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Abstract. We introduce a numerical measure on sets of partitions of
finite sets that is linked to the Goodman-Kruskal association index com-
monly used in statistics. This measure allows us to define a metric on
such partions used for constructing decision trees. Experimental results
suggest that by replacing the usual splitting criterion used in C4.5 by
a metric criterion based on the Goodman-Kruskal coefficient it is pos-
sible, in most cases, to obtain smaller decision trees without sacrificing
accuracy.
Keywords: Goodman-Kruskal association index, metric, partition, de-
cision tree

1 Introduction

The construction of decision trees is centered around the selection al-
gorithm of an attribute that generates a partition of the subset of the
training data set that is located in the node about to be split. Over the
years, several greedy techniques for choosing the splitting attribute have
been proposed including the entropy gain and the gain ratio [1], the Gini
index [2], the Kolmogorov-Smirnov metric [3, 4], or a metric derived from
Shannon entropy [5]. In our previous work [6] we extended the metric
splitting criterion introduced by L. de Mántaras by introducing metrics
on the set of partitions of a finite set constructed by using generalized
conditional entropy (which correspond to a generalization of entropy in-
troduced by Daroczy [7]). This paper introduces a different type of metric
on partitions of finite sets that is generated by a coefficient derived from
the Goodman-Kruskal association index and shows that this metric can
be applied succesfully to the construction of decision trees.
The purpose of this note is to define a metric on the set of partitions
of a finite set that is derived from to the Goodman-Kruskal association
index. A general framework of classification can be formulated starting
with two finite random variables

X :

(

a1 · · · al

p1 · · · pl

)

and Y :

(

b1 · · · bk

q1 · · · qk

)

We assume that we deal with a finite probability space where the ele-
mentary events are pairs of values (ai, bj), where a is a value of X and bj



is a value of Y . The classification rule adopted here is that an elementary
event is classified in the class that has the maximal probability. Thus,
in the absence of any knowledge about X, an elementary event will be
classified in the Y -class bj if bj corresponds to the highest value among
the probabilities P (Y = bj) for 1 ≤ j ≤ k. If P (Y = bj |X = ai) is
the probability of predicting the value bj for Y when X = ai, then an
event that has the component X = ai will be classified in the Y -class
bj if j is the number for which P (Y = bj |X = ai) has the largest value.
The probability of misclassification committed by applying this rule is
1 − max1≤j≤k P (Y = bj |X = ai).

The original Goodman-Kruskal association index λY |X (see [8, 9]) is the
relative reduction in the probability of prediction error:

λY |X

= 1 − GK(X,Y )
1−max1≤j≤k P (Y =bj)

=
∑l

i=1 P (X=ai) max1≤j≤k P (Y =bj |X=ai)−max1≤j≤k P (Y =bj)

1−max1≤j≤k P (Y =bj)
.

In other words, λY |X is the proportion of the relative error in predicting
the value of Y that can be eliminated by knowledge of the X-value.
The Goodman-Kruskal coefficient of X and Y that we use is defined by:

GK(X, Y ) =
l
∑

i=1

P (X = ai)

(

1 − max
1≤j≤k

P (Y = bj |X = ai)

)

= 1 −
l
∑

i=1

P (X = ai) max
1≤j≤k

P (Y = bj |X = ai)

= 1 −
l
∑

i=1

max
1≤j≤k

P (Y = bj ∧ X = ai).

Thus, GK(X, Y ) is the expected value of the probability of misclassifica-
tion. This coefficient is related to λY |X by:

G(X, Y ) = (1 − λY |X)

(

1 − max
1≤j≤k

P (Y = bj)

)

Next, we formulate a definition of the Goodman-Kruskal coefficient GK

within an algebraic setting, using partitions of finite sets. The advantage
of this formulation is the possibility of using lattices of partitions of finite
sets and various operations on partitions.

A partition of a set S is a collection of nonempty subsets of S, π = {Bi |
i ∈ I} such that Bi ∩ Bj = ∅ for every i, j ∈ I such that i 6= j and
⋃

i∈I Bi = S. Note that a partition π = {B1, . . . , Bl} of a finite set S

generates a finite random variable:

X :

(

1 · · · l

p1 · · · pl

)

,

where pi = |Bi|
|S|

for 1 ≤ i ≤ l, and thus, the Goodman-Kruskal coefficient
can be formulated in terms of partitions of finite sets.



