
Data Mining of Medical Data: Opportunities and

Challenges in Mining Association Rules

Dan A. Simovici

University of Massachusetts Boston

The beginning clinical clerk, the house officer and
the practicing physician are all confronted with con-
ditions that are frustrating in every phase of medical
action. ... To deal effectively with these frustra-
tions it will be necessary to develop a more orga-
nized approach to the medical record, a more ratio-
nal acceptance and use of the paramedical personnel
and a more positive attitude about the computer in
medicine.
L. L. Weed: Medical records that guide and teach,

New England Journal of Medicine, 1968

Abstract

Association rules represent knowledge embedded in data sets as proba-
bilistic implications and are intimately related to computation of frequent
item sets. We survey applications of frequent item sets and association
rules in medical practice in such areas as nosocomial infections, adverse
drug reactions, and the interplay between co-morbidities and the lack of
transitivity of association rules.

To make this survey as self-content as possible we present in an ap-
pendix the Fisher exact test and the χ

2-test, enumeration of subsets, fre-
quent item sets and the Apriori algorithm, and combinatorial properties
of association rules.

Keywords: item sets, transactions, support, confidence, Apriori algorithm,
nosocomial infections, adverse drug reactions

1 Introduction

Data Mining (DM) is the process that discovers new patterns embedded in large
data sets. DM makes use of this information to build predictive models. DM is
grounded in artificial intelligence, databases, and statistics.

The health care industry requires the use of DM because of it generates
huge and complex volumes of data. Thus, un-automated analysis has become
both expensive and impractical. The existence of insurance fraud and abuse
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impels insurers to use DM. DM can generate information that can be useful
to all stakeholders in health care, including patients by identifying effective
treatments and best practices.

DM came into prominence in mid 90s because computers made possible the
fast construction of huge data warehouses, containing potentially large amounts
of information. The modern day statistical techniques and the advances in
probability theory offered the necessary analytical tools.

The history of data and its contents is much older. Huge collections of data
were built over hundreds and thousands of years by various forms of government
and scientists. A famous case is the vast collection of very accurate planetary
observations of the Danish astronomer Tycho Brahe (Dec. 14, 1546, Knutstorp
Castle - Oct. 24, 1601, Prague). The knowledge embedded in this data - the
laws of the movements of the planets were discovered by his successor Johannes
Kepler (Dec. 27, 1571, Weil der Stadt -Nov. 15, 1630, Regensburg) and were
confirmed by the work of Newton.

The main DM activities consist of description and visualization, seeking
associations between data elements, grouping data into sets of similar records
(a process known as clustering), data classification, prediction based on trends
that can be extracted from data, etc.

DM applications in health care are numerous and already well established:
evaluating treatment effectiveness, health care management, the analysis of re-
lationships between patients and providers of care, pharmacovigilance, fraud
and abuse detection. Despite the obvious benefits, there exist many limitations
and difficulties in adapting DM analysis techniques.

DM can be limited by the accessibility to data that often is distributed in
different settings (clinical, administrative, insurers, labs, etc.). Data may be
incomplete, corrupted, noisy, or inconsistent. There exist ethical, legal and
social issues (data ownership, privacy concerns).

Many patterns find in DM may be the result of random fluctuations, so
many such patterns may be useless, which requires a serious statistical analysis.

DM of medical data requires specific medical knowledge as well as knowledge
of DM technology and, last but not least, DM requires institutional commitment
and funding.

In this survey we will focus on exploring data in the pursuit of association
rules, a concept that formalizes probabilistic dependencies between parts of
data. We begin by introducing the notion of table, the main data structure
involved in this process. Then, we introduce formally association rules and
their main parameters, support and confidence.

We discuss the use of AR in the study of nosocomial infections, adverse drug
reactions and issues related to the lack of transitivity of association rules which
are relevant for medical applications. To avoid interruptions in the flow of ideas
of the paper we relegated the technicalities in an appendix.
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2 Tables and relational databases

A table is an aggregate that consists of

• a table name;

• a heading that contains a set A1, . . . , An of symbols called attributes;

• a content that is a multiset of rows: we could have multiple copies of the
same row;

• each attribute A has a domain Dom(Ai), a set that contains at least two
elements;

• a row is a sequence of values (a1, . . . , an), such that ai is a member of
Dom(Ai) for 1 ≤ i ≤ n.

Graphically, a table looks exactly as we would expect (see Figure 1).

· · ·

· · ·A1 A2 An−1 An

T

�

�

�

�t a1 a2 an−1 an

���
table name

heading consisting
of attributes
A1, . . . , An

extent of table
consisting of tuples

�

]

�

Figure 1: A Table and Its Constituents

Example 2.1 The heading of the table shown in Figure 2 consists of 5 at-
tributes. The domains of attributes shape and color are

Dom(shape) = {cube, sphere, pyramid},

Dom(color = {red, blue}

have no natural ordering. Such domains are said to be categorial.
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OBJECTS
shape length width height color

1 cube 5 5 5 red
2 sphere 3 3 3 blue
3 pyramid 5 6 4 blue
4 cube 2 2 2 red
5 sphere 3 3 3 blue

Figure 2: Table containing categorial and numerical attributes

The domains of the remaining attributes, length, width, height are numerical.

A special role is played by binary tables due to their capabilities for repre-
senting collections of sets. In such tables the domain of every attribute is the
set {0, 1} and every tuple is a sequence of 0s and 1s.

