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Abstract. This paper addresses the clustering problem given the similarity ma-
trix of a dataset. By representing this matrix as a weighted graph we transform
this problem to a graph clustering/partitioning problem which aims at identify-
ing groups of strongly inter-connected vertices. We define two distinct criteria
with the aim of simultaneously minimizing the cut size and obtaining balanced
clusters. The first criterion minimizes the similarity between objects belonging
to different clusters and is an objective generally met in clustering. The sec-
ond criterion is formulated with the aid of generalized entropy. The trade-off
between these two objectives is explored using a multi-objective genetic algo-
rithm with enhanced operators. As the experimental resultsshow, the Pareto
front offers a visualization of the trade-off between the two objectives.

1 Introduction

Clustering is a problem intensively studied within the datamining community because of
its wide applicability in diverse fields of sciences, engineering, economy, medicine, etc. and
consists of identifying natural groups in data. There exista wide range of clustering techniques,
based on various principles which consequently deliver various solutions. Because of the vague
definition of the optimum, clustering is a very difficult optimization problem. From the point
of view machine learning, clustering is regarded as unsupervised learning due to the lack of
any external information, except the data itself.

Data items can occur as either as tuples, which are ordered sequences of categorial or nu-
merical values, or as simple objects for which only pairwisesimilarities or dissimilarities are
provided. The first kind of layout offers more information and is suitable to any clustering
algorithm once an appropriate metric is chosen. The second kind cannot be supplied to any
clustering algorithm (e.g.,k-means), but eliminates one difficult step in unsupervised clus-
tering analysis - the definition of an appropriate similarity measure. The transition from the
first kind of layout to the second is trivial when a similarityfunction is defined; the backward
transition can be performed to some extent using multi-dimensional scaling algorithms.

This paper addresses the clustering problem given the similarity matrix of a dataset. A
straightforward representation of the problem instance inthis case is a weighted graph, having
the objects as vertices and weighted edges expressing the similarity between objects. This
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leads to a graph clustering/partitioning problem which aims at identifying groups of strongly
inter-connected vertices.

There exist several formal definitions of graph clustering,depending on the practical ap-
plication and domain where the problem originates. These variations are reflected in the graph
structure and in the objectives aimed to be optimized. A survey on various problem definitions
and methods for graph clustering is presented in Schaeffer (2007).

The graph clustering problem this paper addresses has important applicability in VLSI cir-
cuit design, image processing, and distributing workloadsfor parallel computation. A formal
definition is given next.

A similarity spaceis a pair(S, w), wherew : S × S −→ R is a function such that

(i) w(s, t) ≥ 0 for everys, t ∈ S;

(ii) w(s, t) = w(t, s) for everyt, s ∈ S;

(iii) w(s, s) = 1 for everys ∈ S.

A similarity space(S, w) can be regarded as a labelled graphG = (S, E, w), referred to as the
similarity graph, where the set of edgesE is defined as

E = {(si, sj) | si, sj ∈ S andw(si, sj) > 0}.

In other words, an edge exists between two vertices only if they have a positive similarity; in
this case, the edge(si, sj) is labelled byw(si, sj).

If S is a finite setS = {s1, . . . , sn}, the dissimilarityw is described by a symmetric matrix
W ∈ R

n×n, wherewij = w(si, sj) for 1 ≤ i, j ≤ n.
A k-way clustering of a finite similarity space(S, w) is a partitionκ = {C1, . . . , Ck} of

S. The setsC1, . . . , Ck are the clusters ofκ. We seek ak-way partition ofS, κ such that

(i) the cut size (i.e. the sum of weights of edges between clusters in the similarity graph) is
minimal, and

(ii) |Cp| ≈ |Cq|, for 1 ≤ p, q ≤ k, which means that the sizes of the clusters are as equal as
possible.

The first objective is generally met in any clustering problem: the elements belonging to differ-
ent clusters should be dissimilar. In network applicationsthis would correspond to minimizing
the communication time. The second objective expresses a load balancing constraint, inherent
in network applications.