If π, σ ∈ PART(S) we write π ≤ σ if each block of π is a subset of a block
of σ. This is equivalent to saying that every block of σ is a union of blocks
of π. We obtain a partial ordered set (PART(S),≤). The least partition
of S is the unit partition ιS = {{a} | a ∈ S}; the largest partition is the
one-block partition ωS = {S}. The partial ordered set (PART(S),≤) is
a semi-modular lattice (see [10]), where inf{π, σ} is the partition π ∧ σ

whose blocks consist of intersections of blocks B ∩ C, where B ∈ π and
C ∈ σ. Note that π is covered by σ (that is, π < σ and there is no
θ ∈ PART(S) such that π < θ < σ) if and only if σ is obtained from π

by fusing together two blocks of π.
The trace of a partition π = {B1, . . . , Bk} from PART(S) on a subset R

of S is the partition πR ∈ PART(R) given by πR = {B1 ∩R, . . . , Bl ∩R}.
If S, T are two disjoint sets and π ∈ PART(S), σ ∈ PART(T ), then we
denote by π + σ the partition of S ∪ T that consists of all the blocks of
π and σ. It is easy to see that “+” is an associative partial operation.

Definition 1. Let π = {B1, . . . , Bk} and σ = {C1, . . . , Cl} be two par-

titions of a set S. The Goodman-Kruskal coefficient of π and σ is the

number:

GK(π, σ) = 1 −
1

|S|

k
∑

i=1

max
1≤j≤l

|Bi ∩ Cj |.

Decision trees are built from data that has a tabular structure common
in relational databases. As it is common in the relational terminology
(see [11], for example), we regard a table as a triple τ = (T, H, ρ), where
T is a string that gives the name of the table, H = {A1, . . . , An} is
a finite set of symbols (called the attributes of τ ), and ρ is a relation,
ρ ⊆ Dom(A1) × · · · × Dom(An). Here Dom(Ai) is the domain of the
attribute Ai for 1 ≤ i ≤ n.
A set of attributes L ⊆ H determines a partion πL on the relation ρ,
that is, on the set of tuples of the table τ , where two tuples belong to
the same block if they have equal projections on L. It is easy to see that
if L, K are two sets of attributes, then πLK = πL ∧ πK .
The classical technique for building decision trees is using the entropy
gain ratio as a criterion for choosing for every internal node of the tree the
splitting attribute that maximizes this ratio (see [1]). The construction
has an inductive character. If τ = (T, H, ρ) is the data set used to build
the decision tree T, let v be a node of T that is about to be split and let
ρv be the set of tuples that corresponds to v. Suppose that the target
partition of the data set ρ is θ. Then, the trace of this partition on ρv is
θρv .
Choosing the splitting attribute for a node v of a decision tree T for τ

based on the minimal value of GK(πA
v , θρv ) alone does not yield decision

trees with good accuracy. A lucid discussion of those issues can be found
in [12, 4]. However, we will show that the GK coefficient can be used
to define a metric on the set of partitions of a finite set that can be
succesfully used for choosing splitting attributes. The decision trees that
result are smaller, have fewer leaves (and therefore, less fragmentation)
compared with trees built by using the standard gain ratio criterion; also,
they have comparable accuracy.



2 The Goodman-Kruskal metric space

The main result of this section is a construction of a metric dGK on the
set of partitions of a finite set that is related to the Goodman-Kruskal
coefficient and can be used for constructing decision trees. To introduce
this metric we need to establish several properties of GK. Unless we state
otherwise, all sets considered here are finite.

Theorem 1. Let S be a set and let π, σ ∈ PART(S). We have GK(π, σ) =
0 if and only if π ≤ σ.

Proof. It is immediate that π ≤ σ implies GK(π, σ) = 0. Conversely, if
GK(π, σ) = 0, then

∑k

i=1 max1≤j≤l |Bi ∩Cj | = |S|, which means that for
each block Bi of π, there is a block Cj such that |Bi ∩ Cj | = |Bi|. This
is possible only if Bi ⊆ Cj , that is, if π ≤ σ, which gives the desired
conclusion.

Theorem 2. The function GK is monotonic in the first argument and

dually monotonic in the second argument.

