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Abstract

Starting from an axiomatization of a generalization of Stmmentropy we
introduce a set of axioms for a parametric family of distameer sets of partitions
of finite sets. This family includes some well-known metnised in data mining
and in the study of finite functions.

1 Introduction

The notion of entropy is as a probabilistic concept thatdiethe foundation of infor-
mation theory. Our goal is to define entropy in an algebrditirgg namely, introduce
the notion of entropy of a partition taking advantage of theipl order that is naturally
defined on the set of partitions of a set. Actually, we wilfa@tuce a generalization of
the notion of entropy that has the Gini index and Shannoropptas special cases and
further extends some of our previous results.

Another goal of this paper is the study an axiomatizationgdiameterized family
of metrics on sets of partitions of finite sets that geneealithe entropic metric intro-
duced by R. Lopez de Mantaras [6], as well as the Mirkin mettroduced in [10].
This unifies the separate axiom systems for these metricxlunted in [9] and illumi-
nates the relationship of the axiomatization of these tith our previous axiom-
atization of generalized entropy [16, 14].

Metrics on sets of partitions of finite sets are useful beealsy allow us to study
properties of finite functions related to their kernel gaotis. In a different direction,
these metrics are interesting for data mining because thibuaes of a table induce
partitions on the sets of tuples of the table. Thus, metricpartitions allow us to
determine interesting relationships between attributelsta use these relationship for
classification, data summarization and other applicatiéiso, exclusive clusterings
can be regarded as partitions of the set of clustered olgadtpartition metrics can be
used for evaluating clusterings, a point of view presentddl.

A partition of a setS is a non-empty collection of non-empty subsetsSofr =
{B; | i € I} suchthat = = S andB; U B; = () wheni # j fori,j € I. The sets
B; are theblocksof 7. The set of partitions af is denoted byPART(S).

*University of Massachusetts Boston, Department of Comistéence, Boston, Massachusetts 02125,
USA, e-mail:dsi m@s. unb. edu



A natural link exists between random variables and panttiof sets. Namely, if
is a finite setand = {By, ..., B, } is a partition ofS, then

p: (—7"'7
5] S|

is a discrete probability distribution. As we shall see, $frannon entropy gf equals
the Shannon entropy of, as follows from our axiomatization. This link allows the
transfer of certain probabilistic and information-thet@ral notions to partitions of sets,
where we can take advantage of the partial order betweeitiquast

A partial order relation ofPART(.S) is defined byr < o for 7,0 € PART(S) if
every block of B is included in a block ot. This is easily seen to be equivalent to
requiring that each block of is a union of blocks ofr.

The partially ordered s¢PART(S), <) is actually a bounded lattice. The infimum
of two partitionst and~’ is the partition that consists of non-empty intersectiohs o
blocks ofr and=’. The least element of this lattice is the partitiop = {{s} | s €
S}; the largest is the partitiong = {S}.

The partitiono coversthe partitionr if o is obtained fromr by fusing two blocks
of this partition. This is denoted by < ¢. If 7 < 7/, then there exists a sequence of
partitionsog, o1,...,0. suchthatr = og <0y < -+- < 0, = 7.

If S, T are two disjoint and nonempty sets,c PART(S), o € PART(T'), where
7 ={B1,...,Bn}, 0 = {C1,...,C,}, then the partitionr + o is the partition of
S UT given by

7T+0':{317...,Bm,017-"70n}'

Whenever the 4" operation is defined, then it is easily seen to be assoeiatin
other words, ifS, T, U are pairwise disjoint and nonempty sets, and PART(S),
o € PART(T), 7 € PART(U), thenw + (¢ + 7) = (7 4+ 0) 4+ 7. Observe that i5, T’
are disjoint, thenvs + ar = asur. Also,ws + wr is the partition{S, T'} of the set
SUT.

If mt={B1,...,Bn}t,o={C,...,C,} are partitions of two arbitrary set§ T,
then we denote the partitig3; x C; | 1 <i<m,1<j<n}ofSxThyrxo.
Note that there is a natural bijection betwep x ar andag«r and also, between
ws X wr andeXT.

2 An Axiomatization of Generalized Entropy

We present a new system of axioms for generalized entrdpaefiive as special cases
Shannon entropy and the generalized entropy introduced], i5]]. We further show
that, under certain hypotheses, the second type of engropibe single generalization
possible.

Definition 2.1 A functionh : N — Rx¢ is multiplicativeif h(pg) = h(p)h(g) for
p,q € N. 0

This notion of multiplicative function is stronger than theual notion used in number
theory, when the multiplicative equality holdgifindq are relatively prime. An exam-
ple of such a function i&(r) = r° for r € Nandg € Rx; this function will play an



important role in our axiomatization. Another trivial expla is the constant function
h(p) = 0 for p € N, which will be referred to as theero function

Note that ifh a multiplicative function distinct from the zero functichenh(1) =
1.

We introduce below a system of four axioms:

Definition 2.2 Let 8 € R, § > 1, ® : RZ2, — R be a continuous function such
that ®(z,y) = ®(y,x), and®(z,0) = x for 2,y € Rsp, andh : N — R a
non-zero multiplicative function such thatn) = 0 impliesn = 0.

