Mining Association Rules in Entity-Relationship
Modeled Databases

Laurentiu Cristofor, Dan Simovici

University of Massachusetts at Boston,
Department of Mathematics and Computer Science,
Boston, Massachusetts 02446, USA,

{laur,dsim}@cs.umb.edu

Abstract. Current data mining algorithms handle databases consisting
of a single table. This paper addresses the problem of mining association
rules in databases consisting of multiple tables and designed using the
entity-relationship model. We discuss previous approaches to this prob-
lem and point out some unaddressed issues, and we present a couple of
algorithms to address these issues and experimental results showing the
scalability of these algorithms with respect to the increase in size of the
database. The paper concludes with a discussion of the possibility of ex-
tending our algorithms to database schemas more complex than a star
schema.

Keywords: entity-relationship model, itemset, association rule, entity sup-
port, join support

1 Introduction

Finding association rules in databases is a central problem in data mining and
has been extensively studied since its introduction in [AIS93]. The resulting algo-
rithms ([AMST96] , [SON95], [BMUT97], [CCS00], [ZH99], [AAP00a], [AAPOOb],
[HPYO00]) shared the assumption that the data to mine was placed in a single
table. There are very few published results on how to mine association rules
when data resides in more than one table. An instance of this problem has
been addressed in a machine learning setting by L. Dehaspe and L. De Raedt
[DRI7] for the special case of mining a deductive relational database contain-
ing knowledge about some type of entity (for example entities could be kids or
sentences) and several weak entity sets dependent on this set of entities. How-
ever, the work in [DR97] does not analyze how mining should be performed
in databases involving relationships between multiple entities as is usually the
case in a relational database. Recently, V. Jensen and N. Soparkar [JS00] have
addressed this problem for the special and important case when the database is
organized in a star schema. They have proposed replacing the application of the
Apriori [AMS*96] algorithm on a table obtained by joining all schema’s tables
by a technique (which we will call the JS algorithm) that in a first stage looks

2 Laurentiu Cristofor, Dan Simovici

for frequent itemsets in each separate table using a slightly modified version of
Apriori, and then, in a second stage, finds all frequent itemsets whose items
belong to distinct tables. Finally, this method would yield the same results as
those yield by Apriori when executed on the joined schema tables and would
have better performance.

In this paper we show that both methods, the Apriori algorithm and the
JS algorithm, can produce rules which may not reflect accurately the actual
relationships existing in the data in cases like the one used as an example in
[JS00] and we investigate how association rule mining should be performed in
those cases.

The paper is organized as follows: section 2 presents some examples to il-
lustrate the problems that arise when mining data stored in a star schema and
section 3 discusses two algorithms for mining association rules in this case. Sec-
tion 4 presents experimental results, and section 5 concludes the paper with an
overview of the results presented and with some future research directions.

2 Problems in previous approaches

We view a table as a triple 7 = (T, H, p), where T is the name of the table,
H = A, ... A, is its heading and p C Dom(4;) X --- x Dom(A4,,) is the content
of 7. The reader is referred to [ST95] for the relational terminology used here.

The star database design that we consider here is derived from an entity
relationship design that involves k entity sets and a set of k-ary relationships R
that involve the instances of entity sets E4,... , Ey. Tables that represent entity
sets are referred to as entity tables, while tables that represent relationship sets
are called relationship tables. The tables are denoted by the same letter as their
respective set. We denote the attributes of an entity set E by Attr(E).

To simplify our definitions and discussions we will assume that R has no
other attributes than the foreign keys for the entity sets Fy,... , E. Note that
this is not a restrictive assumption since in the case the relationship set R would
contain other attributes than foreign keys we could simply consider them as
being attributes of an extra entity set Ej; whose instances participate exactly
once in a relationship from R.

Another assumption corresponding to imposing referential integrity is that
each relationship of R must involve an entity from each entity set Ey,... , E.

Let £ = {E, ..., Ei} be the collection of k sets of entities, R be a set of k-ary
relationships between F, ... , E, Join be the join of tables R, F, ... , E}, and
let OuterJoin be the outer join of tables R, Ey, ... , Ex. We use these notations
throughout the paper when discussing star schemas.

