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Abstract. This paper addresses the clustering problem given thesgitgima-
trix of a dataset. By representing this matrix as a weighteglg we transform
this problem to a graph clustering/partitioning problemckhaims at identify-
ing groups of strongly inter-connected vertices. We defivedistinct criteria
with the aim of simultaneously minimizing the cut size andating balanced
clusters. The first criterion minimizes the similarity beewn objects belonging
to different clusters and is an objective generally met ustdring. The sec-
ond criterion is formulated with the aid of generalized epy. The trade-off
between these two objectives is explored using a multiativie genetic algo-
rithm with enhanced operators. As the experimental reshitsv, the Pareto
front offers a visualization of the trade-off between the wbjectives.

1 Introduction

Clustering is a problem intensively studied within the daiaing community because of
its wide applicability in diverse fields of sciences, engirieg, economy, medicine, etc. and
consists of identifying natural groups in data. There existde range of clustering techniques,
based on various principles which consequently delivdouarsolutions. Because of the vague
definition of the optimum, clustering is a very difficult opization problem. From the point
of view machine learning, clustering is regarded as unsigedt learning due to the lack of
any external information, except the data itself.

Data items can occur as either as tuples, which are ordegegsees of categorial or nu-
merical values, or as simple objects for which only pairvéseilarities or dissimilarities are
provided. The first kind of layout offers more informationdais suitable to any clustering
algorithm once an appropriate metric is chosen. The secombdannot be supplied to any
clustering algorithm (e.g4-means), but eliminates one difficult step in unsupervidad-c
tering analysis - the definition of an appropriate similariteasure. The transition from the
first kind of layout to the second is trivial when a similaritynction is defined; the backward
transition can be performed to some extent using multi-dsianal scaling algorithms.

This paper addresses the clustering problem given theasitgilmatrix of a dataset. A
straightforward representation of the problem instandhiscase is a weighted graph, having
the objects as vertices and weighted edges expressingrtiiargty between objects. This
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leads to a graph clustering/partitioning problem whichsahidentifying groups of strongly
inter-connected vertices.

There exist several formal definitions of graph clusterigpending on the practical ap-
plication and domain where the problem originates. Thesatians are reflected in the graph
structure and in the objectives aimed to be optimized. Aesypon various problem definitions
and methods for graph clustering is presented in Scha&&r7).

The graph clustering problem this paper addresses hastampapplicability in VLSI cir-
cuit design, image processing, and distributing workldadparallel computation. A formal
definition is given next.

A similarity spacds a pair(.S, w), wherew : S x S — R is a function such that

() w(s,t) > 0foreverys,t € S;
(i) w(s,t) =w(t,s) foreveryt,s € S;
(i) w(s,s) =1foreverys € S.

A similarity space(S, w) can be regarded as a labelled gréphk- (S, E, w), referred to as the
similarity graph where the set of edgdsis defined as

E = {(Si,8j> | Siy S5 € Sandw(si,sj) > 0}

In other words, an edge exists between two vertices onlyelf thave a positive similarity; in
this case, the edde,, s,) is labelled byw(s;, s;).

If S'is afinite setS = {s1, ..., s, }, the dissimilarityw is described by a symmetric matrix
W e R™", wherew;; = w(s;,s;) forl <i,j <n.
A k-way clustering of a finite similarity spadé, w) is a partitionx = {C4,...,Cy} of

S. The setg, ..., C} are the clusters of. We seek &-way partition ofS, « such that

(i) the cut size (i.e. the sum of weights of edges betweeneaisisn the similarity graph) is
minimal, and

(i) |Cp| = |Cyl, for 1 < p,q < k, which means that the sizes of the clusters are as equal as
possible.

The first objective is generally met in any clustering protl¢he elements belonging to differ-
ent clusters should be dissimilar. In network applicatitnswould correspond to minimizing
the communication time. The second objective expressesdsblalancing constraint, inherent
in network applications.