This multi-objective problem was intensively addressed inliterature in the last thirty years.
One of the earliest approaches is the method obtained by Kernighan and Lin (1970) which
refines a given (randomly generated) partition in a greedy manner by reallocating pairs of nodes
between clusters; like all greedy optimizers, this is a local improvement algorithm. Several
improvements with regard to time complexity were later proposed. The most used methods
are recursive algorithms: in a first step a two-way partitioning is obtained after which, each
of the clusters is bisected to obtain a four-way partitioning and the process continues until
the desired number of clusters is reached. Recursive spectral bisection algorithms (see Simon
(1991)) are known to deliver good solutions but at high computational cost because they require
eigenvector computations.

To deal with large graphs, multilevel algorithms were proposed. They consist basically of
three phases: coarsening, partitioning and uncoarsening.In the coarsening phase the graph
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is compressed by successively collapsing nodes. A partitioning procedure (such as the one
obtained by Karypis and Kumar (1998) or a spectral method presented by Barnardand and
Simon (1993)) is applied on the coarsened graph. In the uncoarsening phase, a partition is
built for the original graph by assigning the collapsed nodes to the same cluster; a costless
refining phase may be used at this level.

An extensive state-of-the-art of the methods and comparative studies can be found in Fjäll-
ström (1998), Karypis and Kumar (1998) and Alpert (1998).

Because of the multi-objective nature of the problem, we tackle the graph partitioning
problem with a multi-objective genetic algorithm with enhanced operators. The benefits of
such an approach are obvious: instead of delivering a singlesolution, a set of several non-
dominated solutions approximating the Pareto front is returned. As the experimental results
show, the Pareto front offers a visualization of the trade-off between the two objectives; the
shape of the Pareto front offers valuable information for the identification of the optimum
solution.

The paper is structured as follows. Section 2 examines the two objectives which have to
be optimized as stated in the problem definition. Section 3 provides a brief survey on the
genetic algorithms for clustering with an emphasis on the multi-objective formulation; the
representation and the operators we used are detailed. Section 4 presents experimental results.
The paper concludes with a short discussion.

2 Clustering as multi-objective optimization

Let κ = {C1, . . . , Ck} a clustering of the objects of the setS = {s1, . . . , sn}. The matrix
X ∈ R

n×k defined by

xip =

{

1 if si ∈ Cp,

0 otherwise,

represents the clusteringκ. Note that each row of this matrix contains a single1 and that the
total number of1 entries equals the numbern of elements of the setS.

The matrixY = X ′X ∈ R
k×k is given by

ypq =

n
∑

i=1

x′
pixiq =

n
∑

i=1

xipxiq (1)

for 1 ≤ p, q ≤ k. Since any two clustersCp, Cq are disjoint, this a diagonal matrix. Its
diagonal elements areypp = |Cp| for 1 ≤ p ≤ k.

Let G = (S, E, w) be the similarity graph ofS. The symmetric matrixW ∈ R
n×n is

defined by

wij =

{

w(si, sj) if i 6= j,

1 if i = j,

for 1 ≤ i, j ≤ n.
Let Z = X ′WX ∈ R

k×k. We have

zpq =

n
∑

i=1

n
∑

j=1

x′
piwijxjq =

n
∑

i=1

n
∑

j=1

xipwijxjq
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for 1 ≤ i, j ≤ n. Therefore, for the distinct clustersCp, Cq, zpq is precisely the value of
cut(Cp, Cq). Note also that

zpp =

n
∑

i=1

n
∑

j=1

xipwijxjp

equals the sum of the similarities between the objects of theclustersCp. Clearly, to achieve
maximal intra-clustering cohesion and minimal inter-clustering dissimilarity it is necessary
that the trace of the matrixZ (that is, the sum of the diagonal elements ofZ) to be maximal
and the sum of the off-diagonal elements ofZ to be minimal,

SinceZ is a non-negative matrix, its norm‖ Z ‖1=
∑k

p=1

∑k

q=1
|zpq| coincides with

the sum of its elements. Moreover,‖ Z ‖1=
∑n

i=1

∑n

j=1
wij and is constant for a given

similarity matrixW , regardless of the clusteringX . Therefore, the total weight of the inter-
cluster cuts equals‖ Z ‖1 −trace(Z) and minimizing it is equivalent to maximizing the total
within clusters similarity which is given astrace(Z) =

∑k

p=1
zpp.