Definition 21 An item is a pair (4, a), where A is an attribute and a is a value
in the domain of A. An itemset is a set of items {(A41,a1) ... (An,an)} such that
if ¢ # j, then A; # A; for any i,j € {1,...,n}. In other words, an itemset
contains no two pairs of items with an identical attribute component.

The support of an itemset I = {{A;,a1),...,{A,,a,)} with respect to a
table 7 = (T, H, p) is supp(I) = [{t € p | t[Ai] = a; for i € {1,...,n}}|/|p|-

Mining Association Rules in Entity-Relationship Modeled Databases 3

An association rule is an ordered pair {a,c) of itemsets such that they do
not contain items with an identical attribute component. The first itemset in the
pair is called antecedent and the second is called consequent. We usually write
an association rule as a — c.

The support of an association rule is defined to be the support of the union
of its antecedent and consequent itemsets. The confidence of an association rule
is defined to be the ratio between the support of the rule and the support of the
antecedent. I

To illustrate our arguments we use an example similar to the one presented
in [JS00], with the difference that the data was changed to make some points
easier to observe.

CUSTOMERS ATMs

Fig. 1. Entity-Relationship Diagram of Bank Database

The example is that of a simplified banking environment where we have
a simple star schema (see Figure 1) consisting of two tables that reflect entity
sets: the Customers table with attributes {acct#, balance, age}, the ATMs table
with attributes {atm#, type, limit}, and a table that represents a set of binary
relationships named ATM_Activity with attributes {acct#, atm#, amount}.

Customers ATM_Activity
acct# balance| age acct#|atm#| amount
1 50000-100000{30-40 1 1{500-1000
2 1000-5000(30-40 2 2| 50-100
3 100-1000{20-30 1 2| 50-100

3 2 0-50
1 1{500-1000
ATMs

atm#|type|limit
1 in|{1000
2 out| 500

The table Join obtained from joining the three tables is identical to the table
we would obtain by performing an outer join and is presented below.

4 Laurentiu Cristofor, Dan Simovici

Join

acct#|atm#| amount balance| age|typel|limit
500-1000|50000-100000{30-40| in|1000
50-100 1000-5000(30-40| out| 500
50-100{50000-100000{30-40| out| 500
0-50 100-1000{20-30| out| 500
500-1000|50000-100000{30-40| in|1000

—_ W =N =
= N N N

We question whether an algorithm that mines this star schema database for
association rules is useful when it finds exactly the same results obtained when
running the Apriori algorithm on the joined tables. We claim that the knowledge
about the entities and relationships existing in a database can be used in order
to produce more meaningful rules and we will next look at some examples that
illustrate this idea.

Let us consider the rule age = 30 — 40 — balance = 50000 — 100000 which
involves attributes age and balance belonging to entity table Customers. If we
consider the Join table, then the support of this rule would be 60% (3/5) and
its confidence would be 75% (3/4). However, another approach would be to
examine only the Customers table, in which case the support of the rule would
be 33.3% (1/3) and its confidence would be 50% (1/2). A question now arises
about which of these two results is the correct one. Since the rule involves only
attributes of the Customers table we consider that the support and confidence
of the rule should be based on that table only, such that we should obtain the
second result. This is because Customers represents an entity set and properties
of its attributes should be determined only by looking at the set of instances
of customers. However, when run on the joined tables, Apriori would generate
the first result thus producing what we consider to be an association rule with
misleading support and/or confidence values.

It is also worth mentioning that because the support of a set of attribute
values corresponding to one entity can be smaller with respect to the joined table
than with respect to the entity table, the itemset may not even be discovered
by Apriori, much less be used to generate an association rule. For example, the
support of age=20-30 is 20% (1/5) with respect to Join while with respect to
table Customers it is 33.33% (1/3).

Let us now consider another example in the rule age = 30 — 40 — type = in.
In this case the rule contains attribute age from entity Customers and attribute
type from entity ATMs. Since the rule contains attributes from two different
entities and these entities are related through relationship ATM_Activity it makes
sense to compute the support and confidence of this relation with respect to the
table obtained by joining Customers, ATM_Activity, and ATMs which in our
case is equivalent to using the table Join. By looking at the Join table we can
compute the support for this rule as 40% (2/5) and its confidence as 50% (2/4).