This multi-objective problem was intensively addresseliénature in the last thirty years.
One of the earliest approaches is the method obtained byidéerm and Lin (1970) which
refines a given (randomly generated) partition in a greedymaeby reallocating pairs of nodes
between clusters; like all greedy optimizers, this is a lldmgrovement algorithm. Several
improvements with regard to time complexity were later sgd. The most used methods
are recursive algorithms: in a first step a two-way partitigris obtained after which, each
of the clusters is bisected to obtain a four-way partitignamd the process continues until
the desired number of clusters is reached. Recursive gpbitection algorithms (see Simon
(1991)) are known to deliver good solutions but at high cotafional cost because they require
eigenvector computations.

To deal with large graphs, multilevel algorithms were pregueh They consist basically of
three phases: coarsening, partitioning and uncoarsetimthe coarsening phase the graph
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is compressed by successively collapsing nodes. A panitigpprocedure (such as the one
obtained by Karypis and Kumar (1998) or a spectral methodgmted by Barnardand and

Simon (1993)) is applied on the coarsened graph. In the usenig phase, a partition is

built for the original graph by assigning the collapsed rottethe same cluster; a costless
refining phase may be used at this level.

An extensive state-of-the-art of the methods and comparstiidies can be found in Fjall-
strom (1998), Karypis and Kumar (1998) and Alpert (1998).

Because of the multi-objective nature of the problem, wéleathe graph partitioning
problem with a multi-objective genetic algorithm with emlcad operators. The benefits of
such an approach are obvious: instead of delivering a ssajléion, a set of several non-
dominated solutions approximating the Pareto front isrretd. As the experimental results
show, the Pareto front offers a visualization of the traffdaetween the two objectives; the
shape of the Pareto front offers valuable information fa ithentification of the optimum
solution.

The paper is structured as follows. Section 2 examines theohjectives which have to
be optimized as stated in the problem definition. Section@ides a brief survey on the
genetic algorithms for clustering with an emphasis on thdtirobjective formulation; the
representation and the operators we used are detailedoibéqgiresents experimental results.
The paper concludes with a short discussion.

2 Clustering as multi-objective optimization

Letk = {C4,...,Cy} aclustering of the objects of the s&t= {s1,..., s, }. The matrix
X e R™** defined by
Tip = {1 if s; € Cp,

0 otherwise

represents the clustering Note that each row of this matrix contains a singlend that the
total number ofl entries equals the numberf elements of the sef.
The matrixY’ = X’X e R*** is given by

n n
j— / . — . .
Ypg = E :mp’im'“] = E :mwx,q (1)
i=1 i=1

for 1 < p,q < k. Since any two cluster§’,, C, are disjoint, this a diagonal matrix. Its
diagonal elements atg,, = |C,,| for 1 < p < k.
Let§ = (S, F,w) be the similarity graph of. The symmetric matriX¥ € R"*" is
defined by
1997 if ¢ ‘7
S
1 if 1 =7,
for1 <i,j <n.
LetZ = X'WX € R*** We have

n n n n

_— I .. . e . .. .
Zpq = E :E :mpz‘ww%q = E E LipWijLjq

i=1j=1 i=1 j=1
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for 1 < 4,j < n. Therefore, for the distinct clusters,, C,, z,, is precisely the value of

cut(C,, Cy). Note also that
Zpp = Z Z LipWijTjp
i=1 j=1
equals the sum of the similarities between the objects otlingtersC,,. Clearly, to achieve
maximal intra-clustering cohesion and minimal inter-tdugg dissimilarity it is necessary
that the trace of the matriX (that is, the sum of the diagonal elementsgfto be maximal
and the sum of the off-diagonal elements/tbfo be minimal,

Since Z is a non-negative matrix, its north Z ||;= Z’; 1 Z’; 1 |2pq| coincides with
the sum of its elements. Moreovél,Z |1= > ., Z _, w;; and is constant for a given
similarity matrix W, regardless of the clusteriny. Therefore the total weight of the inter-
cluster cuts equals Z || —trace(Z) and minimizing it is equivalent to maximizing the total
within clusters similarity which is given asce(Z) = Z’“_l Zpp-

We use a novel approach to insure that the clustens afe balanced. To this end, we
use the generalized entropy of partitions of finite sets 8emvici and Djeraba (2008)) intro-
duced by Dar6czy (1970) and by Havrda and Charvat (1967)xndhatized by Simovici and
Jaroszewicz (2002). The use of entropy is suggested by théha it is a natural instrument
for evaluating the balancing quality of a probability distition, and, therefore, the balancing
quality of a partition of a finite set.