We use a novel approach to insure that the clusters ofκ are balanced. To this end, we
use the generalized entropy of partitions of finite sets (seeSimovici and Djeraba (2008)) intro-
duced by Daróczy (1970) and by Havrda and Charvat (1967) and axiomatized by Simovici and
Jaroszewicz (2002). The use of entropy is suggested by the fact that it is a natural instrument
for evaluating the balancing quality of a probability distribution, and, therefore, the balancing
quality of a partition of a finite set.

For a partitionκ = {C1, . . . , Ck} of a setS and a numberβ > 1, theβ-entropy is defined
by

Hβ(κ) =
1

1 − 21−β

(

1 −

k
∑

p=1

|Cp|

|S|

β
)

.

Note thatlimβ→1 Hβ(κ) = −
∑k

p=1

|Bp|
|S| log2

|Bp|
|S| . In other words, the Shannon entropy is a

limit case of the generalized entropy.
An important special case of the entropy is obtained forβ = 2. We have

H2(κ) = 2

(

1 −
k
∑

p=1

|Cp|

|S|

2
)

,

and this is the well-known Gini index,gini(κ) used frequently in statistics. Although we use
the Gini index in this paper, our approach can be extended to use other types of entropies and it
would be interesting to examine the impact of the specific type of entropy on the performance
of the algorithm.

The largest value ofHβ(κ) is obtained whenκ consists of singletons, that is, whenk = n

andκ = αS = {{si} | 1 ≤ i ≤ n} and isHβ(αS) = 1

1−21−β

(

1 − |1|
|S|

β−1
)

; the least value

of Hβ(κ) is obtained forκ = ωS and equals0.
For a prescribed numberk of blocks (wherek is a divisor of|S|), the maximum value of

Hβ(κ) corresponds to a partition having blocks of equal sizes. Ifk is not a divisor ofS, then
the more uniform the sizes of the cluster, the larger is the value of Hβ(κ). This indicates that
maximization of the entropy can be used as a criterion for ensuring the uniformity of the cluster
sizes. We will use the Gini index ofκ because it presents certain computational advantages as
shown next.
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Theorem 2.1 Let κ = {C1, . . . , Ck} a clustering of the objects of the setS = {s1, . . . , sn}
and letX ∈ R

n×k be the characteristic matrix of the clustering. We have

gini(κ) = 2(1 − trace(X ′XX ′X)).

Proof. The definition of the matrixY implies trace(X ′XX ′X) = trace(Y 2). SinceY is
a diagonal matrix, we have

trace(Y 2) =
k
∑

p=1

|Cp|
2

by Equality (1). Thus,

gini(κ) = 2

(

1 −

k
∑

p=1

|Cp|

|S|

2
)

= 2(1 − trace(Y 2)) = 2(1 − trace(X ′XX ′X)),

which concludes the proof.
Thus, two objectives can be used to find a balancedk-clusteringκ:

(i) minimization of the total cut of the clustering partition, which amounts to minimization
of

f1(X) =‖ Z ‖1 −trace(Z) =‖ X ′WX ‖1 −trace(X ′WX) (2)

(ii) maximization of cluster uniformity, which is equivalent to the maximization of the Gini
index ofκ, or to the minimization of

f2(X) = trace(X ′XX ′X) (3)

We seekX subjected to the conditionsxip ∈ {0, 1} for 1 ≤ i ≤ n and1 ≤ p ≤ k. Depending
on the aspects we need to emphazise in the clustering we can use a convex combination of
these criteria:

Φa(X) = a f1(X) + (1 − a) f2(X)

= a (‖ X ′WX ‖1 −trace(X ′WX)) + (1 − a) trace(X ′XX ′X),

wherea ∈ [0, 1].
To simultaneously minimize criteriaf1 andf2, also a non-linear combination can be used:

Ψ(X) =
f1(X)

n2 − f2(X)
=

‖ X ′WX ‖1 −trace(X ′WX)

n2 − trace(X ′XX ′X)
. (4)

The criterionΨ(X) measures the average link between clusters, because the denominator
is proportional with the number of pairs of items that occur in distinct clusters.