Let S = {s1, . . . , sn} be a set and let T be a subset of S. This subset can be
represented by a sequence (t1, . . . , tn), where

ti =

{

1 if tiis a member of T,

0 otherwise.

Binary tables were used in analyzing purchase patterns of supermarket cus-
tomers, documents containing words, etc. In the initial literature dealing with
frequent item sets and association rules [4, 21, 5] the goal of this analysis was
to determine what items people buy together, regardless of who they are.

Example 2.2 A fictional convenience store sells milk,bread,butter,beer, and di-

apers. The purchase records of seven customers are listed below

Customer Content

basket

1 {milk, bread, butter, diapers}

2 {bread, beer, diapers}

3 {milk, bread, butter, beer}

4 {bread, butter, diapers}

5 {milk, butter, beer, diapers}

6 {milk, butter}

7 {butter, beer}

and represented in the following binary table:
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milk bread butter beer diapers

t1 1 1 1 0 1
t2 0 1 0 1 1
t3 1 1 1 1 0
t4 0 1 1 0 1
t5 1 0 1 1 1
t6 1 0 1 0 0
t7 0 0 1 1 0

This table indicates, for example, that the 4th customer bought milk, bread,
beer, and diapers.

The tabular representation of collections of sets facilitates the introduction
of the notion of support of an item set. If X is an item set, the support of
X is the number of tuples that have 1s in all positions that correspond to the
attributes of X . Equivalently, this is the number of baskets that contain X .

Example 2.3 For the transaction set defined in Example 2.2 we have

supp(milk) = 4 supp(bread) = 4
supp(milk bread) = 2 supp(milk bread butter) = 2.

Note that the larger the attribute set, the smaller the support: X ⊆ Y

implies supp(Y ) ≤ supp(X). The number supp(X)
N

estimates the probability that
a randomly chosen transaction t contains all elements of X , where N is the total
number of transactions.

Frequently, the support of an item set is expressed fractionally (as supp(X)
N

or in percentages. For example, the relative value of the support of the set milk

bread is 2
7 or 28.57%.

3 Association Rules as Knowledge Embedded in

Data

An association rule (AR) is a pair (X, Y ) of sets of attributes, denoted by
X → Y . X is the antecedent and Y is the consequent of the rule X → Y .

The simplest parameters associated to an AR are its support and confidence.
The support of a rule X → Y is the number of records that contain all items

of X .
supp(X → Y ) = supp(X).

The confidence of X −→ Y is the number

conf(X → Y ) =
supp(XY )

supp(X)
.
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Clearly, the confidence of X −→ Y is an estimation of the probability that a
record that contains the items of X , chosen at random, will contain the items
of Y .

Example 3.1 For the table

A B C D R
t1 1 1 0 0 0
t2 1 0 1 0 0
t3 0 0 0 1 0
t4 1 1 1 0 0
t5 1 0 0 0 1
t6 1 0 0 0 1
t7 1 1 0 0 0

and the association rule AB → C, support equals 3 and confidence is

conf(AB → C) =
supp(ABC)

supp(AB)
=

1

3
= 0.33

An AR X → Y holds with support µ and confidence c if supp(XY ) ≥ µ and
conf(X → Y ) ≥ c.

Association rules of the form X → Y with Y ⊆ X are called vacuous because

conf(X −→ Y ) =
supp(XY )

supp(X)
= 1

regardless of the actual data set; such rules are not informative and they are
also referred to as trivial rules.

Despite its simple formulation, finding association rules with a prescribed
support and confidence can offer formidable computational challenges.

For data sets having n attributes there are 3n−2n possible association rules
(see Section D). Even for modest values of n the number of possible nontrivial
association rules is very large and the number of collection of possible rules is
immense. For n = 20 there exist more that one billion non-trivial AR and more
that 10300000000 sets of AR (for comparison, there are 1080 atoms in the known
universe!). Thus, a considerable effort in DM has been invested in designing
efficient algorithms for computing association rules embedded in data sets.

To find an AR X → Y with support µ and confidence c we need to:

• find an item set U that is at least µ-frequent, that is, supp(U) ≥ µ;

• find a subset V of U such that supp(V ) ≤ supp(U)
c

.

The item sets U and V define the AR X → Y , where X = U − V and Y = V ,
having support at least equal to µ and confidence ar least equal to c. Thus,
computing association rule amounts to computing frequent item sets.

The most common algorithm is the Apriori algorithm by Agrawal, Imielinski
and Swami, which consists of the following main steps (see Section C):
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• detect all items that that have a support at least equal to µ;

• for successive numbers i ≥ 2 join item sets that contain i items with
individual item sets (candidate generation phase);

• evaluate the resulting item sets and retain only those who have sufficient
support (evaluation phase).

Without entering details, we mention that the algorithm raises non-trivial issues
of memory management because often large data sets cannot be accommodated
entirely in the main memory of computers. There are numerous references on
Apriori implementations that examine these problems [24, 3, 31, 13, 2, 1].

4 Association Rules and Nosocomial Infections

The study of development of drug resistance of bacteria involved in intra-
hospital infections has been pursued in [8, 10] and many other reports.

Among the Gram-negative bacteria which are notorious for their drug resis-
tance, Pseudomonas aeruginosa is a common cause of infections in humans and
its transmission is caused by medical equipment, including catheters.