For a partitions = {C4,...,Cy} of a setS and a numbef > 1, the-entropy is defined

by .
|Cyl
Ho () = 1_w< Z_IT)

Note thatlimg_1 Hs (i) = — S, ‘I%Il 10g, ll L. In other words, the Shannon entropy is a
limit case of the generalized entropy
An important special case of the entropy is obtainedfer 2. We have

=215 ).

and this is the well-known Gini indexjini(x) used frequently in statistics. Although we use
the Gini index in this paper, our approach can be extendesdother types of entropies and it
would be interesting to examine the impact of the specifie typentropy on the performance
of the algorithm.

The largest value df(s(x) is obtained whem consists of singletons, that is, when= n

andk = as = {{s;} | 1 <i < n}andisHz(as) = 2 ( l';‘lﬁ ) the least value

of Hz(r) is obtained for = wg and equal$.

For a prescribed numbérof blocks (wherek is a divisor of|S]), the maximum value of
Hps(k) corresponds to a partition having blocks of equal sizes.i$fnot a divisor ofS, then
the more uniform the sizes of the cluster, the larger is theevaf H (). This indicates that
maximization of the entropy can be used as a criterion foueng the uniformity of the cluster
sizes. We will use the Gini index af because it presents certain computational advantages as
shown next.
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Theorem 2.1 Letx = {C4,...,C} a clustering of the objects of the s&t= {s;,...,s,}
and letX € R"** be the characteristic matrix of the clustering. We have

gini(x) = 2(1 — trace( X' X X' X)).

Proof. The definition of the matri¥” impliestrace(X’X X'X) = trace(Y?). SinceY is
a diagonal matrix, we have

k
trace(Y?) = Z |C, |2
p=1

by Equality (1). Thus,

K 2
gini(k) = 2 <1 - Z % ) = 2(1 — trace(Y?)) = 2(1 — trace(X' X X' X)),

which concludes the proof.
Thus, two objectives can be used to find a balaricetiisterings:
(i) minimization of the total cut of the clustering partitipwhich amounts to minimization
of
[(X) =| Z |1 —trace(Z) =[] X'WX |; —trace(X'W X)) 2

(i) maximization of cluster uniformity, which is equivaleto the maximization of the Gini
index of x, or to the minimization of

f2(X) = trace(X' X X'X) (3)

We seekX subjected to the conditions, € {0,1} for1 <i <mnandl < p < k. Depending
on the aspects we need to emphazise in the clustering we eaa csnvex combination of
these criteria:

D, (X) a fi(X)+ (1 —a) fa(X)

a (|| X'WX || —trace(X'WX))+ (1 —a)trace( X' X X'X),

wherea € [0, 1].
To simultaneously minimize criterif and f2, also a non-linear combination can be used:

X)) | X'WX ||, —trace(X'WX) 4
n2 — fo(X) n? —trace( X’ X X'X) (4)

The criterion¥ (X') measures the average link between clusters, because theigheror
is proportional with the number of pairs of items that oceudistinct clusters.

3 The clustering algorithm

We use a genetic algorithm (GA) to deal with the graph clirsggproblem, because such
algorithms provide a good exploration of the search spadeaesmable to deliver high-quality
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solutions. GAs are soft-computing paradigms inspired frmatural evolution. In contrast
with the rigid/static models of hard computing, these rainspired models provide self-
adaptation mechanisms which aim at identifying and exiplgithe properties of the instance
of the problem being solved.

GAs are iterative algorithms. They work with a populationcahdidate solutions (also
called individuals or chromosomes) which evolve in ordeadapt to the "environment" de-
fined by a "fitness function". They involve a degree of randessnwhich classify them as
probabilistic methods. Several approximate good solstame returned.

An important advantage over classical computational noth®their extended usability.
GAs are general-purpose heuristics that can be used to diverse optimization problems,
extract patterns from data in the machine learning field ¢kssifier systems) or can be useful
tools in the design of complex systems.

In a standard GA an individual/chromosome encodes a catedgdution as a bitstring.
The initial population is generated randomly or with the afdyreedy heuristics. An itera-
tive process begins, each iteration consisting of threenrai@ps: evaluation, selection and
recombination.