3 The clustering algorithm

We use a genetic algorithm (GA) to deal with the graph clustering problem, because such
algorithms provide a good exploration of the search space and are able to deliver high-quality
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solutions. GAs are soft-computing paradigms inspired fromnatural evolution. In contrast
with the rigid/static models of hard computing, these nature-inspired models provide self-
adaptation mechanisms which aim at identifying and exploiting the properties of the instance
of the problem being solved.

GAs are iterative algorithms. They work with a population ofcandidate solutions (also
called individuals or chromosomes) which evolve in order toadapt to the "environment" de-
fined by a "fitness function". They involve a degree of randomness which classify them as
probabilistic methods. Several approximate good solutions are returned.

An important advantage over classical computational methods is their extended usability.
GAs are general-purpose heuristics that can be used to solvediverse optimization problems,
extract patterns from data in the machine learning field (eg.classifier systems) or can be useful
tools in the design of complex systems.

In a standard GA an individual/chromosome encodes a candidate solution as a bitstring.
The initial population is generated randomly or with the aidof greedy heuristics. An itera-
tive process begins, each iteration consisting of three main steps: evaluation, selection and
recombination.

The evaluation phase assigns a fitness value to each individual in the population. The
fitness function is constructed based on the objectives to beoptimized in the problem being
solved: the higher the fitness assigned to an individual is, the better the solution encoded by
the individual is.

The selection phase simulates natural selection, the competition for survival. At this stage
individuals are chosen to breed and create offsprings, mainly based on the individual merit
measured by the fitness function. Usually, selection is not deterministic, and it involves a
degree of randomness which is essential for maintaining diversity in the population. The lack
of diversity is the main culprit for premature convergence and sub-optimal solutions.

The recombination phase aims at creating new individuals byapplying genetic operators
which are inspired from natural reproduction: crossover and mutation. Crossover is a binary
operator which combines the information encoded in two chromosomes and usually produces
two offsprings. Mutation is an unary operator: it alters theinformation encoded in one chro-
mosome and produces one offspring. Not all chromosomes returned in the selection phase
are subjected to these operators. Two parameters acting as probability rates decide the fre-
quency of these operations. Along with the population size,these are numeric parameters of
the algorithm and are usually empirically determined, in the so-called optimization phase of
the algorithm.

The solution returned by a genetic algorithm is the best individual in the last iteration of
the algorithm. Several solutions can be reported if necessary.

Like all meta-heuristics, GAs are weak, general optimizers. To increase their performance,
the representation of the candidate solutions and the operators must be adapted to incorporate
specific knowledge. First attempts to use evolutionary techniques in clustering date back to
1991 (see Krovi (1991)) when genetic algorithms were proposed to search for the optimal
partition with an apriori-fixed number of clusters. The encoding used is a straightforward one:
solutions are strings of integers, of length equal with the size of the data set, theith integer
signifying the cluster number of data itemi. When used in conjunction with the standard
genetic operators, this encoding suffers from several drawbacks like redundancy and invalidity
and determines a slow convergence of the algorithm.
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In Luchian et al. (1994) a new encoding is proposed which considers only cluster represen-
tatives, allowing for simultaneous search of the optimum number of clusters and the optimum
partition. The partition is constructed in a manner similarto k-means: the data items are as-
signed to clusters based on the proximity to the cluster representatives. Other more complex
encodings were proposed over time (e.g. rules which build a grid in the feature space), but this
encoding became the most used when approaching clustering with evolutionary techniques.
The criterion optimized in approaches of this kind is the compactness computed based on the
distances between the data items and the cluster centers.

Real-world problems necessitate most of the times the optimization of several conflict-
ing objectives. Usually, this is achieved by combining the objectives into a single function.
However, some objectives may be more important than others for a given problem and their
relative importance cannot be established beforehand. To deal with this kind of problems,
multi-objective GAs were proposed. These algorithms optimize simultaneously several objec-
tives and return a set of non-dominated solutions which approximate the Pareto front. For a
problem involvingm objectives denoted withfi, 1 ≤ i ≤ m which have to be minimized, a
solutionx is dominated by a solutionx∗ if

fi(x
∗) ≤ fi(x), ∀i = 1..m, and ∃1 ≤ j ≤ m s.t. fj(x

∗) < fj(x).

