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Abstract

Starting from an axiomatization of a generalization of Shannon entropy we
introduce a set of axioms for a parametric family of distances over sets of partitions
of finite sets. This family includes some well-known metricsused in data mining
and in the study of finite functions.

1 Introduction

The notion of entropy is as a probabilistic concept that liesat the foundation of infor-
mation theory. Our goal is to define entropy in an algebraic setting, namely, introduce
the notion of entropy of a partition taking advantage of the partial order that is naturally
defined on the set of partitions of a set. Actually, we will introduce a generalization of
the notion of entropy that has the Gini index and Shannon entropy as special cases and
further extends some of our previous results.

Another goal of this paper is the study an axiomatization of aparameterized family
of metrics on sets of partitions of finite sets that generalizes the entropic metric intro-
duced by R. López de Mántaras [6], as well as the Mirkin metric introduced in [10].
This unifies the separate axiom systems for these metrics introduced in [9] and illumi-
nates the relationship of the axiomatization of these metrics with our previous axiom-
atization of generalized entropy [16, 14].

Metrics on sets of partitions of finite sets are useful because they allow us to study
properties of finite functions related to their kernel partitions. In a different direction,
these metrics are interesting for data mining because the attributes of a table induce
partitions on the sets of tuples of the table. Thus, metrics on partitions allow us to
determine interesting relationships between attributes and to use these relationship for
classification, data summarization and other applications. Also, exclusive clusterings
can be regarded as partitions of the set of clustered objectsand partition metrics can be
used for evaluating clusterings, a point of view presented in [9].

A partition of a setS is a non-empty collection of non-empty subsets ofS, π =
{Bi | i ∈ I} such that

⋃

π = S andBi ∪ Bj = ∅ wheni 6= j for i, j ∈ I. The sets
Bi are theblocksof π. The set of partitions ofS is denoted byPART(S).
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A natural link exists between random variables and partitions of sets. Namely, ifS
is a finite set andπ = {B1, . . . , Bn} is a partition ofS, then

p =

(

|B1|

|S|
, . . . ,

|Bn|

|S|

)

is a discrete probability distribution. As we shall see, theShannon entropy ofp equals
the Shannon entropy ofπ, as follows from our axiomatization. This link allows the
transfer of certain probabilistic and information-theoretical notions to partitions of sets,
where we can take advantage of the partial order between partitions.

A partial order relation onPART(S) is defined byπ ≤ σ for π, σ ∈ PART(S) if
every block ofB is included in a block ofσ. This is easily seen to be equivalent to
requiring that each block ofσ is a union of blocks ofπ.

The partially ordered set(PART(S),≤) is actually a bounded lattice. The infimum
of two partitionsπ andπ′ is the partition that consists of non-empty intersections of
blocks ofπ andπ′. The least element of this lattice is the partitionαS = {{s} | s ∈
S}; the largest is the partitionωS = {S}.

The partitionσ coversthe partitionπ if σ is obtained fromπ by fusing two blocks
of this partition. This is denoted byπ ≺ σ. If π ≤ π′, then there exists a sequence of
partitionsσ0, σ1, . . . , σr such thatπ = σ0 ≺ σ1 ≺ · · · ≺ σr = π′.

If S, T are two disjoint and nonempty sets,π ∈ PART(S), σ ∈ PART(T ), where
π = {B1, . . . , Bm}, σ = {C1, . . . , Cn}, then the partitionπ + σ is the partition of
S ∪ T given by

π + σ = {B1, . . . , Bm, C1, . . . , Cn}.

Whenever the “+” operation is defined, then it is easily seen to be associative. In
other words, ifS, T, U are pairwise disjoint and nonempty sets, andπ ∈ PART(S),
σ ∈ PART(T ), τ ∈ PART(U), thenπ + (σ + τ) = (π + σ) + τ . Observe that ifS, T
are disjoint, thenαS + αT = αS∪T . Also, ωS + ωT is the partition{S, T } of the set
S ∪ T .

If π = {B1, . . . , Bm}, σ = {C1, . . . , Cn} are partitions of two arbitrary setsS, T ,
then we denote the partition{Bi × Cj | 1 ≤ i ≤ m, 1 ≤ j ≤ n} of S × T by π × σ.
Note that there is a natural bijection betwenαS × αT andαS×T and also, between
ωS × ωT andωS×T .

2 An Axiomatization of Generalized Entropy

We present a new system of axioms for generalized entropies that have as special cases
Shannon entropy and the generalized entropy introduced in [4, 5]). We further show
that, under certain hypotheses, the second type of entropies in the single generalization
possible.

Definition 2.1 A function h : N −→ R≥0 is multiplicativeif h(pq) = h(p)h(q) for
p, q ∈ N.