The data collection includes records that describe single Pseudomonas aerug-

inosa isolates. The attributes of the records are

• date reported;

• source of isolate (sputum, blood);

• location of patient in the hospital;

• patient’s home zip code;

• resistant (R), intermediate resistance (I), susceptible (S) for piperacillin,
ticarcillin/clavulanate, ceftazidime, imipenem, amikacin, gentamicine, to-
bramycine, ciprofloxacin.

Records passed through a pre-processing phase, when duplicate records were
removed, so each patient had one isolate per month. The system was designed
to detect patterns of increasing resistance to antimicrobials; therefore, items of
the form S-antimicrobial were removed.

Data is partitioned horizontally in time-slices; in each slice identification
of association rules with high support is performed and the confidence of these
rules is computed. Then, the variation of in confidence of a rule X → Y between
the current time-slice and the confidence of the same rule in previous time slices
is calculated. If a substantial increase in the confidence occurs (as verified using
a statistical test described in Section A) relative to the previous partition(s),
this finding constitutes an event.

More specifically, data was partitioned horizontally in

• A. 12 one-month fragments: 2,000 ARs;
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• B. 4 three-month fragments: 12,000 ARs;

• C. 2 six-month fragments: 20,000 ARs.

Minimum support for an item was 2 and minimum support for an AR was 10.
The investigators Patterns sought short-lived interesting patterns in slices

of type A, and long-lived interesting patterns in slices of type C.
A relatively small number of ARs were presented to the user as shown below:

Experiment A B C
34 57 28

Note that for AR of the form ∅ → Y have

supp(∅ → Y ) = supp(∅) = n;

and

conf(∅ → Y ) =
supp(Y )

n
,

which shows that only confidence is significant and equals the probability of Y .
Thus, conf(R-antimicrobial) gives the probability that Pseudomonas aerugi-

nosa develops resistance to the antimicrobial; variation in the level of confidence
are evaluated on an monthly, quarterly, and semestrial basis.

The selection of association rules was based on the variance in their confi-
dence as follows:

• For each AR X → Y the confidence in Pc, conf(X → Y, Pc) was compared
with conf(X → Y, Pd), the confidence of X → Y in the last data set Pd in
which X → Y was found which precedes Pc.

• The comparison of confidences is done using a χ2-square comparison of
two proportions, or when the number of expected value is small, by the
Fisher exact test.

• If conf(X → Y, Pc) ≥ conf(X → Y, Pd) and the probability that the
difference between the proportions occurred by chance is less than 5%,
then this finding is presented to the user.

Among the AR found are the following:
∅ → R-ticarcillin/clavulanate R-ceftazidime R-piperacillin

a jump from 4%(Oct) to 8%(Nov) to 11%(Dec)suggests that the isolate
is resistant to ticarcillin/clavulanate, ceftazidime and piperacillin

R-ceftazidime R-piperacillin → sputumR-ticarcillin/clavulanate
8%(Feb)-32%(Aug) it is likely that the isolate is from sputum
and is ticarcillin resistent given that is resistant to ceftazidime and piperacillin

R-piperacillin → sputumR-ticarcillin/clavulanateR - ceftazidime
an increase from 6% (Q3) to 26% (Q4) in the probability that the isolate is from sputum,
is ticarcillin/clavulanate and ceftazidime resistant given that is piperacillin resistant

R-ticarcillin/clavulanate −→ sputumR-ceftazidimeR-piperacillin
an increase from 7% (Q3) to 24% (Q4) in the probability that isolate is from sputum,
is ceftazidime and piperacillin resistant given that is ticarcilline/clavulanate resistant

R-ticarcillin/clavulanateR-ceftazidimeR-piperacillin −→ sputum
an increase from 12% (Q3) to 42% (Q4) in the probability that the isolate is from sputum
given that it is resistent to ticarcillin/clavulanate, ceftazidime, and piperacillin
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5 Association Rules and Adverse Drug Reac-

tions

Adverse drug reactions (ADE) pose a serious problem for the health of the
public and cause wasteful expenses [30]. It is estimated that ADEs account
for 5% of hospital admissions [18], 28% of af emergency department visits [20],
and for 5% of hospital deaths [14]. In US only, ADEs result in losses of several
billion dollars annually.

Due to their impact, ADE are monitored internationally in multiple sites.
The Uppsala Monitoring Center in Sweden, a unit of the World Health Or-
ganization (WHO), mines data originating from individual case safety reports
(ICSRs) and maintains Vigibase, a WHO case safety reporting database. Its
activity started in 1978 and access to Vigibase is allowed for a fee.

At the Food and Drug Administration (FDA), a US federal unit, the AERS
database (Adverse Event Reporting System) is maintained where access is free.
Besides, proprietary ADE databases exists at various pharma entities who, by
US law, must record adverse reactions to drugs.

We discuss the study performed in [11] and the observations of [30] on using
association rules for mining ADE databases.

ADE can involve single or multiple drugs and describe single or multiple
adverse reactions. The simplest association rule describing an ADE has the form
Vioxx → heart attack and involves one drug and one reactions. Clearly, rule
of this form cannot capture ADE that result from undesirable drug interactions
and this is the focus of [11]. This study is based on a set of 162,744 reports of
suspected ADEs reported to AERS and published in the year 2008. A total of
1167 multi-item ADE associations were identified.

An ADE database has certain unique characteristics that allow for more
efficient mining algorithms. Namely, the set of items is partitioned into two
classes: drugs and symptoms; association rules have the form X −→ Y , where
X is a set of drugs and Y is a set of symptoms.