The Pareto optimal set of solutionsX∗ consists of all those solutions for which no improve-
ment in an objective can be made without a simultaneous worsening in some other objective.
In other words, the Pareto front consists of all solutions that are not dominated by any other
solution.

The multi-objective scheme we use to tackle the graph clustering problem is PESA-II ob-
tained by Corne et al. (2001). The algorithm maintains two populations of solutions. An
external population stores mutually non-dominated clustering solutions, which correspond to
different trade-offs between the two objectives. At each iteration an internal population is cre-
ated by selecting chromosomes from the external population. This selection phase takes into
account the distribution of solutions across the two objectives by maintaining a hypergrid of
equally sized cells in the objective space. The solutions are selected uniformly from among
the populated niches such that highly populated niches do not contribute more solutions than
less populated ones. After selection, the crossover and mutation operators are applied within
the internal population. The external population is updated by joining the two populations
and eliminating the dominated solutions. The general scheme of the algorithm is presented in
Algorithm 1.

This multi-objective algorithm was previously used by Handl and Knowles (2005) in un-
supervised clustering (when the number of clusters is not fixed and evolve during search) with
very good results. The objectives they optimized were connectivity and the within-cluster de-
viation and because the number of clusters was allowed to vary, a different representation and
consequently different operators were used.

The straightforward representation of a solution for the partitioning problem is a string,
encoding the cluster membership of each data item. This is the representation used in our GA:
an individual is a string of lengthn (the number of vertices in the graph), taking values in the
set{1, . . . , k}, wherek is the number of clusters.

If the standard operators would be used, this encoding wouldsuffer from several draw-
backs like redundancy and invalidity and would determine a slow convergence of the algo-
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FIG. 1 – PESA-II

Initialize IP (internal population)
Evaluate IP
Initialize EP (external population) to include all mutually

non-dominated solutions from IP
while halting condition not met do

delete the current content of IP
fill IP with individuals selected uniformly among the nichesfrom EP
apply crossover and mutation in IP
Evaluate IP
Update EP

end while

rithm. However, due to the multi-objective scheme used and the new operators we propose,
this drawbacks are eliminated.

In the initialization phase a minimum spanning tree (MST) isconstructed using Prim’s al-
gorithm. Half of the population is initialized with candidate solutions created by repeating the
following procedure:k−1 edges are randomly removed from MST and the connected compo-
nents are marked as individual clusters. The rest of the population is filled with chromosomes
generated randomly.

The crossover operator takes as input two partitions (individuals in the population) and
computes their intersection. Since the new partition has more thank clusters, clusters are
merged until the required number is reached. The decisions are made with regard to the two
objectives to be optimized and therefore two distinct crossover operators are use. One opera-
tor aims at decreasing the cut size and therefore performs some iterations of the hierarchical
agglomerative clustering algorithm using average linkagemetric. The second operator merges
iteratively the two smallest clusters aiming at balancing the clusters, until a number ofk clus-
ters is reached.

The mutation operator takes as input a single partition and reallocates a randomly cho-
sen vertex and its most similar adjacent vertices to a randomly chosen cluster. The number
of adjacent vertices to be reallocated decreases during therun so that in final iterations only
small perturbations are allowed. This strategy allows for aquick exploration/diversification
phase of the search space in first iterations of the algorithmwhich degenerates into an ex-
ploitation/intensification phase in last iterations.

The fitness functions used in our multi-objective genetic approach are based on the two ob-
jectives presented in Section 2 and are formulated for minimization. We maximize the entropy
by minimizing the Gini index criterion 3 and minimize the average cut size as expressed by
Equation (4).
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4 Experiments

Experiments were conducted on synthetic datasets containing well-defined clusters of var-
ious sizes. The synthetic generator designed by Handl and Knowles1 was used to create five
datasets, each one consisting of 1500 data items grouped into 3 clusters. The clusters in a data
set are built iteratively based on covariance matrices which need to be symmetric and positive
definite. Overlapping clusters are rejected and regenerated, until a valid set of clusters is found.
The datasets are named asn1 − n2 − n3 with np denoting the size of clusterp.

