni of anA-pair (d, ) satisfies the triangular axiond(z, y) <
d(z, z) + d(z,y) if and only if

nz)+n(xAy) <nlxzAz)+n(yAz) 3)

forxz,y,z € L.
If (d,n) is aV-pair, thend satisfies the triangular inequality if and only if

n(z)+n(xVvy) >nlzVvz)+nlyVz) (4)

forz,y,z € L.
Proof. Let d be a function that satisfies the triangular inequality. Timglies

2n(x Ay) —n(x) —n(y) < 2n(z A z) —n(z) —n(z) +2n(y A 2) —n(y) —n(z),

which is easily seen to be equivalent to the Inequality (B fleverse implication is as
straightforward as the direct implication.
A similar straightforward argument can be made\fgpairs. O

Theorem5. Let (d,n) be anA-pair on a latticel = (L,V,A,0,1), whered is a
non-negative function. Thed,satisfies the triangular inequality if and onlysjfis an
anti-monotonic and sub-modular, thatigz V y) + n(x A y) < n(x) + n(y) for every
z,y € L.

If (d,n) be av-pair onL, whered is a non-negative function. The functidrsatis-
fies the triangular inequality if and only if is an anti-monotonic and supra-modular,
thatis,n(xz VvV y) + n(x Ay) > n(z) + n(y) for everyx,y € L.

Proof. Suppose that is a non-negative function of a-pair (d,n) that satisfies the
triangular inequality. Then, by Theorems 3 and;4s an anti-monotonic function, and
n(z) + nlzx Ay) < nx Az)+n(y A z) for everyz,y,z € L. By replacingz by
x V y and using the absorption propertiesfofve obtain the sub-modular inequality
n(zVy) +nlAy) <n@)+ny).

If d is a non-negative function of\a-pair (d, n) that satisfies the triangular inequal-
ity, thenn is an anti-monotonic function angz) + n(z Vy) > n(z VvV z2) + n(y V 2)



for z,y, z € L. Substitutinge A y for z and applying the absorption properties we have
the supra-modular inequalityx V y) + n(x A y) > n(z) + n(y).

Conversely, suppose thatis an anti-monotonic, sub-modular function of\gpair
(d,n). The anti-monotonicity ofy implies the non-negativity of. We need to show that
the sub-modular inequality implies Inequality (3).

Observe that in every lattice = (L, V,A,0,1) we have the sub-distributive in-
equality

(xVyY)ANz>(xA2)V(yA=z), (5)

for everyz,y, z € L. By substitutinge A z for x andy A z for y in the sub-modular
inequality we obtain:

n(zAz)V(yAz)+n@AyAz) <nleAz)+nyAz).
In view of Inequality (5) and of the anti-monotonicity gfwe can write
n(@Vy)Az) <n((zAz)V(yAz)),
and, sincez > (xz V y) A z we have
n(z) <n((z Az2)V(yAz)).

Sincen(x Ay) < n(z Ay A z), we obtain the Inequality (3).
Let nown be an anti-monotonic, supra-modular function of-pair (d, n).
By replacingz V z for z andy V z for y in the supra-modular inequality we have:

n@vyVz)+n(zvz)A(yVz)=nzVsz)+nlyVe)
for everyzx, y, z € L. Starting from the inequality
(@Ay)Vz<(xVz)AyVz), (6)
that holds in every lattice we obtain
n@Vyvz)+nl@Ay)Vz)=nlxVvez)+nyVe)

for everyz,y,z € L. Finally, sincez < (z Ay)Vzandz VyVz >z Vywe getthe
Inequality 4. a
We retrieve a well-known property of modular lattices (df]){

Corollary 6. If there exists a double paifd, n) on a latticel = (L,V, A,0,1) such
that d is a metric, thenC is a metric lattice andi(x,y) = n(z A y) — n(x V y) for
x,y € L.

Proof. Since(d,n) is a double pair andis a metric the strictly anti-monotonic function
7 satisfies both the sub-modular and the supra-modular itidggeand therefore we
haven(x Ay) +n(xVy) = n(x)+n(y), son is a modular valuation ofi. This implies

d(z,y) = n(x Ay) —2n(z Vy),
forz,y € L. ad



3 Conditional Function of a Pair

Starting from anA-pair (d, i), define theconditional functions : L? — R of the
pair (d,n) by k(z,y) = n(x Ay) — n(y) for z,y € L. It is immediate thatl(z,y) =
k(z,y) + r(y, ) and thatr > y impliesk(z,y) = 0 for z,y € L. If the pair(d,n) is
regular, them(z) = k(z, 1).