A (9, h)-system of axioms for a partition entrofiy;, : PART(S) — R>( con-
sists of the following axioms:

(P1) If =, 7’ € PART(S) are such that < 7/, thend, () > Hy (7).
(P2) If S, T are two finite sets such thi| < |T'|, thendH;, (as) < Hp(ar).
(P3) For every disjoint set§, T' and partitionsr € PART(.S), ando € PART(T) we

have:

G{h(ﬂ') + 3 h(|T|) f]‘fh(O') —|—9‘Ch({5, T})

s
Hlmro) =7 5] + [T

(IS +1T1)

(P4) We have:
Hp(m x o) = ®(Hp(7), Hp(0))
for 7 € PART(S) ando € PART(T).

0

Observe that we postulate thal, (w) > 0 for any partitionr since the range of
every functiorfi(;, is R>.

Lemma 2.3 For every(®, h)-entropyH;, and setS we haveH;, (ws) = 0.

Proof. Let S,T be two non-empty disjoint sets that have the same cardinalit
|S| = |T|. Sincews + wr is the partition{ S, T'} of the setS U T', by Axiom (P3)we

have
h(|S
Gu(ws +wr) = 05D (96, (wg) + 3 (wr)) + 3 (S, T}),
h(2[S])
which impliesﬂ{h(ws) + fJ{h(wT) = 0. SinceS}{h(ws) >0 andﬂfh(w;p)) > 0it
follows thatH, (ws) = Hp(wr) = 0. |

Lemma 2.4 LetU, V be two disjoint sets and let 7’ € PART(U U V') be defined by
m =0+ ay andnr’ = o + wy, wheres € PART(U). Then,

s6,r) = 96+ -1V

0]+ vy o)



Proof. By Axiom (P3)we can write:

h(U1)
h(UT+ V)

h(V])
h(UT+ V)

G{h(ﬂ') G{h(U)

+ Hn(ar) +J‘fh({U, V1,

and

N hUD)

h(IV])
o+ e ST
_ _hUD g
- h(IU|+IVI)9{h( STV

(by Lemma 2.3)
The above equalities imply immediately the equality of #r@ma. |

Theorem 2.5 For every(®, h)-entropy and partitionr = { By, ..., By, } € PART(S)
we have:

f]‘f ( f]‘fh Oés Z ||‘BS,|| )

Proof. Starting from the partitiom consider the following sequence of partitions
in PART(S):

To = Wwp, tWwp, twp;t+ - tuws,
™ = ap, twp, twp - tws,
my = ap, +ap, +wp, +--+wp,

™ = ap, tap, tap;+--tag,.

Letdj =ap, +--+ op; +wi,, + -t wp,, - Then,m; = o; + wp and

mi+1 = 0; + ap,,,; therefore, by Lemma 2.4, we have:

h(|Bit1|)
h(|S])

i+1

Hy, (7Ti+1) = Hy (771) + Hh (0431‘4-1)

for0 <i<m-—1.
A repeated application of this equality yields:

(B
2 1
Fn(mm) = Fn(mo) + > |6‘f| Hp (s, )
=0

N



Observe thaty = m andn,, = ag. Consequently,

3a(r) = Ha(as) — 3 et )

~—

|
Note that ifS, T" are two sets such thg| = |T'| > 0, then, by Axiom(P2), we have
Hn(as) = Hp(ar). Therefore, the value df;, (as) depends only on the cardinality
of S, and there exists a functiqs, : Ny — Rx( such thatH (ag) = px(]S|) for
every nonempty sef. Axiom (P2) also implies thaj, is an increasing function. We
will refer to u, as thecoreof the (®, h)-system of axioms.

Corollary 2.6 LetJ;, be a(®, h)-entropy. For the core;, defined in accordance to
Axiom(P2)and every partitiont = {Bj, ..., B, } € PART(S) we have:

70(7) = 1)~ 3 'B' W(Bi). 1)

Proof. The statement is an immediate consequence of Theorem 2.5. |

Theorem 2.7 Letw = {B;,..., B,,} be a partition of the se$. Define the partition
7' obtained by fusing the block3; and B, of r as©’ = {B; U By, Bs, ..., B, } of
the same set. Then

3 () = K (') + —h(liagfﬂ)%h({&,Bz})-
Proof. A double application of Corollary 2.6 yields:
3(r) = (18D — a1 U B
" h(|B;
> e
and
Ho((BrBaY) = (B U Bal) — o (B
h(|Bz|)

Substituting the above expressions in
h(|Bl U Bgl)
h(lS])

we obtainHy, (7). |
Theorem 2.7 allows us to extend AxigfA3):

Hn(r') + Hn({B1, B2})



Corollary 2.8 Let By, ..., B,, bem nonempty, disjoint sets and lef € PART(B;)
for1 <1i < m. We have:

h(
h(|

Hi(mr+ -+ ) = Z
i=1

n(mi) + Hp({B1,...,Bm}),

whereS = By U---U B,,.