From these examples we can draw several conclusions:

Mining Association Rules in Entity-Relationship Modeled Databases 5

1. Running an Apriori algorithm on the join of the tables of a database can fail
to produce all existing rules or may produce rules whose parameters do not
properly reflect the knowledge embedded in the data.

2. The entity-relationship model of a database provides important information
concerning the relations between entities and this information should be used
by data mining algorithms.

3. When looking for association rules, rules among attributes of the same entity
should be analyzed with respect to the set of that entity’s instances. When
looking for association rules among attributes of several entities, we need
to look at how these attributes appear together so we need to analyze rules
with respect to the relationships existing between the entities. Note that if
several relationships exist between two or more entities, then the association
rules between their attributes must be examined with respect to each such
relationship. We discuss this issue in Section 5.

We have thus identified a problem that appears when mining a database
built from an entity-relationship model using standard mining algorithms. New
algorithms are needed to address this problem and in the next sections we discuss
such algorithms. Initially, we address the basic case of star schemas and then we
discuss the case of more complex schemas.

3 Mining association rules in star schemas

We examine extending the Apriori algorithm to make it work on the join of all
tables and, then, we investigate a method for mining association rules without
joining the tables, assuming a star schema organization of the database tables.

Definition 31 An entity itemset is an itemset {(A1,a1),...,{An,an)}, such
that {4; | i € {1,...,n}} C Attr(E) for some set of entities E € £.

A join itemset is an itemset I = {(A1,a1),... ,(A4,,a,)} such that (J;, A; C
Attr(R)UU;?:1 Attr(E;) and such that I is not an entity itemset. In other words,
a join itemset is an itemset whose attributes do not belong to the same entity.

The support of an entity itemset with respect to its entity table is called
entity support.

The support of an (entity or join) itemset with respect to the table Join is
called join support. i

Note that we can compute the join support for any itemset but the entity
support is defined only for entity itemsets.

It is impossible to predict the relative magnitude of the join support and
entity support for an itemset. The entity support may be greater or smaller
than the join support. In the example presented in the second section we have
seen that the join support of itemset {age = 30 — 40, balance = 50000 — 100000}
(60%) was greater than its entity support (33.3%). On the other hand the join
support of itemset {age = 20 — 30} (20%) was smaller than its entity support
(33.3%). This means that in the execution of an Apriori algorithm, for an entity

6 Laurentiu Cristofor, Dan Simovici

itemset candidate we should compute both its entity support and its join support.
If the entity support is greater than minimum support then the itemset should
be considered frequent; otherwise, if the join support is greater than minimum
support then the itemset is not frequent but it might be a subset of a frequent
join itemset and thus should be used in the candidate generation procedure.
Finally, if both supports are smaller than minimum support then the itemset
should be discarded.

We propose to modify the Apriori algorithm as follows: whenever we compute
and evaluate the support of a candidate itemset we consider two possibilities:

1. If the itemset is an entity itemset then both its join and entity supports
should be computed. The itemset should be considered frequent if its entity
support is greater than minimum support; otherwise, if its join support is
greater than minimum support, then the itemset should be used in generating
new candidate itemsets for the next step of the algorithm. If none of these
conditions is met the itemset should be discarded.

2. If the itemset is a join itemset, then its join support should be computed
and checked against the minimum support to determine whether the itemset
is frequent; otherwise, the itemset should be discarded.

In the apriori_gen procedure, which combines two itemsets of length k into
a candidate itemset of length k + 1, we would again have two possible cases:

1. If the resulting candidate itemset is an entity itemset, then we need to check
that all its subsets have entity support greater than minimum support or
that all its subsets have a join support greater than minimum support (so
that it can be used later for the generation of a join candidate itemset);
otherwise, the candidate should not be generated.

2. If the resulting candidate itemset is a join itemset, then we should just
verify that all its subsets have join support greater than minimum support,
otherwise we should not generate the candidate.

Next, we discuss how these changes can be used to obtain an algorithm for
mining the joined tables and an algorithm for mining the star schema.