Given a set of drugs X it is important to find the largest set of symptoms
Y such that X −→ Y has a certain level of support and confidence. Indexing
based on drugs and on symptoms was used to speed up searches in the data.

The general architecture of the AERS database is shown in Figure 3.
The attribute that binds various parts of the AERS database is ISR: the

unique number for identifying an EARS report.
A taxonomy that characterizes the associations was developed based on a

representative sample, as shown in Tables 1 and 2
67 percentages of potential multi-item ADE associations identified were char-

acterized and clinically validated by a domain expert as previously recognized
ADE associations.

Filtering of the rules was done based on interestingness measures (confidence
is just one of them). Actually, in this case confidence is inappropriate since rules
of the form X → NAUSEA will have high confidence due to the high frequency
of NAUSEA.
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Figure 3: Architecture of AERS database

Table 1: Taxonomy of multi-item sets of drugs
1a Drug-drug interactions found that are known 4%
1b Drug-drug combinations known to be given together 78%

or treat same indication
1c Drug-drug combinations that seem to be due to confounding 9%
1d Drug-drug interactions that are unknown 9%

Table 2: Taxonomy of multi-item ADE associations rules
2a Associations (drug[s]-event) that are known 67%
2b Associations (drug[s]-event) that are unknown 33%
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Various alternatives for choosing an interest measure for association rules
are studied extensively in data mining [25, 7, 17, 16, 12] and [15].

Let X → Y be an association rule. Denote the supports of the item sets
X∩Y , X∩ Ȳ , X̄X∩Y , and X̄∩ Ȳ by a, b, c, d, respectively The most commonly
used interestingness measures for X → Y are given next.

Int. Measure Formula

support a

confidence a

a+c

χ
2 (ad−bc)2(a+b+c+d)

(a+b)(a+c)(b+c)(b+d)

interest (lift) a(a+b+c+d)

a+b)2

conviction (a+c)(b+d)
(a+b+c+d)c

In [11] the interestingness measure used was the Relative Reporting Ratio
(RR), defined by

RR =
n · supp(X ∪ Y )

supp(X) · supp(Y )

=
(a + b + c + d)(n − d)

(a + b)(a + c)
,

where n = a + b + c + d is the total number of records.
Note that RR can be written as

RR =
n · supp(X ∪ Y )

supp(X) · supp(Y )
= conf(X → Y ) ·

n

supp
(Y )

and can be regarded as as the confidence of the rule X −→ Y normalized by
the relative support of the consequent Y . RR is symmetric relative to X and Y .

Large values of RR suggest that the occurrence of drugs-adverse reactions is
larger than in the general collection of drugs.

A sample of multi-item ADE associations found in [11] is:
1a-2a metformin metoprolol → NAUSEA 50 7.4
1b-2a cyclophosphamide, prednisone, vincristine → FEBRILE NEUTROPENIA 78 45
1c-2a cyclophosphamide, doxorubicin, prednisone, rituximab → FEBRILE NEUTROPENIA 63 59
1b-2b atorvastatin, lisinopril → DYSPNOEA 55 3.5
1a-2b omeprazole simvastatin → DYSPNOEA 58 12
1d-2b varenicline darvocet →

ABNORMAL DREAMS, FATIGUE, INSOMNIA,MEMORY IMPAIRMENT, NAUSEA 52 2668

Since each metformin and metoprolol cause nausea, association rules of the
form metformin metoprolol → NAUSEA is forseable. The rule

cyclophosphamide prednisone vincristine → FEBRILE NEUTROPENIA

involves a drug combination used in cancer treatment and describes a known
complication.

Similar conclusions are obtained for a variety of combination of other drugs.
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6 Transitivity of Association Rules

A study of interactions between medications, laboratory results and problems
using association rules was done by Wright, Chen, and Maloney at BWH in
Boston [28]. The data examined included 100,000 patients. Encoding of prob-
lems, laboratory results, and medications was done using proprietary terminolo-
gies.

The importance of this study is that it highlighted difficulties of inferences
involving probabilistic implications expressed by association rules. The authors
noted that certain association rule occur with un unjustified high level of con-
fidence. A typical example is the AR

insulin → hypertension,

which involves unrelated terms. The explanation is the existence of co-morbidities,
in this case, diabetes and hypertension, which highlights the need of mining for
co-morbidities. It is shown that item sets such that

p1 {lisinopril, multivitamin, hypertension}
p2 {insulin, metformin, lisinopril,diabetes, hypertension}
p3 {insulin, diabetes}
p4 {metformin, diabetes}
p5 {metformin, polycystic ovarian syndrome}
...

...

occur with a high level of support.
The difficulty of analyzing such association rules comes from the fact that

association rules do not enjoy transitivity. This means that if X → Y and
Y → Z are association rules with known confidence no conclusion can be drawn
about the confidence of X → Z.

Example 6.1 For the data set

A B C
t1 1 1 0
t1 0 1 1

and the association rules A → B and B → C we have

supp(A → B) = 50%, conf(A → B) = 100%,

supp(B → C) = 100%, conf(B → C) = 50%.

but
supp(A → C) = 50% and conf(A → C) = 0%.

On the other hand, for the data set

A B C
t1 1 0 1
t1 0 1 0
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and A → B and B → C we have

supp(A → B) = 50%, conf(A → B) = 0%,

supp(B → C) = 50%, conf(B → C) = 0%.

but
supp(A → C) = 50% and conf(A → C) = 100%.