Proof. The argument is by induction om > 2. The basis stepjn = 2, is
Axiom (P3). Suppose that the statement holdssom@nd letBs, ..., B, B,+1 be
m + 1 disjoint sets. Further, suppose that, ..., m,,, 7,41 are partitions of these
sets, respectively. Then,,, + 7,1 iS a partition of the seB,, U B,,+1. By the
inductive hypothesis we have

Hp, (7T1 +"'+ (7Tm +7Tm+1))
(|B:|)

Bm + Bm 1
Z B3, 4 MUBnL Brsilly 1, 4,

—1—9{;,,({31, ooy (Bm U Bm1)}),

whereS = By U---UB,, U By 41.
Axiom (P3)implies:

Hp, (7T1 +"'+ (7Tm +7Tm+1))

PUBD g (), hBw)
Z (D) T Ty T )

(IBm+1|) h(|Bm| + |Bm+1l)
h(|S]) h(|S])
+Ha({B1,. .., (Bp U Bi1)}).

:H:h(ﬂ'm+1) + g{h{BmaBm-‘rl}

Finally, an application of Theorem 2.7 gives the desiredadityu |

Theorem 2.9 Let uy, be the core of 4@, h)-system such that the functiéris not the
identity functiomi(n) = n for n € N. There exists a numbére R such that

fora € Nj.
Proof. Let A = {z1,...,z,} andB = {y1, ..., y» } be two nonempty sets, where
a,b € N;. The partitionw 4 x a. consists ob blocks of sizer: Ax{y1},..., Ax{yp}.

By Axiom (P4),

J-Ch(wA X OcB)
= ®(Hp(wa), Hn(ap)) = @(0,Hn(ap)) = Hp(ag) = pn(b).



On the other hand, by Theorem 2.5 we have

b
Hp(wa x ap) = Hp(aaxs) — Z

which implies

(@) = i (b) + b pin (), 0

h(ab)
for a,b € Ny, sinceh is a multiplicative function. Inverting the roles afandb we

obtain also )

pn(ab) = pn(a) + a@#h(b%
which implies
pn(a)  pa(b)
L=as 1-wty
for everya, b € Ny, which yields the desired equality fa,. |

An entropy is said to baon-Shannoif it is defined by a(®, h)-system of axioms
suchthat(n) # nforn € N. If h(n) = nforn € N, then the entropy will be referred
to as aShannorentropy. As we shall see, the choice of the functhotetermines the
form of the function®. Initially we focus on non-Shannon entropies.

The next Corollary shows that within the framework of ourcaratization the one
obtains necessarily the non-Shannon generalized entntqmgluced in [4, 5]).

Corollary 2.10 If h : N — R>( is a multiplicative function used in @, ») axiom-
atization of a non-Shannon entropy, thefm) = n® for some3 > 1 and uy(n) =
k(1 —n'=h).

Proof. We observed that AxionjP2) implies thaty;, is an increasing function.
Since, by Theorem 2.9(n) = it follows thath is also a non-decreasing

function. Applying a result of Moser and Lambeck [11], thadtion i has the form
h(n) = n” for somes € R=". The equality defining;, follows immediately and,
sincey is a non-decreasing function we also have 1.

_n___
1— pp(n) oy

Corollary 2.11 If 3, is a non-Shannon entropy defined b{dg /)-system of axioms
andr € PART(S), wherer = {By, ..., B, }, then there exists a constahE R such

that . 5
w12 ()

3)

for someg > 1.



Proof. We saw that for non-Shannon entropy, the functiois necessarily of the
form h(n) = nf forn € Nandg > 1. By Corollary 2.6 we have

m N B
3 () uh<|5|>—z('3l') (1B
=1
N8
> (&) a-s)

) Bi /3
E(1—|S]* ) —k (' ") + k|S|PP
1

b

i=1

©

NE

k(1= SI"7) — k

2 0

K3

@

|
The next theorem shows that the functidrintroduced by Definition 2.2 and used
in Axiom (P4)is essentially determined by the choice madéifor

Theorem 2.12 LetH;, be the non-Shannon entropy defined ypah)-system, where
h(n) = nP for some3 > 1.
The function® of Axiom(P4)is given by

1
®(z,y) =T+y— Ly

forz,y € R>o.

Proof. Letw = {B1,..., B, } € PART(S) ando = {C4,...,C,} € PART(T)
be two partitions. Since

we can write:

Hy(r x o) = k<1_z,l(||SHT||>)

SinceS > 1 the set of rational numbers of the form

n

1—27‘?,
=1



wherer; € Q,0 <7, < 1forl <l <mnand) ,rn =1, for somen € Ny,
is dense in the intervd0, 1]. Thus, formula (3) shows that the set of entropy values
is dense in the intervdl, k] because the sef3,, ..., B,, are finite but of arbitrarily
large cardinalities. Since the set of values of entropideisse in the interval, ], the
continuity of ® implies the desired form cb.

Choosingk = 1_2%,& in the equality (3) we obtain the Havrda-Charvat entropy

(see [5)]): ;
1 . (|Bil
Houlm) = 755 (1‘§<|5|) )

If 8 = 2 we obtainH,(7) which is twice the Gini index,

Hn(n) =2- (1 —é ('fgi")Q) .

2
TheGini index gini(r) =1 — >, ('f;l') is widely used in machine learning and
data mining.
The limit caselimg_,1 35 () yields

5
b, H () = %Lml1—21 Ch £ )
. 1 1Bil
= lim
521 21— mn ; Kl

which is the Shannon entropy of
Wheng = 1, by Theorem 2.9, we have

p(ab) = p(a) + p(b)

for a,b € N;. If n : N; — R is the function defined by(a) = au(a) for a € Ny,
theny is clearly an increasing function and we have

n(ab) = abu(ab) = bn(a) + an(b)

for a,b € Ny. By Theorem A.6 , there exists a constant R such thaty(a) =
calogy afora € Ny, sou(a) = clogy(a). Then, equation (1) implies:

a; a;
H =c- § — log, —
n(m) =c 2.y ogy —,
for every partitionm = { A4, ..., A,,} of a setd, where|A;| = a; for1 <i < m, and

|A| = a. This is exactly the expression of Shannon’s entropy.