The size of the internal population was set to 10. The maximumsize for the external
population containing non-dominated solutions was set to 500 but in our experiments it did not
exceed 250 elements. The number of iterations was set to 10000.

Figure 4 presents the set of non-dominated solutions returned in the last iteration of the
genetic algorithm. The fitness values corresponding to the two criteria to be optimized are
normalized in range[0, 1] and are plotted as follows: the horizontal axis correspondsto Cri-
terion (3) expressing how unbalanced the clusters are and the vertical axis corresponds to
Criterion (4) expressing the average cut size. The solutionclosest to the real partition of the
dataset is marked as a square; in this regard, the Adjusted Rand Index (see Hubert (1985)) is
used to evaluate the quality of the partitions. The partition corresponding to the best/minimum
score computed as sum between the two objectives is marked asa triangle.

The shape of the Pareto front plotted for datasets of variousdegrees of uniformity is an
indicator of the interaction between the two objectives. Because both objectives are formulated
for minimization, the desirable position of a clustering istowards the southwestern corner of
the diagram. Experimental results show that the average cutsize cannot be lowered indefinitely
without severely affecting the balancing of the clusters. Agap is recorded for the criterion
measuring the uniformity once the optimum solution (with regard to the true partition) is met.
This gap is due to the dependency between the two objectives:the second criterion measuring
the average cut size is built using both the cut size and the entropy (the first objective).

The best solution with regard to the real partitioning of thedataset is very close to the so-
lution retrieved as a convex combination between the two objectives. In all cases the Adjusted
Rand Index takes values higher than 0.95, which indicates a very close match to the real par-
tition. Experimental results show that a convex combination between the two criteria is able
to identify a near-optimum solution if the final set of non-dominated solutions is normalized
within the same range for both objectives.

To highlight the advantages of our multi-objective approach over other graph clustering
methods, the well-known recursive partitioning algorithmMETIS2 is used, which delivers
only perfectly-balanced clusters, even though in practicethis may not be the best solution
from the point of view of the cut size.

Table 1 presents comparative results. The Adjusted Rand Index (ARI) is reported for the
solutions corresponding to: 1) the partitioning with the highest ARI value, 2) the best parti-
tioning under the convex combination (average) over the twocriteria normalized in range [0,1]
and 3) the best balanced partitioning from the non-dominated set of solutions delivered by the
genetic algorithm, which corresponds to clusters of equal size. Also, the ARI is reported for
the partition computed with METIS.

1. http://dbkgroup.org/handl/generators/generators.pdf
2. http://glaros.dtc.umn.edu/gkhome/
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FIG. 2 – The set of non-dominated solutions for various datasets. The horizontal axis cor-
responds to criterion 3 expressing how unbalanced the clusters are and the vertical axis cor-
responds to criterion 4 expressing the average cut size. Thebest match to the real partition
is marked as a square. The partition corresponding to the minimum score computed as sum
between the two objectives is shown as a triangle.
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Instance best under ARI best convex best balanced METIS
combination

500-500-500 0.9999 0.9880 0.9999 0.9999
500-600-400 0.9909 0.9909 0.8111 0.8118
500-700-300 0.9625 0.9535 0.6588 0.6817
500-800-200 0.9839 0.9839 0.5764 0.5954
500-900-100 0.9950 0.9950 0.5615 0.5493

TAB . 1 – Comparative Results

Experimental results show that our algorithm is comparablewith METIS with regard to the
quality of the balanced partitioning. However, a near-optimal match with the true partitioning
of the dataset can be extracted from the final the set of non-dominated solutions in a unsuper-
vised manner, using a convex combination of the two criteriawe use. Furthermore, this set can
be explored to extract the most convenient solution for the problem being solved.

Also Figure 4 shows that the non-linear criterionΨ(X) given by Equality (4) biases the
search towards highly balanced clusters and can be successfully used when a perfectly balanced
partition is desired. Its convex combination with the criterion measuring the balancing degree
of the partitioning is necessary to retrieve the true partitioning.