The evaluation phase assigns a fitness value to each indhiitdhe population. The
fithess function is constructed based on the objectives topltienized in the problem being
solved: the higher the fithess assigned to an individuahis bietter the solution encoded by
the individual is.

The selection phase simulates natural selection, the ditiopdor survival. At this stage
individuals are chosen to breed and create offsprings, ljnhesed on the individual merit
measured by the fitness function. Usually, selection is méérdhinistic, and it involves a
degree of randomness which is essential for maintainingrslity in the population. The lack
of diversity is the main culprit for premature convergenied aub-optimal solutions.

The recombination phase aims at creating new individualagptying genetic operators
which are inspired from natural reproduction: crossovet mnutation. Crossover is a binary
operator which combines the information encoded in two etosomes and usually produces
two offsprings. Mutation is an unary operator: it alters thf@rmation encoded in one chro-
mosome and produces one offspring. Not all chromosomesneduin the selection phase
are subjected to these operators. Two parameters actingplbahjility rates decide the fre-
quency of these operations. Along with the population dizese are numeric parameters of
the algorithm and are usually empirically determined, i& $o-called optimization phase of
the algorithm.

The solution returned by a genetic algorithm is the bestiddal in the last iteration of
the algorithm. Several solutions can be reported if necgssa

Like all meta-heuristics, GAs are weak, general optimiz&osincrease their performance,
the representation of the candidate solutions and the tmpemaust be adapted to incorporate
specific knowledge. First attempts to use evolutionaryr@gres in clustering date back to
1991 (see Krovi (1991)) when genetic algorithms were pregds search for the optimal
partition with an apriori-fixed number of clusters. The etiog used is a straightforward one:
solutions are strings of integers, of length equal with tlze sf the data set, th&" integer
signifying the cluster number of data itelm When used in conjunction with the standard
genetic operators, this encoding suffers from several blaaWs like redundancy and invalidity
and determines a slow convergence of the algorithm.
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In Luchian et al. (1994) a new encoding is proposed whichidens only cluster represen-
tatives, allowing for simultaneous search of the optimumnhar of clusters and the optimum
partition. The partition is constructed in a manner simitak-means: the data items are as-
signed to clusters based on the proximity to the clusteressprtatives. Other more complex
encodings were proposed over time (e.g. rules which buikickigthe feature space), but this
encoding became the most used when approaching clusteifhgvolutionary techniques.
The criterion optimized in approaches of this kind is the pantness computed based on the
distances between the data items and the cluster centers.

Real-world problems necessitate most of the times the diion of several conflict-
ing objectives. Usually, this is achieved by combining thogectives into a single function.
However, some objectives may be more important than otteera fiven problem and their
relative importance cannot be established beforehand. e&b wlith this kind of problems,
multi-objective GAs were proposed. These algorithms ojénsimultaneously several objec-
tives and return a set of non-dominated solutions which @pprate the Pareto front. For a
problem involvingm objectives denoted witlf;, 1 < ¢ < m which have to be minimized, a
solutionz is dominated by a solution* if

fi(z™) < fi(x), Yi=1..m, and 31 < j <m s.t. f;(z*) < f;(z).

The Pareto optimal set of solutiod§* consists of all those solutions for which no improve-
ment in an objective can be made without a simultaneous worgén some other objective.
In other words, the Pareto front consists of all solutioret #ire not dominated by any other
solution.

The multi-objective scheme we use to tackle the graph aingi@roblem is PESA-II ob-
tained by Corne et al. (2001). The algorithm maintains twpysations of solutions. An
external population stores mutually non-dominated chirsgesolutions, which correspond to
different trade-offs between the two objectives. At eaeleition an internal population is cre-
ated by selecting chromosomes from the external populafibis selection phase takes into
account the distribution of solutions across the two objestby maintaining a hypergrid of
equally sized cells in the objective space. The solutioessatected uniformly from among
the populated niches such that highly populated niches tloardribute more solutions than
less populated ones. After selection, the crossover andtimntoperators are applied within
the internal population. The external population is upddig joining the two populations
and eliminating the dominated solutions. The general sehefithe algorithm is presented in
Algorithm 1.