The continuous functio® is determined, as in the previous case. Indeed, iB
are two sets such that| = ¢ and|B| = b, then we must have

c-logyab=Hp(aa x ag) = ®(c-logy a,c-log, b)

for anya, b € N; and anyc € R. The continuity of® implies®(z,y) = x + y.
If h(n) = n” forn € Nandg > 1, we shall refer to thé{, () as the3-entropy
of = and will denote this entropy from now on Bz ().

3 Generalized Conditional Entropies

The entropies previously introduced generate correspgrinditional entropies.
Letw € PART(S) and letC C S. Denote byr¢ the “trace” ofr onC given by

nc ={BNC|B € nsuchthatBn C # 0}.
Clearly,7¢ € PART(C); also, ifC'is a block ofr, thenme = we.

Definition 3.1 Let 7,0 € PART(S) and letoc = {C4,...,C,}. The g-conditional
entropy of the partitionsm,oc € PART(S) (wheres > 1) is the functionHs :
PART(S)? — R defined by:

[
Observe that{z(m|ws) = Hp(w) and thatHg(wg|m) = Ha(r|as) = 0 for every
partitionm € PART(S).

Form = {Bs,...,Bn} ando = {C4,...,C,} the conditional entropy can be
written explicitly as:

e = 35 (9) 5 s - (22
- e () S (Y) e

For the special case when= as we can write

Hp(aslo) = i(fg”) Hs(ae,) = ﬁ(é(%)ﬁ_m%>

J=1

()

Theorem 3.2 Let, o be two partitions of a finite sef. We havéHz(w|o) = 0 if and
onlyifo <.

10



Proof. Suppose that = {C1,...,C,}. If o < 7, thenng, = we, for1 <j <n
and, therefore,

This impliesHs(7¢c,) = 0for1 < j < n, whichmeansthatc, = wc, forl <j <n

by a previous remark. This means that every bl6glof ¢ is included in a block ofr.

soo < 7. |
The next statement is a generalization of a well-known pitypef Shannon’s en-

tropy.

Theorem 3.3 Letr, o be two partitions of a finite sef. We have:
Ha(m N o) = Ha(nlo) + Hp(o) = Ha(olr) + Hy(r),
Proof. Suppose that = { By, ..., B, } and that = {C}, ..., C,}. Observe that
TNo=m7¢g, ++-+m7c, =0B, +---+0B,,-
Therefore, by Corollary 2.8 we have:
3s(m A o) = ; (ﬁ) 5s(n0,) + Hs(0),

which implies
Ha(m Ao)=FHa(n|o) + Hga(o).

The second equality has a similar proof. |
Corollary 3.4 If Hg(m A o) = Ha(m), thent < 0.

Proof. SinceHg(m A o) = Hg(m), Theorem 3.3 implie§{g(c|r) = 0. By

Theorem 3.2 we have < o. |
Lemma 3.5 Let3 > 1. If wy, ..., w, aren positive numbers such that;_, w, =1,
anday,...,a, € [0,1], then

B

n n ﬂ n
1— (Z w¢a¢> (Z wi(1 — ai)> > Zw? (1 — af’ —(1- ai)ﬁ) .

11



Proof. Let ¢ : [0,1] — R be the function given byi#(z) = 27 4+ (1 — )8
for z € [0,1]. Itis easy to see that(0) = ¢(1) = 1 and thatp has a minimum for
r=1/2,¢(1/2) = 1/2'=P. Thus, we have:

P +1-2)f <1 (6)

forz € [0, 1].
Inequality (6) implies

wi(l—d? —(1—a)?) >w’(1—-d’ —(1—a)?),

i i

becausev; € [0,1] andg > 1.
By applying Jensen’s inequality for the convex functitix) = = we obtain the

inequalities:
n 5 n
<Z wi%‘) < Z wia?,
i=1 i=1
<

n ﬁ n
(Z wz(l — Ch)) Zm(l — ai)ﬂ.

Thus, we can write

n ﬁ n ﬁ
1-— <z; wiai> — <z; wz(l - av))

n n p n p
= Zwi — <Z wiai> - <Z wi(]- - al))
=1 =1 =1

> Zwi — wiaf — sz(l — ai)ﬂ
i=1 i=1 i=1
= sz (1 —d’ (1 - ai)ﬁ)
=1
> Zw? (1 —af -1 —ai)ﬁ) ,
=1
which is desired inequality. |

Theorem 3.6 Let S be a setyr € PART(S) and letC, D be two disjoint subsets &f.
For 3 > 1 we have:

(192 ststrcun) = (160 stmc) + (120 s6stm0).