This notion of multiplicative function is stronger than theusual notion used in number
theory, when the multiplicative equality holds ifp andq are relatively prime. An exam-
ple of such a function ish(r) = rβ for r ∈ N andβ ∈ R≥0; this function will play an
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important role in our axiomatization. Another trivial example is the constant function
h(p) = 0 for p ∈ N, which will be referred to as thezero function.

Note that ifh a multiplicative function distinct from the zero function,thenh(1) =
1.

We introduce below a system of four axioms:

Definition 2.2 Let β ∈ R, β ≥ 1, Φ : R2
≥0 −→ R≥0 be a continuous function such

that Φ(x, y) = Φ(y, x), andΦ(x, 0) = x for x, y ∈ R≥0, andh : N −→ R≥0 a
non-zero multiplicative function such thath(n) = 0 impliesn = 0.

A (Φ, h)-system of axioms for a partition entropyHh : PART(S) −→ R≥0 con-
sists of the following axioms:

(P1) If π, π′ ∈ PART(S) are such thatπ ≤ π′, thenHh(π) ≥ Hh(π′).

(P2) If S, T are two finite sets such that|S| ≤ |T |, thenHh(αS) ≤ Hh(αT ).

(P3) For every disjoint setsS, T and partitionsπ ∈ PART(S), andσ ∈ PART(T ) we
have:

Hh(π + σ) =
h(|S|)

h(|S| + |T |)
Hh(π) +

h(|T |)

h(|S| + |T |)
Hh(σ) + Hh({S, T }).

(P4) We have:
Hh(π × σ) = Φ(Hh(π), Hh(σ))

for π ∈ PART(S) andσ ∈ PART(T ).

Observe that we postulate thatHh(π) ≥ 0 for any partitionπ since the range of
every functionHh is R≥0.

Lemma 2.3 For every(Φ, h)-entropyHh and setS we haveHh(ωS) = 0.

Proof. Let S, T be two non-empty disjoint sets that have the same cardinality,
|S| = |T |. SinceωS + ωT is the partition{S, T } of the setS ∪ T , by Axiom (P3)we
have

Hh(ωS + ωT ) =
h(|S|)

h(2|S|)
(Hh(ωS) + Hh(ωT )) + Hh({S, T }),

which impliesHh(ωS) + Hh(ωT ) = 0. SinceHh(ωS) ≥ 0 andHh(ωT )) ≥ 0 it
follows thatHh(ωS) = Hh(ωT ) = 0.

Lemma 2.4 LetU, V be two disjoint sets and letπ, π′ ∈ PART(U ∪ V ) be defined by
π = σ + αV andπ′ = σ + ωV , whereσ ∈ PART(U). Then,

Hh(π) = Hh(π′) +
h(|V |)

h(|U | + |V |)
Hh(αV ).
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Proof. By Axiom (P3)we can write:

Hh(π) =
h(|U |)

h(|U | + |V |)
Hh(σ)

+
h(|V |)

h(|U | + |V |)
Hh(αT ) + Hh({U, V }),

and

Hh(π′) =
h(|U |)

h(|U | + |V |)
Hh(σ)

+
h(|V |)

h(|U | + |V |)
Hh(ωT ) + Hh({U, V })

=
h(|U |)

h(|U | + |V |)
Hh(σ) + Hh({U, V })

(by Lemma 2.3).

The above equalities imply immediately the equality of the lemma.

Theorem 2.5 For every(Φ, h)-entropy and partitionπ = {B1, . . . , Bm} ∈ PART(S)
we have:

Hh(π) = Hh(αS) −
m
∑

i=1

h(|Bi|)

h(|S|)
Hh(αBi

).

Proof. Starting from the partitionπ consider the following sequence of partitions
in PART(S):

π0 = ωB1 + ωB2 + ωB3 + · · · + ωBm

π1 = αB1 + ωB2 + ωB3 + · · · + ωBm

π2 = αB1 + αB2 + ωB3 + · · · + ωBm

...

πn = αB1 + αB2 + αB3 + · · · + αBm
.

Let σj = αB1 + · · · + αBj
+ ωBi+2 + · · · + ωBm

. Then,πi = σi + ωBi+1 and
πi+1 = σi + αBi+1 ; therefore, by Lemma 2.4, we have:

Hh(πi+1) = Hh(πi) +
h(|Bi+1|)

h(|S|)
Hh(αBi+1)

for 0 ≤ i ≤ m − 1.
A repeated application of this equality yields:

Hh(πm) = Hh(π0) +

m−1
∑

i=0

h(|Bi+1|)

h(|S|)
Hh(αBi+1).
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Observe thatπ0 = π andπm = αS . Consequently,

Hh(π) = Hh(αS) −
m
∑

i=1

h(|Bi|)

h(|S|)
Hh(αBi

).