The conditional function of a paitl, ) formalizes the notion of conditional entropy
corresponding to the entropy

Example 3.The conditional function of the-pair (dg, ) introduced in Example 1 is
given by

rp(m,0) = np(m ANo) —n3(0)

e (S () S ())

=1

wherer = {Bj,..., B} ando = {C1,...,C,} are two partitions oPART(S).
This function can be written alternatively as

Ro(m,0) = 1515 Z(||65:||> ( Z(%ﬂ

=1

1_21 o1 5 Z<||(:;||> ns(mc,),

wherenc; is the trace ofr on the block”; of .

Theorem7. Let (d,n) be anA-pair on L. The non-negative functiod satisfies the
triangular inequality if and only if the conditional funoth « is anti-monotonic in its
first argument and monotonic in its second argument.

Proof. Suppose thad satisfies the triangular inequality. The anti-monotowioit x in
its first argument follows from the first part of Theorem 2. ey, € L be such that
y <yi.ltisclearthatz Ay1) Vy < y1, SO

n(y1) < n((x Ayi) Vy). (7)

By Theorem 5 we have the sub-modular inequality vV y) + n(x A y) < n(z) +n(y)
for everyx,y € L. Taking into account Inequality 7 and replacindpy = A y; in the
sub-modular inequality yields

n(@Ay) +ny1) <nlzAy) +n(z Ay) Vy)

n((z Ay) Ay) +n((z Ayr) Vy)
< n(z Ay1) +n(y)

(by the sub-modular inequality)



The last equality implies(z, y) < x(z,y1), thatis, the monotonicity of in its second
argument.

Conversely, suppose thatis anti-monotonic in its first argument and monotonic in
its second argument. Sinegl) = 0 it follows thatx(z,y) = n(z A y) — n(y) > 0.
Similarly, n(z A y) — n(z) > 0, sod(z,y) > 0.

If y < y1, we haven(z Ay) —n(y) < n(z A y1) —n(y1). Choosingy; = z vy
we obtain the sub-modular inequality fpr which shows that! satisfies the triangular
inequality by Theorem 5. O

In a similar manner one can define the conditional functicam\wipair by (z,y) =
n(z) — n(x Vv y). This time, we can prove the following statement:

Theorem8. Let (d,n) be anV-pair on £. The non-negative functiod satisfies the
triangular inequality if and only if the conditional funcih « is monotonic in its first
argument and anti-monotonic in its second argument.

Proof. The proof is analogous to the argument of Theorem 7. O

4 A-Pairs on Partition Lattices

For partition lattices of finite sets the-pairs play a special role because they allow
us to formalize the notion of entropy for a partition of a findget and to introduce
simultaneously a notion of metric on the partition lattibatthas many applications in
data mining and in other areas.

Lemma9. Let S be afinite setr € PART(S) and letC, D be two disjoint subsets of
S. For 3 > 1 we have:

<|C|L;|D|>ﬁ ng(rcup) > (%)ﬁ ns(me) + (%)ﬂ”ﬁ(m)’

whereng : PART(S) — R is the function introduced in Example 1.

Proof. Suppose that = {Bs,..., By, } is a partition ofS. Define the numbers

. _1BincuD)
‘" JCcuD|

for1 <i <m.lItiscleartha_ ", w; = 1. Let

. __IBnc
" |B;n(CuD)|’

for 1 <i <. ltis immediate thal — a; = %.



Applying Lemma 12 to the numbets, . .., w,, anday, ..., a,, we obtain:
" |B;nC]| |B; N D]

1—
<, |C'UD| Z|CUD|

Since
B;nCl _ |C] |B; N D| |D|
d =
Z; icuD] Jjcup " Z iCuD| _[CuD|

the last inequality can be written:

- (|O|S|D|>ﬁ - <|O|S|D|)ﬁ

Bin(CuD)\’ & /1Binc]\’ < (/|B;nD|\’
> - - 7 — _
Z( |C U D| ; |C U D| Z |[CcuD| /) ’

i=1

which is equivalent to

s <|Bi |mc<5;|p>|>ﬂ . <|c|5|p|)ﬂ (1 _

=1

Ingb

> (%5
() (52

which yields the inequality of the lemma. a
The next result shows thai(, o), the conditional function of the-pair (ds, 77)

is anti-monotonic with respect to its first argument and is\otonic with respect to its
second argument.

v

(2

Theorem 10. Letr, 0,0’ € PART(S), whereS'is afinite set. It < ¢’, thenkg(o, ) >
kg(o’,m)andkg(m, o) < kg(m, o).