12



Proof. Suppose that = {By, ..., By, } is a partition ofS. Define the numbers

|B; N (C'UD)|
w, = ———

ICUD|
forl <i<m.ltisclearthafy ;" w; = 1. Let

. __IBncC
" |B;n(CuUD)|’

for1 <i <. Itis immediate that — a; = %

Applying Lemma 3.5 to the numbets, . . ., w,, andaq, . .., a,, we obtain:
" |B;NC| |B; N D|
1—
(S - (2

= () (- (heton) - (e t) )

=1

Since

|B; N C] C| |B; N D| |D|
d =
Z;|CUD||CUD|"" Z|CuD| iCUD|

the last inequality can be written:

- <|C|S|D|)B - (|c|€|D|>ﬁ

|B; N (C U D) " Bnc\® </ |1B;n D[\’
> - 7 _ =
- Z( |C'u D] Z |C U D| ; |[CcuD| /)’

i=1 i=1

which is equivalent to

1—27? (W)ﬁ 2 <|C|S|D|>ﬁ (1 ‘i <|BTQIC|)5>

i= =1

Dl N\’ (| _s~(1B:in DI\’
1— =
" <|c 0Dl 2" ’
which yields the inequality of the theorem. |

The next result shows that thieconditional entropy is dually monotonic with re-
spect to its first argument and is monotonic with respecstegtond argument.

Theorem 3.7 Let 7,0,0’ € PART(S), where S is a finite set. Ifc < o', then
Hs(olm) > Hs(o'|r) andHs(xlo) < Hs (o).

13



Proof. Sinces < ¢’ we haver Ao < m A o', sSOHg(m A o) > Ha(m A d’).
Therefore,Hs(o|m) + Hg(w) > Hga(o'|m) + Ha(w), which impliesHs(o|m) >
Hga(o'|m).

For the second part of the theorem it suffices to prove theuialitg for partitions
0,0’ such thats < ¢’. Without restricting the generality we may assume that
{C1,...,Cph_2,Cr_1,C,} ando’ = {C4,...,C,_2,Cr—1 U C,}. Thus, we can
write:

s rlo)
= ”Z: <||CS||> (mc;) + (%)ﬁﬂﬁ(ﬁcnlucn)
> (1Y a6 + (i) st + (150) 96,

(by Theorem 3.6)

= H(nw|o).

Corollary 3.8 We haveHg(m) > Hg(n|o) for everyr, o € PART(S).

Proof. We observed thal{s(m) = Ha(m|wg). Sincewg > o the statement
follows from the second part of Theorem 3.7. |

Corollary 3.9 Let¢, 0,6’ be three partitions of a finite sé&. If 6 > ¢’, then
Ha (£ AO) — Ha(0) > Ha(E N O') — Ha(0').
Proof. By Theorem 3.3 we have:
Hp(ENO) = Hg(ENO') = Hp(g]0) + Hp(0) — Ha(8]0') — Hp ().
The monotonicity ofHs(|) in its second argument means thét; (£10) — H (€]6') >
0,S0H3(ENO) —Hp(ENE) > H(0) —FHs(6'), which implies the desired inequality.
|

The behavior of}-conditional entropies with respect to the “addition” offitions

is discussed in the next statement.

Theorem 3.10 LetS be afinite sety, 6 be two partitions of, whered = { D1, ..., Dy }.
If 0, € PART(D;) for 1 <4 < h, then

" (D]’
ﬂ{g(ﬂ|01+---+0h)zz<|sl|) Ha(
=1

If 7 = {F,...,Fx}, 0 = {Cq,...,C,} be two partitions ofS, and letw; €
PART(F;) for1 <i < k. Then,

k B

F;

Hom+ -+ mlo) = 3 (o) sts(mlon) + 96a(r10)
i=1

14



Proof. Suppose that; = {Ef | 1 < ¢ < p;}. The blocks of the partition
o1+ - - + oy are the sets of the collecticwf:l{Ef | 1 <¢<p;}. Thus, we have:

Di o1\ B
g‘fﬂ(ﬂ'|01 + "'+0h) = ZZ (||E53||) g‘fﬂ(ﬂ'Ef).

i=1 ¢=1

On the other hand, sindep, ) g« = 7g¢, We have:

h B B pi oI\ B
D) Y B
=1 =1 (=1
h  pi o\ B
Ei
>3 () st
=1 ¢=1 | |

which gives the first equality of the theorem.
To prove the second part observe that + - - - + 7z )c;, = (m1)c; + -+ (7k)c;
for every blockC; of 0. Thus, we have:

n ) I¢]
o((m +-+milo) = 3 (1) sta((mdc, + -+ (e,

j=1

By applying Corollary 2.8 to partitiongr )¢, . . ., (mx)c; of C; we can write:

" IE N
9{5((7"1)0]‘ +ot (Wk)cj) = Z (W) 9{5((7773)0.7‘) + 9{5(7-0.7‘)'
i=1 J
Thus,
Ha(m + -+ + mglo)
n k 8 n Jéi
F,NC; C;
- 23 (BP) wtmer+ 3 () e
j=11i=1 j=1
k B n 3
F; F,NC;
= (D) S (ERE) ststmnne) + Hatro)
2 \s1) &\l
~ (1R[]
= > (gl Hotmlor) +3s(r1o),
=1
which is the desired equality. |

Theorem 3.11 Letn, o, 7 be three partitions of the finite sét We have:

Ha(nlo AT) + Hp(o|T) = Ha(m A o|T).
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Proof. By Theorem 3.3 we can write
Ha(mloAT) = Ha(mAoAT)—Hg(oAT)
Hplolr) = Hglo A7) —Hp(T).