This multi-objective algorithm was previously used by Headd Knowles (2005) in un-
supervised clustering (when the number of clusters is netlfand evolve during search) with
very good results. The objectives they optimized were cotivity and the within-cluster de-
viation and because the number of clusters was allowed o aatifferent representation and
consequently different operators were used.

The straightforward representation of a solution for theifianing problem is a string,
encoding the cluster membership of each data item. Thigissresentation used in our GA:
an individual is a string of length (the number of vertices in the graph), taking values in the
set{1,...,k}, wherek is the number of clusters.

If the standard operators would be used, this encoding wsuifligr from several draw-
backs like redundancy and invalidity and would determindos s£onvergence of the algo-
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Fig. 1 — PESA-II
Initialize IP (internal population)
Evaluate IP
Initialize EP (external population) to include all mutwyall
non-dominated solutions from IP
while halting condition not met do
delete the current content of IP
fill IP with individuals selected uniformly among the niclfesm EP
apply crossover and mutation in IP
Evaluate IP
Update EP
end while

rithm. However, due to the multi-objective scheme used &ednew operators we propose,
this drawbacks are eliminated.

In the initialization phase a minimum spanning tree (MSTgasstructed using Prim’s al-
gorithm. Half of the population is initialized with candigssolutions created by repeating the
following procedurek — 1 edges are randomly removed from MST and the connected compo-
nents are marked as individual clusters. The rest of thelptipn is filled with chromosomes
generated randomly.

The crossover operator takes as input two partitions (iddals in the population) and
computes their intersection. Since the new partition hasertteank clusters, clusters are
merged until the required number is reached. The decisiemade with regard to the two
objectives to be optimized and therefore two distinct avuss operators are use. One opera-
tor aims at decreasing the cut size and therefore performs #erations of the hierarchical
agglomerative clustering algorithm using average linkagé¢ric. The second operator merges
iteratively the two smallest clusters aiming at balanchngdlusters, until a number éfclus-
ters is reached.

The mutation operator takes as input a single partition a@adlacates a randomly cho-
sen vertex and its most similar adjacent vertices to a rahdohosen cluster. The number
of adjacent vertices to be reallocated decreases duringutheo that in final iterations only
small perturbations are allowed. This strategy allows fouak exploration/diversification
phase of the search space in first iterations of the algoniimich degenerates into an ex-
ploitation/intensification phase in last iterations.

The fitness functions used in our multi-objective genetjgrapch are based on the two ob-
jectives presented in Section 2 and are formulated for mzation. We maximize the entropy
by minimizing the Gini index criterion 3 and minimize the axge cut size as expressed by
Equation (4).
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4 Experiments

Experiments were conducted on synthetic datasets com¢aivell-defined clusters of var-
ious sizes. The synthetic generator designed by Handl amevks! was used to create five
datasets, each one consisting of 1500 data items groupe8 aftisters. The clusters in a data
set are built iteratively based on covariance matrices lwhéed to be symmetric and positive
definite. Overlapping clusters are rejected and regergsnaitéil a valid set of clusters is found.
The datasets are namedras— no — n3 with n,, denoting the size of clustet

The size of the internal population was set to 10. The maxinsiza for the external
population containing non-dominated solutions was se®@liut in our experiments it did not
exceed 250 elements. The number of iterations was set tdd1000

Figure 4 presents the set of non-dominated solutions retuim the last iteration of the
genetic algorithm. The fithess values corresponding toledriteria to be optimized are
normalized in rang€0, 1] and are plotted as follows: the horizontal axis correspdadsri-
terion (3) expressing how unbalanced the clusters are amdéltical axis corresponds to
Criterion (4) expressing the average cut size. The soluiosest to the real partition of the
dataset is marked as a square; in this regard, the Adjusted Rdex (see Hubert (1985)) is
used to evaluate the quality of the partitions. The partitorresponding to the best/minimum
score computed as sum between the two objectives is marlaettiaagle.

The shape of the Pareto front plotted for datasets of varegsees of uniformity is an
indicator of the interaction between the two objectivescd&ese both objectives are formulated
for minimization, the desirable position of a clusteringagvards the southwestern corner of
the diagram. Experimental results show that the averaggzzitannot be lowered indefinitely
without severely affecting the balancing of the clustersgdap is recorded for the criterion
measuring the uniformity once the optimum solution (withaed to the true partition) is met.
This gap is due to the dependency between the two objectivesecond criterion measuring
the average cut size is built using both the cut size and ttre@n(the first objective).