3.1 Modifying Apriori for mining joined tables

In this section we want to devise an algorithm capable to mine a table containing
all the data existing in a star schema. Note that such a table can be obtained by
performing an outer join on all tables of the star schema. A simple join would
not be sufficient since then we could miss entity instances that do not participate
in the relationship.

In order for Apriori to generate rules with proper support and confidence
values it has to know about the existing entities that appear in the table on
which it is run. This can be done by keeping track for each attribute of the
key attribute of the entity to which it belongs. We focus on the problem of

Mining Association Rules in Entity-Relationship Modeled Databases 7

finding large itemsets since from these we can construct association rules by
applying standard algorithms. The algorithm described in this section is named
AprioriJoin; we assume that its input table is the OuterJoin table.

To compute the support of an itemset we need to differentiate between entity
itemsets and join itemsets.

For an entity itemset we compute its entity support as follows. We first
count the number of rows of OuterJoin that contain the itemset and that have
a distinct entity key. Then we divide this count by the number of distinct entity
keys to find the percentage of the entity support. To compute the join support
we have to count the number of rows that contain the itemset and that belong
to Join but not to QuterJoin, and then divide this value by the cardinality of
Join. Identifying the rows which belong to OuterJoin but not to Join is quite
simple: these are the rows that contain null entity keys. The rows of Join are
then identified as those that do not contain null entity keys.

For a join itemset we compute its join support by simply counting the rows
that contain the itemset and then dividing this value by the cardinality of Join.

There are few implementation difficulties in adapting an Apriori algorithm
to mine the OuterJoin table. Below we give a description of the main steps of
the resulting algorithm:

Algorithm AprioriJoin

Input: A minimum support value, the table QuterJoin resulted from outer
joining all tables of a star schema database, and the mapping of each attribute
to an entity key.

Output: The list AllFrequent of frequent itemsets.

1. Initialize the Candidate collection to all 1-itemsets.

2. Scan table QuterJoin and compute for all candidate itemsets the join sup-
port and, if appropriate, the entity support also.

3. Placeinto collection Frequent all itemsets from Candidate that have entity
support or join support greater than minimum support. Place into collec-
tion AllFrequent the entity itemsets that have entity support greater than
minimum support and the join itemsets that have join support greater than
minimum support.

4. From Frequent generate new candidates using the apriori_gen method mod-
ified as described at the beginning of this section. Place all newly generated
itemsets into Candidate.

5. If Candidate is empty exit.

6. Go to step 2

3.2 An algorithm for mining a star schema

In this section we present AprioriStar, an algorithm that correctly finds the
frequent itemsets in a set of tables organized in a star schema. A description of
its main steps is presented below.

8 Laurentiu Cristofor, Dan Simovici

Algorithm AprioriStar

Input: A minimum support value and a star schema database with entity
tables F1,..., E, and relationship table R.

Output: The list AllFrequent of frequent itemsets.

1. Scan R and store the number of occurrences of every value of each foreign
key (a step identical to the one in the JS algorithm).

2. Initialize the Candidate collection to all 1-itemsets (note also that these
are entity itemsets)

3. Scan tables Ey, ..., E, and during the scan of one table E; compute the en-
tity support for all itemsets from F; while also computing their join support
using the results obtained at step 1 (whenever we see a row containing the
itemset, the support of the itemset is increased with the number of occur-
rences of the row’s key value in the R table).

4. Place into collection Frequent all itemsets from Candidate that have entity
support or join support greater than minimum support. Place into collec-
tion AllFrequent the entity itemsets that have entity support greater than
minimum support and the join itemsets that have join support greater than
minimum support.

5. From Frequent generate new candidates using the apriori_gen method mod-
ified as described in the beginning of this section. Place all newly generated
itemsets into Candidate.

6. If Candidate is empty exit.

7. For all entity itemsets in Candidate from a table E; scan E; and compute
their join and entity supports.

8. Compute on the fly the join of tables R, Fy,...,E, and then for all join
itemsets in Candidate compute their join support with respect to the joined
tables.

9. Go to step 4

Note that in step 8 it is not required to compute the join of all tables if the
candidate itemsets do not contain attributes of all entities. For example, if the
candidate itemsets would just contain attributes of entities E; and E5, we would
just need to join R, Fy, E; and we could ignore tables Es, ... , E,.