By adding these equalities and applying again Theorem 3.8b#ein the equality of
the theorem. |

Corollary 3.12 Letm, o, 7 be three partitions of the finite sét Then, we have:
Hpa(mlo) + Ha(olr) = Hp(x|T).

Proof. By Theorem 3.11, the monotonicity gfconditional entropy in its second
argument and the anti-monotonicity of the same in its firgiarent we can write:
Hp(wlo) +Hg(olr) = Hp(xlo A7)+ Hp(o|r)
= Hp(mr Aa|r)
> Hp(nlr),

which is the desired inequality. |
Corollary 3.13 Letm, o be two partitions of the finite sét. Then, we have:
Ha(mVo)+Hg(mrAo) <Hg(m) + Hga(o).

Proof. By Corollary 3.12 we havé{s(n|o) < Ha(n|r) + Hg(r|o). Then, by
Theorem 3.3 we obtain

Hp(m No) —Hp(o) < Hp(m A1) —Hp(r) + Ha(r A o) — Hp(o),

hence
Ha(r) + Hp(mr Ao) < Hap(n A7)+ Hg(r A o).

Choosingr = 7 V ¢ implies immediately the inequality of the Corollary. |

The property otz described in Corollary 3.13 is known as thiegbhmodularityof
the generalized entropy. This result generalizes the naoitybf the Gini index proven
in [15] and gives an elementary proof of a result shown in @aerning Shannon’s
entropy.

4 Generalized Entropic Metrics and Their Axiomatiza-
tion

In[6] L. de Mantaras proved that Shannon’s entropy geesrametriel : PART(S)? —
R? given byd(r, o) = H(r|o) + H(o|r), for m, o € PART(S). His result can be ex-
tended to a class of metrics that can be defined4aptropies, thereby improving our
earlier results [17].

We can show now a central result:

16



Theorem 4.1 The mappingls : PART(S)? — R defined byds(m, o) = Ha(r|o)+
Hg(o|m) for m,0 € PART(S) is a metric onPART(SS).

Proof. A double application of Corollary 3.12 yields:

Hp(mlo) +Hp(olr) =
Hp(o|m) + Hp(rlo) =

Adding these inequality gives
dg(m,0) +dg(o, ) > dg(m, 7),

which is the triangular inequality fats.

The symmetry ofis is obvious and it is clear thaigz(w,7) = 0 for everyr €
PART(S).

Suppose now thats(m,0) = 0. Since the values gf-conditional entropies are
non-negative this implie$(s(w|o) = Hg(o|r) = 0. By Theorem 3.2 we have both
o < mandr < g, respectively, sar = o. Thus,dg is a metric orPART(.S). 1

Itis clear thatds(m, ws) = Hg(m) anddg(m, ag) = Hp(ag|m).

Another useful form ofl3 can be obtained starting from the equalities StHgg|o) =
Ha(m A o) —Hga(o) andHg(o|n) = Hg(m A o) — Hg(o). Thus, we have:

dg(m,0) = 2Hp(m A o) — Hp(m) — Hp(o), (7)

for m,0 € PART(S).
The behavior of the distanag; with respect to partition addition is discussed in
the next statement.

Theorem 4.2 Let S be afinite sety, 6 be two partitions of, whered = {D, ..., Dy }.
If 0, € PART(D;) for 1 <4 < h, then

h 8
D;

dﬁ(ﬂ,ﬂl +--+ Jh) = Z <||S||) dg(ﬂ'D“Ji) + g‘fg(ﬂﬂ').

i=1

Proof. This statement follows directly from Theorem 3.10. |
The next statement is a generalization of the axiom systemagsed in [9] for the
Shannon entropic metric and for the Mirkin metric.

Theorem 4.3 The following properties hold in the metric spa@RT(S), dg):
1. ifo <, thendg(m, o) = Hg(o) — Ha(n);
2. dg(ag,0) + dg(o,ws) = dg(as,ws);
3. dg(m,mNo) +dg(m ANo,o) =dg(m, o),

for every partitionsr, o € PART(S).

_ 1-rf
Furthermore, we havé(wr, ar) =

51—, for every subset’ of S.

17



Proof. The first three statements of the theorem follow immediaftegn Equal-
ity 7; the last part is an application of the definitiondf. |

A generalization of a result obtained in [9] is containechia hext statement, which
gives an axiomatization of the metidg.

Theorem 4.4 Letd : PART(S)? — Rx( be a function that satisfies the following
conditions:

(D1) dis symmetric, thatisi(r, o) = d(o, 7);

(D2) d(as,0) + d(o,ws) = d(as,ws);

(D3) d(m,0) =d(m,m ANo) +d(m Ao,o);

(D4) if 0,6 € PART(S) suchtha®) = {D1,..., Dy} ando < 6 then we have:

h N
10.0)=3 ('@Z") d(wpy0p,):

(D5) d(wr, ar) = =7 for everyT C S.
1-21-8
Then,d = dg.