So, the confidence of A → C is unrelated to either conf(A → B) or to conf(B →
C).

To deal with the lack of transitivity, it is necessary to investigate association
rules of the form X → Z starting from existent AR X → Y and Y → Z which
have a satisfactory medical interpretation. This is the point of view espoused
in [27] who present their software TransMiner.

The reverse approach is adopted in [28]: starting from an association rule
X → Z (e.g. insulin → hypertension they seek to identify candidate item sets
Y such that X → Y and Y → Z are plausible association rules. Y could be
diabetes or other co-morbidities of hypertension; once these cases are excluded
the confidence of insulin → hypertension decreases sharply.

7 Conclusions and Open Problems

DM cannot replace the human factor in medical research; however it can be a
precious instrument in epidemiology, pharmacovigilance. Interaction between
DM and medical research is beneficial for both domains; biology and medicine
suggest novel problems for data mining and machine learning.

Many open problems remain to be resolved. We estimate that extending
association mining to unstructured data (progress reports, radiology reports,
operative notes, outpatient notes), integration of “gold standards” in evaluation
of AR extracted from medical practice, developing information-theoretical tech-
niques for AR evaluation will attract the interest of both data miners and med-
ical researchers because of their potential benefits in the practice of medicine.
We conclude with a quotation from [29] written 29 years after the motto of this
paper:

Knowledge should be held in tools that are kept up to date and used
routinely–not in heads, which are expensive to load and faulty in
the retention and processing of knowledge.

L.L. Weed, M.D.: New connections between medical knowledge and

patient care, British Medical Journal, 1997

A Fisher Exact Test and the χ
2-Test

Let X and Y be two categorical random variables that assume the values
x1, . . . , xm and y1, . . . , yn. Consider a matrix A with m rows and n columns,
where aij ∈ N is the number of times the pair (xi, yj) occurs in an experiment.
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Let Ri and Cj be random variables (for 1 ≤ i ≤ m and 1 ≤ j ≤ n) that
represent the sum of the elements of row i and the sum of the elements of column
j, respectively. Clearly,

m
∑

i=1

Ri =

n
∑

j=1

Cj =

m
∑

i=1

n
∑

j=1

aij = N.

The conditional probability P (A = (aij) | Ri = ri, Cj = cj) is given by

P (A = (aij) | Ri = ri, Cj = cj) =
r1! · · · rm!c1! · · · cn!

N !
∏m

i=1

∏n

j=1 aij !

This discrete distribution is a generalization of the hypergeometric distribution.
In the special case m = n = 2 we have the matrix

A =

(

a11 a12

a21 a22

)

,

r1 = a11+a12, r2 = a21+a22, and c1 = a11+a21, c2 = a12+a22. The probability
P (A|(Ri = ri, Cj = cj) is

P (A|R1 = r1, R2 = r2, C1 = c1, C2 = c2)

=
r1!r2!c1!c2!

N !a11!a12!a21!a22!

=
(a11 + a12)!(a21 + a22)!(a11 + a21)!(a12 + a22)!

N !a11!a12!a21!a22!

=

(

a11+a12

a11

)(

a21+a22

a21

)

(

n
a11+a21

) =

(

r1

a11

)(

r2

a21

)

(

n
c1

) .

The probability of getting the actual matrix given the particular values of
the row and column sums is known as the cutoff probability Pcutoff.

Example A.1 On a certain day two urology services U1 and U2 use general
anesthesia and IV sedation in lithotripsy interventions as follows

U1 U2
gen. anesthesia 5 0 r1 = 5

iv sedation 1 4 r2 = 5
c1 = 6 c2 = 4

The null hypothesis here is that there exists a significant association between
the urology department and the type of anesthesia it prefers for lithotripsy.

The matrices that correspond to the same marginal probability distributions
and their corresponding probabilities are

(

5 0
1 4

) (

4 1
2 3

) (

3 2
3 2

) (

2 3
4 1

) (

1 4
5 0

)

0.0238 0.2381 0.4762 0.2381 0.0238
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The sum of these probabilities are 1, as expected equals 1 and the cutoff prob-
ability is 0.0238. The probability that results shown by the matrix

U1 U2
gen. anesthesia 5 0 r1 = 5

iv sedation 1 4 r2 = 5
c1 = 6 c2 = 4

are randomly obtained is not larger than 0.0238, which allows us to conclude
that U1 has indeed a strong preference for using general anesthesia, while the
preference in U2 is for intravenous sedation.

Example A.2 The exact Fisher test outlined in Example A.1 can be applied
only if the expected values are no larger than 5. If this is not the case, we need
to apply the approximate χ2-test.

In a hospital the number of isolates resistent to ticarcillin/clavulanate, cef-
tazidime, and piperacillin during the third quarter equals 29; two of these iso-
lates originate from sputum. In the third quarter, the number of isolates re-
sistent to all three antibiotics is 34 and 8 of these originate from sputum.

This is presented by the matrix

Q3 Q4
non-sputum 27 26 r1 = 53

sputum 2 8 r2 = 10
c1 = 29 c2 = 34 63

We need to ascertain whether the larger proportion of resistant bacteria in
sputum in the 4th quarter reflect something other that statistical variability.