The main differences between this algorithm and the JS algorithm are:

1. AprioriStar uses the join and entity supports in determining frequent item-
sets. By considering the entity support AprioriStar does not eliminate from
the result entity itemsets that are frequent with respect to their entity table
but not with respect to the relationship table and it also allows the compu-
tation of correct support and confidence for rules existing among attributes
of the same entity table.

2. AprioriStar does not compute the support of the join itemsets in a single
step as it was done by Jensen & Soparkar. Our approach avoids the explosion
of join candidates present in the final step of the JS algorithm.

Mining Association Rules in Entity-Relationship Modeled Databases 9

4 Experimental results

For our experiments we implemented in Java the algorithms AprioriJoin and
AprioriStar and we executed them on binary files containing synthetically gen-
erated data. The files represented a star schema with three entity sets and a
relationship set and they were indexed for the faster random access needed by
the implementation of AprioriStar.

The test data was built as follows: first we generated synthetic data for
the AprioriStar algorithm by creating a database with three entity sets and
a relationship set and then, we outer joined these tables to obtain the table
on which we executed the AprioriJoin algorithm. For the generation of the
entity tables we have used our implementation of the synthetic data generator
described by Agrawal and Srikant in [AMS196] and for the generation of the
relationship table we have used our own synthetic data generator.

The synthetic relation generator yields a number of relationships for each of
the tuples of a specified entity table. The average and standard deviation for
this number of relationships are specified by the user and are generated using
a normal distribution. Also, for each such tuple we randomly select a sample of
tuples from every other entity table that can be involved in the relationships to
be generated. The size of the sample selected from each entity table is produced
using a Poisson distribution with mean specified by the user. Finally, we generate
relationships by randomly selecting the participating tuples from the samples
previously constructed.

We first generated two types of databases, a sparse one (having a small
average number of items per transaction and having fewer frequent itemsets)
and a dense one (having a larger average number of items per transaction and
more frequent itemsets), to which we refer from now on as databases SPARSE
and DENSE.

We verified the scalability of the algorithms by doubling twice the contents
of the database SPARSE, thus obtaining databases SPARSEx2 and SPARSEx4.
The duplication of the database SPARSE was done in the following way: first
we have duplicated the rows of all entity tables and then we have duplicated
the relations and made the duplicate relations refer to the duplicated entity
instances instead of the original ones. Thus, we have obtained a database whose
tables had twice the size of the original table but which contained the same rules
as the original database.

For both the SPARSE and DENSE databases, all the entity instances are
participating in relationships from R which is not the case for a third database
called OUTER, where only half of the transactions of each entity table partici-
pate in relationships of R. OUTER was obtained by generating two different sets
of entity tables and then concatenating them. For this database, the relationship
table R consisted of the relationship table generated for the first set of tables.

The main characteristics of these datasets are presented in the table below;
for OUTER we separated by a slash the characteristics of the first and second
sets of tables that were used for its generation.

10 Laurentiu Cristofor, Dan Simovici

Test database characteristics

Characteristics [SPARSE[DENSE[OUTER
Entity B

Number transactions 10000] 10000] 20000

Average transaction size 7 20 7/12

Number of items 60 60 60

Number of frequent patterns 100 50 100

Average pattern length 5 10 4/10
Entity Eqo

Number transactions 100 100 200

Average transaction size 4 4 4/7

Number of items 10 10 10

Number of frequent patterns 10 10 10

Average pattern length 2 2 2/5
Entity Eg3

Number transactions 1000 1000 2000

Average transaction size 5 10 5/9

Number of items 20 20 20

Number of frequent patterns 50 20 50

Average pattern length 3 5 3/7

Relationship R

Total number relationships 100380] 95753] 05985

Average and standard deviation

of number of relationships 10,8 10,5 10,5

for each tuple of entity one

Second entity sample mean 10 5 20

Third entity sample mean 20 20 50
Outer Join

Number tuples [100380] 95753] 107085

We have executed the algorithms on a Sun Ultra-10, running Sun OS 5.7,
with 512MB of memory. We used Sun’s JDK 1.2.2 for compiling and running
the programs (and avoided the use of the JIT compiler that is currently of-
fered by Sun as an experimental version). The times were measured using the
/usr/bin/time command.