Proof. To prove the first part of the statement let π = {B1, . . . , Bk},
π′ = {B′

1, . . . , B
′
m}, and σ = {C1, . . . , Cl} be three partitions of S such

that π ≤ π′. Then, for every block B′
r of π′ there is a collection of blocks

of π: Bi1 , . . . , Bis such that B′
r = Bi1 ∪ · · · ∪Bis . Consequently for every

m, 1 ≤ m ≤ l we can write:

|B′
r ∩ Cm| = |Bi1 ∩ Cm| + · · · + |Bis ∩ Cm|

≤ max
1≤j≤l

|Bi1 ∩ Cj | + · · · + max
1≤j≤l

|Bis ∩ Cj |.

Thus, we obtain:

max
1≤j≤l

|B′
r ∩ Cj | ≤ max

1≤j≤l
|Bi1 ∩ Cj | + · · · + max

1≤j≤l
|Bis ∩ Cj |,

which implies GK(π, σ) ≥ GK(π′, σ).
To prove the second part, let σ, σ′ be two partitions such that σ ≤ σ′.
We show that GK(π, σ) ≥ GK(π, σ′). It suffices to show that σ′ covers σ,
that is, σ = {C1, . . . , Cl−2, Cl−1, Cl} and σ′ = {C1, . . . , Cl−2, Cl−1 ∪Cl}.
In other words, the blocks of σ′ coincide with the blocks of σ with the
exception of one block that is obtained by fusing two blocks of σ. Note
that for a given block Bi of π we have:

max
1≤j≤l

|Bi ∩ Cj | ≤ max{ max
1≤j≤l−2

|Bi ∩ Cj |, |Bi ∩ (Cl−1 ∪ Cl)|},

which implies GK(π, σ) ≥ GK(π, σ′). ut
The next result has a technical character:

Theorem 3. For every three partitions θ, π, σ of a finite set S we have:

GK(π ∧ θ, σ) + GK(θ, π) ≥ GK(θ, π ∧ σ).

Proof. See Appendix A.



Theorem 4. Let θ, π, σ be partitions of a set S. We have

GK(θ, π) + GK(π, σ) ≥ GK(θ, σ).

Proof. Note that

GK(θ, π) + GK(π, σ) ≥ GK(θ, π) + GK(π ∧ θ, σ)

due to the monotonicity of GK in its first argument. By Theorem 3

GK(θ, π) + GK(π, σ) ≥ GK(θ, π ∧ σ) ≥ GK(θ, σ),

because of the dual monotonicity of GK in its second argument. ut

Corollary 1. The mapping dGK : PART(S)×PART(S) −→ R given by:

dGK(π, σ) = GK(π, σ) + GK(σ, π)

for π, σ ∈ PART(S), is a metric on the set PART(S).

Proof. By Theorem 1 we have dGK(π, σ) = 0 if and only if π = σ.
Also, the definition of dGK implies dGK(π, σ) = dGK(σ, π) for every
π, σ ∈ PART(S).
Finally, the triangular inequality dGK(π, σ) + dGK(σ, θ) ≥ dGK(π, θ) for
π, σ, θ ∈ PART(S) follows immediately from Theorem 4. ut

3 The Goodman-Kruskal Splitting Criterion for

Decision Trees

Let τ = (T, H, ρ) be the table that contains the training data set that
is used to build a decision tree T. Assume that we are about to expand
the node v of the tree T. Using the notations introduced in Section 1,
we choose to split the note v using an attribute Ai that minimizes the
distance dGK(πAi

ρv
, θρv

).
The dGK metric does not favor attributes with large domains as splitting
attributes, an issue that is important for building decision trees.

Theorem 5. Let S be a finite set and let π, π′, σ ∈ PART(S) be such

that π′ ≤ π. If there exists a block C of σ and a block B of π such that

B ⊆ C, then dGK(π, σ) ≤ dGK(π′, σ).

Proof. We can assume, without restricting generality, that π′ is covered
by π, that is, π = {B1, . . . , Bk}, B = Bk, π′ = {B1, . . . , B

′
k, B′′

k }, where
Bk = B′

k ∪ B′′
k . Also, let σ = {C1, . . . , Cl}, where Cl = C.