Proof. Sinces < ¢’ we haver Ao < 7 Ad’, song(m A o) > ng(m A o’). Therefore,
kg(o,m) > kg(o’, ).

For the monotonicity of s in its second argument it suffices to prove the mono-
tonicity for partitionso, o’ such that < ¢’. Without restricting the generality we may
assume that = {C4,...,Cy—2,Cp—1,Cp} ando’ = {C1,...,Cph_2,Cp_1 UCy}.



Thus, we can write:

kg(m, o)

n—2 8
1G] |Crm1 UGyl
(m ptrey+ (8O
j=1

J

(by Lemma 9)

= kg(m, o).
O

Corollary11. Let (d,ng) be theA-pair on the lattice(PART(S), <), whereng is
the function introduced in Example 1. Thégp is a metric on the lattice of partitions
(PART(S), <).

Proof. This statement follows from Theorems 3, 7, and 10. |
The functionns is actually the entropg{z that we axiomatized in [11] and; is
its associated distance.

5 Function Pairs on Graded Lattices

A graded poset (cf. [1]) is a tripleP, <, g), where(P, <) is a partially ordered set, and
g : P — Zis afunction defined o® such that forr, y € L we have

() = < yimpliesg(z) < g(y) (strict monotonicity);
(i) if y coverse, theng(y) = g(x) + 1.

If (P, <) is alattice, then we refer tQP, <, ¢) as agraded lattice

In a graded poset all maximal chains between the same elerhané the same
finite length (the Jordan-Dedekind condition).

Let (P, <) be a poset that has the least elem@rthe supremum of the lengths
of all chains that join0 to an element: is the heightof = denoted byheight(x). If
(P, <) has the largest elemenf then the height of P, <) is defined aseight(1). A
poset( P, <) satisfies the Jordan-Dedekind condition if and only if it iaded by the
functionheight.

It is known that a graded lattice of finite height is upper seodular if height
satisfies the sub-modular inequality and is lower semimadifilheight satisfies the
supra-modular inequality (cf. Theorem I1.15, p. 40 of [1]).

The functiony : P — R defined byn(z) = height(P) — height(x) satisfies
the supra-modular inequality and the associated funetiorthe A-pair (d, ) satisfies
the triangular inequality and, therefore, it is a pseudoimen the latticeL, given by
d(z,y) = h(z) + h(y) — 2h(z Ay) forx,y € L.



6 Conclusions

We present an lattice-theoretical framework for the stutdgraropy and entropy-like
functions and the metrics and conditional entropies thatbmassociated to these en-
tropies. This approach clarifies the dependencies thatleiaeen properties of these
concepts and opens the possibility of extending this stadiydader classes of lattices,
Boolean algebras, and partially ordered sets.
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A A Technical Result

Lemmal2. Let3 > 1.If wy,...,w, aren positive numbers such that;_, w, =1,
andas,...,a, € [0,1], then

n p n B n
1= (Z wiai) - (Z wi(l - ai)) > wa (1 —ad? - (1- ai)f’) :
=1 i=1 i=1



Proof. Let ¢ : [0,1] — R be the function given bys(z) = 2% + (1 — z)? for
x € [0,1]. It is easy to see that(0) = ¢(1) = 1 and thaty has a minimum for
r=1/2,¢(1/2) = 1/2'~P. Thus, we have:

P +1-2)f <1 (8)

for x € [0, 1].
Inequality (8) implies

wi(l—a? —(1—a)?) >w’(1-d’ — (1 —a)?),

i i

becauseu; € [0,1] andg > 1.
By applying Jensen’s inequality for the convex functifix) = 2° we obtain the
inequalities:

n ﬁ n
<Z wi%) < waf,
=1 =1
n B n
(Z wi(l — CLJ) S sz(l — ai)ﬁ.
=1 =1

Thus, we can write

n 8 n A
1— (Z wicu;) — (Z wi(1— ai))
n - n 1_5 n A
= Zwl — <Z wiai> — <Z wz(]- - al))
i=1 i=1 i=1
> Zwl - Zwiaf - Zwi(l - ai)ﬁ
i=1 i=1 =1
= Zm (1 —al — (1 —ai)ﬁ)

> Zw? (1 —af - (l—ai)ﬂ),
i=1

which is the desired inequality. a