5 Concluding Remarks and Future Work

The current paper presents a multi-objective approach to the graph clustering problem. A
novel criterion is proposed to measure cluster uniformity,based on the generalized entropy. A
multi-objective genetic algorithm that returns a set of non-dominated solutions is used to study
the interaction between the two criteria and to extract the optimum solution.

Future work will be conducted towards integrating a multi-level strategy within our ap-
proach in order to make it feasible for very large problems from VLSI design.

References

Alpert, C. J. (1998). The ispd98 circuit benchmark suite. InProc. ACM/IEEE International
Symposium on Physical Design, April 98, pp. 80–85.

Barnardand, S. T. and H. D. Simon (1993). A fast multilevel implementation of recursive
spectral bisection for partitioning unstructured problems. InProc. 6ts SIAM Conf. Parallel
Processing for Scientific Computing, pp. 711–718.

Corne, D. W., N. R. Jerram, J. D. Knowles, and M. J. Oates (2001). Apesa-ii: regionbased
selection in evolutionary multiobjective optimization. In Proc. Genetic and Evolutionary
Computation Conference, pp. 283–290.

Daróczy, Z. (1970). Generalized information functions.Information and Control 16, 36–51.

Fjällström, P.-O. (1998). Algorithms for graph partitioning: A survey.Linköping Electronic
Articles in Computer and Information Science 3.

RNTI - X -



Entropic-Genetic Clustering

Handl, J. and J. Knowles (2005). Improving the scalability of multiobjective clustering. In
Proceedings of the Congress on Evolutionary Computation, Volume 3, pp. 2372–2379.

Havrda, J. H. and F. Charvat (1967). Quantification methods of classification processes: Con-
cepts of structuralα-entropy.Kybernetica 3, 30–35.

Hubert, A. (1985). Comparing partitions.Journal of Classification 2, 193–198.

Karypis, G. and V. Kumar (1998). A fast and high quality multilevel scheme for partitioning
irregular graphs.SIAM Journal on Scientific Computing 20, 359–392.

Kernighan, B. W. and S. Lin (1970). An efficient heuristic procedure for partitioning graphs.
The Bell system technical journal 49(1), 291–307.

Krovi, R. (1991). Genetic algorithms for. clustering: A preliminary investigation. InProceed-
ings of the Twenty-Fifth Hawaii International Conference on System Sciences, San Fran-
cisco, pp. 540–544. IEEE Computer Society Press.

Luchian, S., H. Luchian, and M. Petriuc (1994). Evolutionary automated classification. In
Proceedings of the First Congress on Evolutionary Computation, pp. 585–588.

Schaeffer, S. E. (2007). Graph clustering.Computer Science Review, Elsevier I, 27–64.

Simon, H. D. (1991). Partitioning of unstructured problemsfor parallel processing.Computing
Systems in Engineering 2, 135–148.

Simovici, D. A. and C. Djeraba (2008).Mathematical Tools for Data Mining – Set Theory,
Partial Orders, Combinatorics. London: Springer-Verlag.

Simovici, D. A. and S. Jaroszewicz (2002). An axiomatization of partition entropy. IEEE
Transactions on Information Theory 48, 2138–2142.

Résumé

Cet article traite le problème de classification à partir d’une matrice de similarité sur un
ensemble de données. En représentant cette matrice comme ungraphe pondéré nous transfor-
mons ce problème en un problème de classification/séparation qui vise à identifier des groupes
de sommets fortement inter-connectés. Nous définissons deux critères distincts pour obtenir
des clusters équilibrés et bien separés. Le premier critèreminimise la similarité entre les objets
appartenant à différents groupes et constitue un objectif généralement atteint en matière de
regroupement. Le deuxième critère est formulé avec l’aide de l’entropie généralisée. Le com-
promis entre ces deux objectifs est exploré en utilisant un algorithme génétique multi-objectifs
avec opérateurs renforcés. Comme les résultats expérimentaux le montrent, le front de Pareto
offre une visualisation des compromis entre les deux objectifs.
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