Theorem 2 implies that GK(σ, π′) ≤ GK(σ, π) (due to the dual mono-
tonicity in the second argument of GK). We prove that, under the as-
sumptions made in the theorem, we have GK(π′, σ) = GK(π, σ), which
implies the desired inequality. Indeed, note that:

GK(π′
, σ)

= 1 −
1

|S|

(

k−1
∑

i=1

max
1≤j≤l

|Bi ∩ Cj | + max
1≤j≤l

|B′
k ∩ Cj | + max

1≤j≤l
|B′′

k ∩ Cj |

)

= 1 −
1

|S|

(

k−1
∑

i=1

max
1≤j≤l

|Bi ∩ Cj | + |B′
k| + |B′′

k |

)

= 1 −
1

|S|

k
∑

i=1

max
1≤j≤l

|Bi ∩ Cj | = GK(π, σ)



because B′
k, B′′

k ⊆ Bk ⊆ C. ut

We note that the Theorem 5 is similar to the property of the metric
generated by the Shannon entropy obtained by L. de Mántaras in [5]
and generalized by us in [6].

Next, we compare parameters of decision trees constructed on UCI ma-
chine learning datasets [13] by using Entropy Gain Ratio and the Goodman-
Kruskal distance dGK . The experiments have been conducted using the
J48 (a variant of C4.5) algorithm from the Weka Package [14], modi-
fied to use different splitting criteria. The pruning steps of decision tree
construction are left unchanged. To verify the accuracy, we used 5-fold
cross-validation. For each splitting criterion we present three character-
istics of the generated trees: accuracy (percentage of correctly predicted
cases), size of the tree (total number of nodes) and the number of leaves
in the tree. All are averaged over the 5-fold of cross-validation.

Overall dGK produced smaller trees for 24 out of 33 datasets considered.
In 4 cases (anneal.ORIG, clev.-14-heart-disease, sick, vote) over
50% reduction was achieved. In one case (pima-diabetes) a sharp in-
crease was observed. On average the trees obtained were 10% smaller.

The accuracy of trees constructed using dGK was on average 1.67% worse
than that of trees constructed using standard Weka version. In one case
(autos) the decrease was significant but for all other cases it was rather
moderate, and in a few cases dGK produced more accurate trees. Small
tree size is an advantage since, in general, small trees are much easier to
understand. The total number of nodes and the number of leaves in the
tress were highly correlated so we can talk simply about size of the tree.

Experimental Results: Entropy Gain Ratio vs. dGK

Entropy Gain Ratio dGK

Dataset acc tree size no. of leafs acc tree size no. of leafs
anneal 98.55 46.4 36.2 98.55 37.2 26.4

anneal.ORIG 90.20 63 42.6 86.30 28.2 17.8

audiology 78.76 46 29 77.41 37.4 24

autos 80 64.6 48.2 67.80 49.6 27.6

balance-scale 78.4 73.8 37.4 77.76 57 29

breast-cancer 73.09 21.2 17.2 73.78 18 13.4

wisc-breast-cancer 94.12 17.4 7.2 94.85 17 9

horse-colic 85.85 8.4 5.8 81.78 7.6 4.4

credit-rating 86.23 29.2 20.8 83.91 20.4 11.6

german-credit 72.9 108 77.6 69.5 63.4 36.8

pima-diabetes 75.65 42.6 21.8 70.96 88.6 44.8

Glass 67.26 39.4 20.2 70.09 33.4 17.2

clev.-14-heart-disease 77.53 41.4 10.4 75.89 16.4 9

hung.-14-heart-disease 78.57 9.8 6.4 80.28 10 6.2

heart-statlog 75.55 26.6 13.8 71.85 17.4 9.2

hepatitis 78.06 13.4 7.2 82.58 9 5

hypothyroid 99.46 25.8 13.4 99.39 21 11

ionosphere 89.73 25.8 13.4 88.89 16.2 8.6

iris 95.33 8.2 4.6 95.33 6.6 3.8

kr-vs-kp 99.15 51.8 27.4 98.46 76.4 39.8

labor 78.63 6.8 4 84.09 3 2

lymphography 80.41 24.4 14.8 79.01 14.8 8.8

mushroom 100 29.4 24.4 100 31.8 25

primary-tumor 40.99 77 41.2 43.64 38.8 21.4

segment 97.09 81.8 41.4 94.02 67 34

sick 98.75 42.6 23.6 98.35 18.2 10.8

sonar 74.03 23.8 12.4 69.16 29.4 15.2

soybean 91.21 89.4 58.4 90.19 105.2 71.2

splice 94.04 199.6 160.8 93.51 194.4 156.6

vehicle 72.10 117.8 59.4 65.60 128.2 64.6

vote 96.55 11 6 94.71 4.6 2.8

vowel 78.18 200.4 120.2 63.43 235 125.8

zoo 93.09 14.6 7.8 93.09 14.6 7.8

average 83.92 50.95 31.84 82.25 45.93 27.29
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The best results obtained from experiments are also shown in Figure 1.