The expected values of the observations computed from the marginal values
are

Q3 Q4
non-sputum 53∗29

63
53∗34

63 r1 = 53
sputum 10∗2

63
10∗8
63 r2 = 10

c1 = 29 c2 = 34

=

Q3 Q4
non-sputum 24.39 28.60 r1 = 53

sputum 0.31 1.27 r2 = 10
c1 = 29 c2 = 34

The χ2-square criterion is computed as

χ2 =
∑

i,j

(|oij − eij | − 0.5)2

eij

,
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where the term 0.5 is a correction for continuity. In our case

χ2 =
(|27 − 24.39| − 0.5)2

24.39
+

(|26 − 28.60| − 0.5)2

28.60

+
(|2 − 0.31| − 0.5)2

0.31
+

(|8 − 1.27| − 0.5)2

1.27

=
1.712

0.31
+

2.102

28.60
+

1.192

0.31
+

6.232

1.27
= 35.40.

In this case the χ2 variable has one degree of freedom and the value obtained
is highly significant at 0.001 level. Thus, we can conclude that the variation in
the confidence level of the rule from the third to fourth quarter can be accepted
with a high degree of confidence.

B Enumeration of Subsets of Sets

A systematic technique for enumerating the subsets of a set was introduced
in [22] by R. Rymon in order to provide a unified search-based framework for
several problems in artificial intelligence; this technique is especially useful in
data mining.

Let S be a set, S = {i1, . . . , in}. The Rymon tree of S is defined as follows:

1. the root of the tree is the empty set, and

2. the children of a node P are the sets of the form P ∪ {si | i > max{j |
sj ∈ P}.

Example B.1 Let S = {i1, i2, i3, i4}. The Rymon tree for C and d is shown in
Figure 4.

The key property of a Rymon tree of a finite set S is that every subset of S

occurs exactly once in the tree.
Also, observe that in the Rymon tree of a collection of the form P(S), the

collection of sets of Sr that consists of sets located at distance r from the root
denotes all

(

n
r

)

subsets of size r of S.

C Frequent Item Sets and the Apriori Algorithm

Suppose that I is a finite set; we refer to the elements of I as items.

Definition C.1 A transaction data set on I is a function T : {1, . . . , n} −→
P(I). The set T (k) is the k-th transaction of T . The numbers 1, . . . , n are the
transaction identifiers (tids).

Example 2.2 shows that a transaction is the set of items present in the
shopping cart of a consumer that completed a purchase in a store and that the
data set is a collection of such transactions.
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Figure 4: Rymon Tree for P({i1, i2, i3, i4})

Example C.2 Let I = {i1, i2, i3, i4} be a collection of items. Consider the
transaction data set T given by:

T (1) = {i1, i2},
T (2) = {i1, i3},
T (3) = {i1, i2, i4},
T (4) = {i1, i3, i4},
T (5) = {i1, i2},
T (6) = {i3, i4}.

Thus, the support of the item set {i1, i2} is 3; similarly, the support of the
item set {i1, i3} is 2. Therefore, the relative supports of these sets are 1

2 and 1
3 ,

respectively.

The following rather straightforward statement is fundamental for the study
of frequent item sets.

Theorem C.3 Let T : {1, . . . , n} −→ P(I) be a transaction data set on a set

of items I. If K and K ′ are two item sets, then K ′ ⊆ K implies suppT (K ′) ≥
suppT (K).

Proof. Note that every transaction that contains K also contains K ′. The
statement follows immediately.

If we seek those item sets that enjoy a minimum support level relative to a
transaction data set T , then it is natural to start the process with the smallest
non-empty item sets.
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The support of an item set enjoys the property of supramodularity [23].
Namely, if X, Y are two sets of items then

supp(X) + supp(Y ) ≤ supp(X ∪ Y ) + supp(X ∩ Y ).

Definition C.4 An item set K is µ-frequent relatively to the transaction data
set T if suppT (K) ≥ µ.

We denote by Fµ
T the collection of all µ-frequent item sets relative to the

transaction data set T , and by Fµ
T,r the collection of µ-frequent item sets that

contain r items for r ≥ 1.

Note that
Fµ

T =
⋃

r≥1

Fµ
T,r.

If µ and T are clear from the context, then we may omit either or both adorn-
ments from this notation.

Let I = {i1, . . . , in} be an item set that contains n elements.
Denote by GI = (P(I), E) the Rymon tree of P(I). The root of the tree is

∅. A vertex K = {ip1 , . . . , ipk
} with ip1 < ip2 < · · · < ipk

has n − ipk
children

K ∪ {j} where ipk
< j ≤ n.

Let Sr be the collection of item sets that have r elements. The next theorem
suggests a technique for generating Sr+1 starting from Sr.

Theorem C.5 Let G be the Rymon tree of P(I), where I = {i1, . . . , in}. If

W ∈ Sr+1, where r ≥ 2, then there exists a unique pair of distinct sets U, V ∈ Sr

that has a common immediate ancestor T ∈ Sr−1 in G such that U ∩ V ∈ Sr−1

and W = U ∪ V .

Proof. Let u, v be the largest and the second largest subscript of an item that
occurs in W , respectively. Consider the sets U = W − {u} and V = W − {v}.
Both sets belong to Sr. Moreover, Z = U∩V belongs to Sr−1 because it consists
of the first r − 1 elements of W . Note that both U and V are descendants of Z

and that U ∪ V = W .
The pair (U, V ) is unique. Indeed, suppose that W can be obtained in the

same manner from another pair of distinct sets U ′, V ′ ∈ Sr, such that U ′, V ′

are immediate descendants of a set Z ′ ∈ Sr−1. The definition of the Rymon
tree GI implies that U ′ = Z ′ ∪ {im} and V ′ = Z ′ ∪ {iq}, where the letters in Z ′

are indexed by number smaller than min{m, q}. Then, Z ′ consists of the first
r − 1 symbols of W , so Z ′ = Z. If m < q, then m is the second highest index
of a symbol in W and q is the highest index of a symbol in W , so U ′ = U and
V ′ = V .