The best solution with regard to the real partitioning of da¢aset is very close to the so-
lution retrieved as a convex combination between the twedaihbjes. In all cases the Adjusted
Rand Index takes values higher than 0.95, which indicatesyactose match to the real par-
tition. Experimental results show that a convex combimabetween the two criteria is able
to identify a near-optimum solution if the final set of nonatioated solutions is normalized
within the same range for both objectives.

To highlight the advantages of our multi-objective apptoaeer other graph clustering
methods, the well-known recursive partitioning algoritMETIS? is used, which delivers
only perfectly-balanced clusters, even though in pradtic® may not be the best solution
from the point of view of the cut size.

Table 1 presents comparative results. The Adjusted RarekI(A&Rl) is reported for the
solutions corresponding to: 1) the partitioning with thghest ARI value, 2) the best parti-
tioning under the convex combination (average) over thedriteria normalized in range [0,1]
and 3) the best balanced partitioning from the non-doméhse¢ of solutions delivered by the
genetic algorithm, which corresponds to clusters of equal sAlso, the ARI is reported for
the partition computed with METIS.

1. http://dbkgroup.org/handl/generators/generatdfs.p
2. http://glaros.dtc.umn.edu/gkhome/
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FIG. 2 — The set of non-dominated solutions for various dataset® Hidrizontal axis cor-
responds to criterion 3 expressing how unbalanced the @lssire and the vertical axis cor-
responds to criterion 4 expressing the average cut size. bBEise match to the real partition

is marked as a square. The partition corresponding to theirmim score computed as sum
between the two objectives is shown as a triangle.
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Instance best under ARI| best convex| best balanced METIS
combination

500-500-500 0.9999 0.9880 0.9999 | 0.9999

500-600-400 0.9909 0.9909 0.8111| 0.8118

500-700-300 0.9625 0.9535 0.6588 | 0.6817

500-800-200 0.9839 0.9839 0.5764 | 0.5954

500-900-100 0.9950 0.9950 0.5615| 0.5493

TAB. 1 — Comparative Results

Experimental results show that our algorithm is comparafitte METIS with regard to the
quality of the balanced partitioning. However, a near{opiimatch with the true partitioning
of the dataset can be extracted from the final the set of nomirdiied solutions in a unsuper-
vised manner, using a convex combination of the two critggaise. Furthermore, this set can
be explored to extract the most convenient solution for tiedlem being solved.

Also Figure 4 shows that the non-linear criteri@X') given by Equality (4) biases the
search towards highly balanced clusters and can be suslttgssied when a perfectly balanced
partition is desired. Its convex combination with the aitiea measuring the balancing degree
of the partitioning is necessary to retrieve the true partihg.

5 Concluding Remarks and Future Work

The current paper presents a multi-objective approachetgtaph clustering problem. A
novel criterion is proposed to measure cluster unifornbiaged on the generalized entropy. A
multi-objective genetic algorithm that returns a set ofwlmminated solutions is used to study
the interaction between the two criteria and to extract ftémim solution.

Future work will be conducted towards integrating a mugtidl strategy within our ap-
proach in order to make it feasible for very large problerogfi/LSI design.
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Résumeé

Cet article traite le probléme de classification a partimé'umatrice de similarité sur un
ensemble de données. En représentant cette matrice comgnapire pondéré nous transfor-
mons ce probléeme en un probléme de classification/sépaigiiosise a identifier des groupes
de sommets fortement inter-connectés. Nous définissonsat@ares distincts pour obtenir
des clusters équilibrés et bien separés. Le premier criignenise la similarité entre les objets
appartenant a différents groupes et constitue un objeétiEgalement atteint en matiére de
regroupement. Le deuxiéme critére est formulé avec I'a@ketropie généralisée. Le com-
promis entre ces deux objectifs est exploré en utilisanigordhme génétique multi-objectifs
avec opérateurs renforcés. Comme les résultats expéemelet montrent, le front de Pareto
offre une visualisation des compromis entre les deux oifgect
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