Splitting nodes by using an attribute A that minimizes GK(πA
ρv

, θρv
)

instead of dGK(πA
ρv

, θρv
) may result in a substantial loss of accuracy.

For example, in the case of the hungarian-14-heart-disease dataset,
the accuracy obtained using GK, under comparable conditions (averaging
over 5-fold cross validation) is just 70.05% compared to 78.57% obtained
by using the entropy gain ratio, or 80.28% obtained in the case of dGK .
This confirms the claim in the literature of the unsuitability of using
GK(πA

ρv
, θρv

) alone as a splitting criterion.

A Proof of Theorem 3

We begin by showing that if S1, . . . , Sn are pairwise disjoint sets, and
πr, σr ∈ PART(Sr) for 1 ≤ r ≤ n, then

GK(π1 + · · · + πn, σ1, . . . , σn) =
n
∑

r=1

|Sr|

|S|
GK(πr, σr). (1)

Let πp = {Bp
1 , . . . , B

p
lp
} and σq = {Cq

1 , . . . , C
q
kq
} for 1 ≤ p, q ≤ n. Then,

we can write:

GK(π1 + · · · + πn, σ1 + · · · + σn)

= 1 −
1

|S|

∑

p,i

max
q,j

|Bp
i ∩ C

q
j |

= 1 −
1

|S|

∑

p,i

max
p,j

|Bp
i ∩ C

p
j |

(because p 6= q implies B
p
i ∩ C

q
j = ∅)

=
n
∑

p=1

|Sp|

|S|



1 −
n
∑

p=1

1

|Sp|

lp
∑

i=1

max
1≤j≤kp

|Bp
i ∩ C

p
j |





=

n
∑

p=1

|Sp|

|S|
GK(πp, σp),

which is the desired equality.

Let now K(σ) be the number:

K(σ) = GK(ωS, σ) = 1 −
1

|S|
max

1≤j≤k
|Cj |.

We claim that if π, σ ∈ PART(S), then:

GK(π, σ) ≥ K(π ∧ σ) − K(π). (2)



Let π = {B1, . . . , Bk} and σ = {C1, . . . , Cl}. We can write:

GK(π, σ) = |S| −
k
∑

i=1

max
1≤j≤l

|Bi ∩ Ck|

=
k
∑

i=1

(|Bi| − max
1≤j≤l

|Bi ∩ Cj |

≥ max
1≤i≤k

(|Bi| − max
1≤j≤l

|Bi ∩ Cj |)

≥ max
1≤i≤k

|Bi| − max
1≤i≤k,1≤j≤l

|Bi ∩ Cj |

= K(π ∧ σ) − K(π),

which proves the inequality (2).
Let π = {B1, . . . , Bk}, θ = {D1, . . . , Dm} and σ = {C1, . . . , Cl}. We
have:

π ∧ θ = πD1 + · · · + πDm = θB1 + · · · + θBk
.

Consequently, by Equality (1), we have:

GK(π ∧ θ, σ) = GK(πD1 + · · · + πDm , σ)

=
m
∑

h=1

|Dh|

|S|
GK(πDh

, σDh
).

Also, we have

GK(θ, π) =
m
∑

h=1

|Dh|

|S|
K(πDh

),

which implies

GK(π ∧ θ, σ) + GK(θ, π) =
m
∑

h=1

|Dh|

|S|
(GK(πDh

, σDh
) + K(πDh

)) .

The Inequality (2) implies:

GK(πDh
, σDh

) + K(πDh
) ≥ K(πDh

∧ σDh
) = K((π ∧ σ)Dh

),

so we may conclude that:

GK(π ∧ θ, σ) + GK(θ, π) ≥
m
∑

h=1

|Dh|

|S|
K((π ∧ σ)Dh

) = GK(θ, π ∧ σ).

ut
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