Example C.6 Consider the Rymon tree of the collection P({i1, i2, i3, i4) shown
in Figure 4.

The set {i1, i3, i4} is the union of the sets {i1, i3} and {i1, i4} that have the
common ancestor {i1}.
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Next we discuss an algorithm that allows us to compute the collection Fµ
T

of all µ-frequent item sets for a transaction data set T . The algorithm is known
as the Apriori Algorithm.

We begin with the procedure apriori gen that starts with the collection
Fµ

T,k of frequent item sets for the transaction data set T that contain k ele-

ments and generates a collection Ck+1 of sets of items that contains Fµ
T,k+1, the

collection the frequent item sets that have k + 1 elements. The justification of
this procedure is based on the next statement.

Theorem C.7 Let T be a transaction data set on a set of items I and let k ∈ N

such that k > 1.
If W is a µ-frequent item set and |W | = k + 1, then, there exists a µ-

frequent item set Z and two items im and iq such that and |Z| = k−1, Z ⊆ W ,

W = Z ∪ {im, iq} and both Z ∪ {im} and Z ∪ {iq} are µ-frequent item sets.

Proof. If W is an item set such that |W | = k + 1, then we already know that
W is the union of two subsets U, V of I such that |U | = |V | = k and that
Z = U ∩V has k−1 elements. Since W is a µ-frequent item set and Z, U, V are
subsets of W it follows that each of theses sets is also a µ-frequent item set.

Note that the reciprocal statement of Theorem C.7 is not true, as the next
example shows.

Example C.8 Let T be the transaction data set introduced in Example C.2.
Note that both {i1, i2} and {i1, i3} are 1

3 -frequent item sets; however,

suppT ({i1, i2, i3}) = 0,

so {i1, i2, i3} fails to be a 1
3 -frequent item set.

The procedure apriori gen mentioned above is the algorithm 1. This pro-
cedure starts with the collection of item sets FT,k and produces a collection of
item sets CT,k+1 that includes the collection of item sets FT,k+1 of frequent item
sets having k + 1 elements.

Data: a minimum support µ, the collection Fµ
T,k of frequent item sets

having k elements
Result: the set of candidate frequent item sets Cµ

T,k+1

j = 1;
Cµ

T,j+1 = ∅;

for L, M ∈ Fµ
T,k such that L 6= M and L ∩ M ∈ Fµ

T,k−1 do

add L ∪ M to Cµ
T,k+1;

end

remove all sets K in Cµ
T,k+1 where there is a subset of K containing k

elements that does not belong to Fµ
T,k.

Algorithm 1: The Procedure apriori gen

Note that in apriori gen no access to the transaction data set is needed.
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The Apriori Algorithm 2 operates on “levels”. Each level k consists of a
collection Cµ

T,k of candidate item sets of µ-frequent item sets. To build the ini-

tial collection of candidate item sets Cµ
T,1 every single item set is considered for

membership in Cµ
T,1. The initial set of frequent item set consists of those single-

tons that pass the minimal support test. The algorithm alternates between a
candidate generation phase (accomplished by using apriori gen and an evalu-
ation phase which involve a data set scan and is, therefore, the most expensive
component of the algorithm.

Data: a transaction data set T and a minimum support µ

Result: the collection Fµ
T of µ-frequent item sets

Cµ
T,1 = {{i} | i ∈ I};

i = 1;
while Cµ

T,i 6= ∅ do

/* evaluation phase */ Fµ
T,i = {L ∈ Cµ

T,i | suppT (L) ≥ µ};

/* candidate generation */ Cµ
T,i+1 = apriori gen(Fµ

T,i);
i + +;

end

return Fµ
T =

⋃

j<i F
µ
T,j ;

Algorithm 2: The Apriori Algorithm

Example C.9 Let T be the data set given by:

i1 i2 i3 i4 i5
T (1) 1 1 0 0 0
T (2) 0 1 1 0 0
T (3) 1 0 0 0 1
T (4) 1 0 0 0 1
T (5) 0 1 1 0 1
T (6) 1 1 1 1 1
T (7) 1 1 1 0 0
T (8) 0 1 1 1 1

The support counts of various subsets of I = {i1, . . . , i5} are given below:

i1 i2 i3 i4 i5
5 6 5 2 5

i1i2 i1i3 i1i4 i1i5 i2i3 i2i4 i2i5 i3i4 i3i5 i4i5
3 2 1 3 5 2 3 2 3 2

i1i2i3 i1i2i4 i1i2i5 i1i3i4 i1i3i5 i1i4i5 i2i3i4 i2i3i5 i2i4i5 i3i4i5
2 1 1 1 1 1 2 3 2 2
i1i2i3i4 i1i2i3i5 i1i2i4i5 i1i3i4i5 i2i3i4i5

1 1 1 1 2
i1i2i3i4i5

0
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Starting with µ = 0.25 and with Fµ
T,0 = {∅} the Apriori Algorithm computes

the following sequence of sets:

Cµ
T,1 = {i1, i2, i3, i4, i5},

Fµ
T,1 = {i1, i2, i3, i4, i5},

Cµ
T,2 = {i1i2, i1i3, i1i4, i1i5, i2i3, i2i4, i2i5, i3i4, i3i5, i4i5},

Fµ
T,2 = {i1i2, i1i3, i1i5, i2i3, i2i4, i2i5, i3i4, i3i5, i4i5},

Cµ
T,3 = {i1i2i3, i1i2i5, i1i3i5, i2i3i4, i2i3i5, i2i4i5, i3i4i5},

Fµ
T,3 = {i1i2i3, i2i3i4, i2i3i5, i2i4i5, i3i4i5},

Cµ
T,4 = {i2i3i4i5},

Fµ
T,4 = {i2i3i4i5},

Cµ
T,5 = ∅.