Proof. Choosingr = ag in axiom(D4) and using D5) we can write:

VI
d(as,0) — Z('@f”) d(wp,ap,)

=1
_ §:|m|ﬂl—wm%
AL 1218
h
iy [Dil? — ||
(1 —21=8)|S)8

From Axioms(D2) and(D5) it follows that

d(97w5) = d(OéS, WS) - d(a57 9)
1-[S]'F b D)’ — 8]
1-21-F  (1-21-B)[S|
517 =S| |Dil?
(1—21-F)|S|p

Let nowr,o € PART(S), wherer = {Bi,...,B,} ando = {Cy,...,Cy,}.
Sincer Ao < wandop, = {C1 N B;,...,C, N B;}, an application of Axion{D4)
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yields

_ i<|B|)"d(wBi,(W>Bi>

= 3 () o, m)

B\ |Bil? =37, |Bin Cyl°
(1—21=8)|B;|8

1 m n n
T2 sP (Z'Bilﬁ—ZDBmcﬂﬁ) ,
i=1

j=11i=1
becausér A o)p, = op,. |
By Axiom (D1) we obtain the similar equality:
d(m Ao, o)
1 m n n
- - B _ ) |8
ERCEEEIIEE (Z'Bl' 2,2 150G ) ’
i=1 j=1i=1
which, by Axiom(D3), implies:
d(m,0)
1
= - 5 5
_2ZZ|Bing‘|ﬁ ,
j=1i=1
thatisd(w, o) = dg(w, o). 1
In fact, the Mirkin metric [10] (up to a multiplicative corsstt) is obtained for

08=2:

2 m n
dao(m,0) = KE (Z 1Bil* + > 1C?
i=1 =1

i=1 j=1

—2zm:2n:|3m0j|2) .

The corresponding generalized entrdipy() is double the Gini index of the partition
™= {Bl,...,Bm}:
m B7 2
Halm) =2 (Z (%) - 1)
=1
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It is worth noting that one could axiomatize the entropytsigrfrom the notion
metric between partitions. Indeed, if titeentropy of a partitionr € PART(S) is
defined as:

Hp(m) = dp(m,ws),
then we would retrieve thg-entropy:

1 N
%B(W)ZWG‘Z(M)'

i=1

5 Partition Valuations and -Entropy

Metrics generated by-conditional entropies are closely related to lower vabret
of the upper semi-modular lattices of partitions of finitésseThis connection was
established in [3] and studied in [2, 1, 12].

A lower valuationon a lattice(L,V, A) is a mappingv : L. — R such that
v(rVao)+v(rAo) > v(r) + v(o) for everyr, o € L. If the reverse inequality is
satisfied, that is, it:(7 V o) + v(m A o) < v(m) + v(o) for everym,o € L, thenv is
referred to as anpper valuation

If v € L is both a lower and upper valuation, that isp{fr V o) + v(r A o) =
v(m) + v(o) for everyr, o € L, thenv is a valuation orl..

We have the following result:

Theorem 5.1 Letr, o € PART(S) be two partitions. We have:

ds(m,0) = 2-dg(m Ao,ws) —dg(m,ws) — ds(o,ws)
= dg(as,m) +dg(as, o) —2-dg(as, 7 Ao).

Proof. The equalities of the theorem can be immediately verified sipgithe
definition ofdg.

Corollary 5.2 Let#, T be two partitions fromPART(S). If # < 7 and we have either
dg(0,ws) = dg(T,ws) or dg(as, 0) = dg(as, ), thend = 7.

Proof. Observe that i < 7, then Theorem 5.1 implies
dg(@, 7') + dg(T, ws) = dﬁ(@, ws),

and
dg(G,T) = dg(as,T) — dg(as,e).

Suppose thatlz(0,ws) = dg(T,ws). Sincedg(t,ws) = dg(f,ws) it follows that
dg(0,7) =0,s00 = T.

If dg(as,0) = dg(as, T) the same conclusion can be reached immediately.ll

It is known [3] that if there exists a positive valuatioron L, then L. must be a
modular lattice. Since the partition lattice of a set is aparpsemimodular lattice that
is not modular ([3]) it is clear that positive valuations dat Bxist on partition lattices.
However, lower and upper valuations do exist, as shown next:

20



Theorem 5.3 Let S be a finite set. Define the mappings : PART(S) — R and

letwg : PART(S) — R be byvg(r) = dg(as, m) andwg(m) = dg(m,ws), respec-
tively, form € PART(S). Then,g is a lower valuation andvg is an upper valuation
on the lattice( PART(S), v, A).

Proof. Theorem 5.1 allows us to write:
dg(m,0) = wg(m)+vg(o) —2vg(m A o)
= 2wg(m No) —ws(m) —ws(o),

for everym, o € PART(S).
If we rewrite the triangular inequalitys(w, 7) + dg(7,0) > dg(w, o) using the
valuationsvg andwg we obtain:

va(7) + v(T A o)
wg(m AT) +wa(T A o)

vag(m AT) +vg(T A o),

>
> wg(T) +wg(m A o),

for everyr, 7,0 € PART(S). If we chooser = 7 V ¢ the last inequalities yield:

vp(m) +vp(0) < vg(mVo)+ug(mAo)
wg(m) +wg(o) > wg(mVo)+wg(rAo),

for everyw, o € PART(S), which shows that is a lower valuation ands is an
upper valuation on the lattiddPART(S), v, A). |

6 Conclusion and Future Work

We introduced an axiomatization of a generalization of@mithat has as special case
Shannon entropy and Havrda-Charvat entropy. Moreover,ave bhown, that under
certain assumption the Havrda-Charvat entropy is the @nédfiernative to Shannon’s
entropy.