The following table presents the results of our experiments. In parentheses
we have indicated the number of frequent itemsets and the largest size of such an
itemset for the respective algorithm execution. For example (13/3) means that
the algorithm has found 13 frequent itemsets and the largest one consisted of 3
items. Since SPARSEx2 and SPARSEx4 contain the same patterns as SPARSE,
we have not duplicated this information in their case and we have only displayed
the time taken by the algorithms.

Test results

Minimum|SPARSE SPARSEx2|SPARSEx4|DENSE OUTER
AprioriJoin results
0.5 BmO01s (13/3) T0m02s 20m23s 23m10s (912/7) 7m30s (26/3)
0.4 6maTs (38/4) 13m14s 27m23s 33mb52s (3275/8) Tm58s (77/4)
0.3 6m59s (100/4) |13mb4s 28m04s 1h11m21s (14788/10) [10m18s (217/5)
0.2 9m15s (340/5) |18m26s 37m28s 4h38m15s (106219/11)|13m31s (878/6)
0.1 17m06s (2145/7)|34m10s 1h08m49s |- 24m56s (5968/9)
AprioriStar results
0.5 Bm27s (13/3) TIm02s 20mads 24mabs (912/7) Bm12s (26/3)
0.4 7m50s (38/4) 15m28s 30m45s 35m22s (3275/8) Tm40s (77/4)
0.3 7m59s (100/4) |15m38s 31m33s 1h14m15s (14788/10) [10m12s (217/5)
0.2 11m00s (340/5) |21m39s 43m38s 4h28m51s (106219/11)|13m30s (878/6)
0.1 21m00s (2145/7)|41m30s 1h22m31s |- 22m50s (5968/9)

There are a couple of important observations to be made from the test results.
First, it can be observed that the algorithms scale linearly as the number of
tuples of the database increases. With respect to the relative performance of the
algorithms we can note that the AprioriJoin algorithm is almost always a little
faster than AprioriStar when working on databases where all entity instances
are participating to the relation R. This isn’t surprising given that on such
databases AprioriStar would find frequent join itemsets at each step and thus
would have to build the join of the tables as often as AprioriJoin would perform

Mining Association Rules in Entity-Relationship Modeled Databases 11

its scan which means that AprioriStar would end up doing more I/O operations
than AprioriJoin since it also has to scan the entity tables in a separate step.
However, in the case of database OUTER, we can notice that AprioriStar
outperforms in all cases AprioriJoin. This is due to the combination of two
factors. The first factor is that in database OUTER at one point the algorithm
generates only entity candidates, which in turn means that AprioriStar will
avoid performing a scan of the join of the tables and will just scan some of the
entity tables. This is the main reason for the more significant difference obtained
in the experiment using a minimum support value of 0.1. The second factor is
that AprioriJoin works on a table that is obtained from an outer join and that
is thus larger than the join table built on the fly by AprioriStar, which makes
the I/O requirements of the algorithms to be comparable, hence the rather small
difference in performance for the minimum support values 0.2-0.5.

We also expect that for more complex schemas than star schemas, algorithms
that mine separate tables would prove more efficient than algorithms that would
work on a single table, but more work is needed in order to verify this assumption.

5 Conclusions and Future Work

In this paper we approached the problem of mining association rules in databases
consisting of several tables organized in a schema obtained from an entity-
relationship design. We have focused mainly on the problem of mining a star
schema database. We noticed that previous algorithms did not take advantage
of the knowledge already embedded in an entity relationship model regarding
the relationships between the database entities. To address this issue we intro-
duced the notions of entity and join support and we presented two algorithms:
algorithm AprioriJoin, for mining the outer join of a star schema tables using
knowledge of the schema, and algorithm AprioriStar, for directly mining the
star schema database. These algorithms were tested on synthetically generated
databases and the results of our tests show that both algorithms scale linearly
with respect to the size of the input database. The results also show that in the
case of a star schema there is no clear winner between the two algorithms in
terms of time performance.