Thus, the algorithm will output the collection:

Fµ
T =

4
⋃

i=1

Fµ
T,i

= {i1, i2, i3, i4, i5, i1i2, i1i3, i1i5, i2i3, i2i4, i2i5, i3i4, i3i5, i4i5,

i1i2i3, i2i3i4, i2i3i5, i2i4i5, i3i4i5, i2i3i4i5}.

D Association Rules

Definition D.1 An association rule on an item set I is a pair of non-empty
disjoint item sets (X, Y ).

Note that if |I| = n, then there exist 3n − 2n+1 + 1 association rules on
I. Indeed, suppose that the set X contains k elements; there are

(

n
k

)

ways of
choosing X . Once X is chosen, Y can be chosen among the remaining 2n−k − 1
non-empty subsets of I −X . In other words, the number of association rules is:

n
∑

k=1

(

n

k

)

(2n−k − 1) =

n
∑

k=1

(

n

k

)

2n−k −
n

∑

k=1

(

n

k

)

.

By taking x = 2 in the equality:

(1 + x)n =

n
∑

k=0

(

n

k

)

xn−k

we obtain
n

∑

k=1

(

n

k

)

2n−k = 3n − 2n.
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Since
∑n

k=1

(

n

k

)

= 2n − 1, we obtain immediately the desired equality. The
number of association rules can be quite considerable even for small values of
n. For example, for n = 10 we have 310 − 211 + 1 = 57, 002 association rules.

An association rule (X, Y ) is denoted by X → Y . The confidence of X → Y

is the number

confT (X → Y ) =
suppT (XY )

suppT (X)
.

Definition D.2 An association rule holds in a transaction data set T with
support µ and confidence c if suppT (XY ) ≥ µ and confT (X → Y ) ≥ c.

Once a µ-frequent item set Z is identified we need to examine the support
levels of the subsets X of Z to insure that an association rule of the form
X → Z −X has a sufficient level of confidence, confT (X → Z −X) = µ

supp
T

(X) .

Observe that suppT (X) ≥ µ because X is a subset of Z. To obtain a high level
of confidence for X → Z − X the support of X must be as small as possible.

Clearly, if X → Z − X does not meet the level of confidence, then it is
pointless to look rules of the form X ′ → Z − X ′ among the subsets X ′ of X .

Example D.3 Let T be the transaction data set introduced in Example C.9.
We saw that the item set L = i2i3i4i5 has the support count equal to 2 and,
therefore, suppT (L) = 0.25. This allows us to obtain the following association
rules having three item sets in their antecedent which are subsets of L:

rule suppT (X) confT (X → Y )
i2i3i4 → i5 2 1
i2i3i5 → i4 3 2

3
i2i4i5 → i3 2 1
i3i4i5 → i2 2 1

Note that i2i3i4 → i5, i2i4i5 → i3, and i3i4i5 → i2 have 100% confidence. We
refer to such rules as exact association rules.

The rule i2i3i5 → i4 has confidence 2
3 . It is clear that the confidence of rules

of the form U → V with U ⊆ i2i3i5 and UV = L will be lower than 2
3 since

suppT (U) is at least 3. Indeed, the possible rules of this form are:

rule suppT (X) confT (X → Y )
i2i3 → i4i5 5 2

5
i2i5 → i3i4 3 2

3
i3i5 → i2i4 3 2

3
i2 → i3i4i5 6 2

6
i3 → i2i4i5 5 2

5
i5 → i2i3i4 5 2

5

Obviously, if we seek association rules having a confidence larger than 2
3 no such

rule U → V can be found such that U is a subset of i2i3i5.
Suppose, for example, that we seek association rules U → V that have a

minimal confidence of 80%. We need to examine subsets U of the other sets:
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i2i3i4, i2i4i5, or i3i4i5, which are not subsets of i2i3i5 (since the subsets of i2i3i5
cannot yield levels of confidence higher than 2

3 . There are five such sets:

rule suppT (X) confT (X → Y )
i2i4 → i3i5 2 1
i3i4 → i2i5 2 1
i4i5 → i2i3 2 1
i3i4 → i2i5 2 1
i4 → i2i3i5 2 1

Indeed, all these sets yield exact rules, that is, rules having 100% confidence.

Many transaction data sets produce huge number of frequent item sets and,
therefore, huge number of association rules particularly when the levels of sup-
port and confidence required are relatively low. Moreover, it is well known
(see [26]) that limiting the analysis of association rules to the support/confidence
framework can lead to dubious conclusions. The data mining literature contains
many references that attempt to derive interestingness measures for association
rules in order to focus data analysis of those rules that may be more relevant
(see [19, 6, 7, 9, 16, 12]).
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