A general axiomatization of a family of metrics on the setaftgions of a finite set
that is related to generalized entropies was also intratluCeese metrics are used for
a variety of data mining tasks ranging from clustering [9, tbclassification [17, 18]
and discretization [13].

The value of the parametgrthat gives optimal results depends on the statistical
properties of the data set that is analyzed. Developingittgos that learn the values
of g for a specific data set and mining task remains an open problem
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A A Useful Characterization of a Function

The goal of this section is to show thatiif: N — R is an increasing function such
thath(2) = 2 andh(mn) = mh(n) + nh(m) for m,n € N, thenh(n) = nlog, n for
everyn € Nj.

For a number: € R we denote the largest integer that is less or equaltig |z |;
thefractional partof = will be denoted byx), where(z) = « — |z].

The following technical Lemma is a special case of a resuidthlet (see[20],
pp.235).

Lemma A.1 Let o be a real number and lef be a positive integer. There exisis
. 1
such thatl < m < ¢ and an integer such thatma — n| < — < —.
q m

Proof. Divide the setl = {x € R|0 < z < 1} into g equal subinterval%%, é)

for1 < i < q. Of theq + 1 numbers{na), whered < n < ¢, at least two, sayn;«)
and (nqc) are in the same subinterval. This med@s o) — (noa)| < % Setting

|nia] = n' and|naa] = n” we obtain|nia — [n1a] — noa + [neaf| < %, or
[(n1 —no)a— (0 —n")| < %. We can taken = n; —ng > landn =n’ — m” in
order to obtain the desired inequality. |

Lemma A.2 If n < me < n + ¢, then there existv’, n’ such thaty' — e < m'e < n'.
Similarly, ifn — e < me < n, there exist”, m” such thatn”” < m”e < n” +e.

Proof. Let§,0 > 0. We havedn + ca < (fm + 0)a < On + fe + oa. Choose
6 > max{1,1/e}. Under this choice, the intervfln + o, On + e + o) is of length
greater than 1 and, therefore, there is an integen this interval for any choice of.
This allows us to choose ando such thatym + o = m’ andfn + fe + ca = n'.
Note that if we make these choices, titen+ ca = n’ — 6e > n’ — € and, therefore,
n —e<ma<n.

The second part of the argument is similar and it is left tordaaler. |

Lemma A.3 If h : N — R is a function such that
h(mn) = mh(n) + nh(m),
for everym,n € N, thenh(p*) = kp*~'h(p) for everyp, k € Nandk > 1.
Proof. The argument is by induction dnand it is left to the reader. |
Lemma A4 If h : N — R s a function such that
h(mn) = mh(n) + nh(m),

for everym,n € N, then

ok kih(pi)
h(plflplf .. _pITan) _ pllﬂp12<2 .. _pf;n Z i i)
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Let/: N — R be the function given by

0 if n =0,
g("):{ LIGYR )

n

Note that/(mn) = £(m) + ¢(n) and, therefore,
py'p5? - o) = L(pT") +L(p3?) + -+ Loy,
Sincel(p*) = Sh(p) (because of Lemma A.3 we obtain:
Upyps?-opir) = > %(p)
1<i<n ¢
which gives immediately the equality of the Lemma. |

Theorem A.5 Leth : N — R be a function such thdt(p) = plogpifp =1 orif p
is prime. Ifh(mn) = mh(n) + nh(m) for everym,n € N, thenh(n) = nlogn for
everyn e N,n > 1.

Proof. Since every positive integer other than 1 can be written uniquely as a
product of powers of primes = p"1 phz ... pk~ we have:

kih(p;
pwy = gl gl 30 R
1<i<n pi
= n Z k;log p;
1<i<n
= nlogn,
forn > 2. |

Theorem A.6 Leth : N — R be an increasing function such thatmn) = mh(n)+
nh(m) for everym,n € N. If h(2) = 2, thenh(n) = nlog, n forn € N.

Proof. Define the functior : {n € Njn > 1} — R by b(n) = h(n)/(n *logn).

We shall prove initially that ip > 2 is a prime number, thai{p) > 1. Lete > 0 be
areal number. Taking < 1/ein Lemma A.1 we obtain the existencerof n € N such
that|ma — n| < e. In other words, we have —e < ma < n+e. If n < ma <n+e,
then by Lemma A.2, there are’, n’ suchthaty’ —e¢ < m'e < n'. f n—ec < ma <n,
then the same lemma implies the existence’tfm” such thaty” < m”e < n” +e.

If we choosen: = log p, then we may assume that there aten € N, m,n > 1
such thath < mlogp < n + e. Equivalently, we have™ < p™ < 2™ 2¢. Sinceh is
an increasing function, we obtair2™ < h(p™), orn2" < mp™'h(p). Because of
the definition ofb we haven2™ < mp™b(p) logp, or n2™ < b(p)p™ log p™. In view
of the previous inequality, this implies

n2" < b(p)2"2°(n + ¢),
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or, equivalently,
n

b(p) > ———.
R
Takinge — 0 we obtainb(p) > 1.
Similarly, there exists a numbet € N such thatr — ¢ < mlogp < n. A similar
argument which makes use of Lemma A.2 shows #at < 1, sob(p) = 1, which

proves that(p) = plog p for every primep. |
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