To handle more complex database designs we start from the fact that the
entity-relationship diagram of a database D is a bipartite, connected graph Gp
whose set of nodes is partitioned into sets of entities and sets of relationships.
Let € be the collection of sets of entities and let R be the collection of the sets
of relationships involved in the model. For a set of attributes X let £(X) be the
set of all entity sets in € that contain some attributes in X. Also, for a collection
of entity sets F, where F C &, denote by M (F) the collection of all minimal sets
of relationships § such that the subgraph of §Go generated by FUS is connected.
For example, if § = {E;, E», E3} is a collection of sets of entities (shown in
Figure 2), then M (F) consists of {{R1},{R2, Rs}}. We refer to these members
of M(F) as connectors of F.

12 Laurentiu Cristofor, Dan Simovici

Fig. 2. Entity-Relationship Diagram

For a set of attributes X and every connector Q of M (£(X)) we consider the
subgraph Gx o of the entity-relationship diagram determined by (X)UQ. Each
such subgraph is a union of “star” graphs and one can define the support of X
relative to the join of the tables that represent the sets of entities and the sets
of relationships corresponding to the vertices of the graph Gx o.

Consider, for example, a small database for a university having two entities:
Professors and Students whose entity-relationship diagram is shown in Figure 3.

PROFESSORS

professor-age

STUDENTS

student_age

Fig. 3. Entity-Relationship Diagram of University Database

There are two relationships between these two entities: ADVISING and
TEACHING. For the set of attributes X = student_age professor_age we have

&(X) = STUDENTS PROFESSORS,
M(&(X)) = {{ADVISING},{TEACHING}}.

Thus, for a rule like student_age > 30 — professor_age > 40, one could con-
template the support relative to the table obtained by joining ADVISING, STU-
DENTS, and PROFESSORS, or to the table obtained by joining TEACHING,
STUDENTS, and PROFESSORS.

In the future, we intend to investigate efficient algorithms for computing the
support of itemsets relative to various connectors that may exist for a set of
attributes and to examine the effect of the topology of the entity-relationship
diagram on the resources required for these computations.

Mining Association Rules in Entity-Relationship Modeled Databases 13

References

[AAP00a] R.C. Agarwal, C.C. Aggarwal, and V.V.V. Prasad. Depth first generation
of long patterns. Proceedings of the 6th ACM-SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages 108-118, 2000.

[AAPOOb] R.C. Agarwal, C.C. Aggarwal, and V.V.V. Prasad. A tree projection al-
gorithm for generation of frequent itemsets. Journal of Parallel and Dis-
tributed Computing, Special Issue on High Performance Data Mining, 2000.

[AIS93] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between
sets of items in large databases. Proceedings of ACM-SIGMOD Interna-
tional Conference on Management of Data, 1993.

[AMS™96] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Inkeri Verkamo.
Fast discovery of association rules. In U. M. Fayyad, G. Piatetsky-Shapiro,
P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery
and Data Mining, pages 307-328. AAAI Press, Menlo Park, 1996.

[BMUT97] Sergey Brin, Rajeev Motwani, Jeffrey Ullman, and Shalom Tsur. Dynamic
itemset counting and implication rules for market basket data. Proceedings
of ACM-SIGMOD International Conference on Management of Data, pages
255-264, 1997.

[CCS00] D. Cristofor, L. Cristofor, and D. Simovici. Galois connections and data
mining. Journal of Universal Computer Science, 2000.

[DRI7] Luc Dehaspe and Luc De Raedt. Mining association rules in multiple re-
lations. Proceedings of the 7th International Workshop on Inductive Logic
Programming, pages 125-132, 1997.

[HPY00] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without
candidate generation. Proceedings of ACM-SIGMOD International Confer-
ence on Management of Data, pages 1-12, 2000.

[JS00] Viviane Crestana Jensen and Nandit Soparkar. Frequent itemset counting
across multiple tables. Proceedings of PAKDD, pages 4961, 2000.

[SON95] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for min-
ing association rules in large databases. Proceedings of the 21st International
Conference on Very Large Databases, 1995.

[ST95] Dan A. Simovici and Richard L. Tenney. Relational Database Systems.
Academic Press, New York, 1995.

[ZH99] Mohammed Zaki and Ching-Jui Hsiao. Charm: An efficient algrithm for
closed association rule mining. Technical Report 10, Renssaeler Polytechnic
Institute, Troy, New York, 1999.