Note that ifS, T are two sets such that|S| = |T | > 0, then, by Axiom(P2), we have
Hh(αS) = Hh(αT ). Therefore, the value ofHh(αS) depends only on the cardinality
of S, and there exists a functionµh : N1 −→ R≥0 such thatHh(αS) = µh(|S|) for
every nonempty setS. Axiom (P2) also implies thatµh is an increasing function. We
will refer to µh as thecoreof the(Φ, h)-system of axioms.

Corollary 2.6 Let Hh be a(Φ, h)-entropy. For the coreµh defined in accordance to
Axiom(P2)and every partitionπ = {B1, . . . , Bm} ∈ PART(S) we have:

Hh(π) = µh(|S|) −
m
∑

i=1

h(|Bi|)

h(|S|)
µh(|Bi|). (1)

Proof. The statement is an immediate consequence of Theorem 2.5.

Theorem 2.7 Let π = {B1, . . . , Bm} be a partition of the setS. Define the partition
π′ obtained by fusing the blocksB1 andB2 of π asπ′ = {B1 ∪ B2, B3, . . . , Bm} of
the same set. Then

Hh(π) = Hh(π′) +
h(|B1 ∪ B2|)

h(|S|)
Hh({B1, B2}).

Proof. A double application of Corollary 2.6 yields:

Hh(π′) = µh(|S|) −
h(|B1 ∪ B2|)

h(|S|)
µh(|B1 ∪ B2|)

−
m
∑

i>2

h(|Bi|)

h(|S|)
µh(|Bi|)

and

Hh({B1, B2}) = µ(|B1 ∪ B2|) −
h(|B1|)

h(|B1 ∪ B2|)
µ(|B1|)

−
h(|B2|)

h(|B1 ∪ B2|)
µ(|B2|).

Substituting the above expressions in

Hh(π′) +
h(|B1 ∪ B2|)

h(|S|)
Hh({B1, B2})

we obtainHh(π).
Theorem 2.7 allows us to extend Axiom(P3):
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Corollary 2.8 Let B1, . . . , Bm bem nonempty, disjoint sets and letπi ∈ PART(Bi)
for 1 ≤ i ≤ m. We have:

Hh(π1 + · · · + πm) =

m
∑

i=1

h(|Bi|)

h(|S|)
Hh(πi) + Hh({B1, . . . , Bm}),

whereS = B1 ∪ · · · ∪ Bm.

Proof. The argument is by induction onm ≥ 2. The basis step,m = 2, is
Axiom (P3). Suppose that the statement holds form and letB1, . . . , Bm, Bm+1 be
m + 1 disjoint sets. Further, suppose thatπ1, . . . , πm, πm+1 are partitions of these
sets, respectively. Then,πm + πm+1 is a partition of the setBm ∪ Bm+1. By the
inductive hypothesis we have

Hh(π1 + · · · + (πm + πm+1))

=
m−1
∑

i=1

h(|Bi|)

h(|S|)
Hh(πi) +

h(|Bm| + |Bm+1|)

h(|S|)
Hh(πm + πm+1)

+Hh({B1, . . . , (Bm ∪ Bm+1)}),

whereS = B1 ∪ · · · ∪ Bm ∪ Bm+1.
Axiom (P3) implies:

Hh(π1 + · · · + (πm + πm+1))

=
m−1
∑

i=1

h(|Bi|)

h(|S|)
Hh(πi) +

h(|Bm|)

h(|S|)
Hh(πm)

+
h(|Bm+1|)

h(|S|)
Hh(πm+1) +

h(|Bm| + |Bm+1|)

h(|S|)
Hh{Bm, Bm+1}

+Hh({B1, . . . , (Bm ∪ Bm+1)}).

Finally, an application of Theorem 2.7 gives the desired equality.

Theorem 2.9 Letµh be the core of a(Φ, h)-system such that the functionh is not the
identity functionh(n) = n for n ∈ N. There exists a numberk ∈ R such that

µ(a) = k

(

1 −
a

h(a)

)

for a ∈ N1.

Proof. Let A = {x1, . . . , xa} andB = {y1, . . . , yb} be two nonempty sets, where
a, b ∈ N1. The partitionωA×αB consists ofb blocks of sizea: A×{y1}, . . . , A×{yb}.
By Axiom (P4),

Hh(ωA × αB)

= Φ(Hh(ωA), Hh(αB)) = Φ(0, Hh(αB)) = Hh(αB) = µh(b).
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On the other hand, by Theorem 2.5 we have

Hh(ωA × αB) = Hh(αA×B) −
b
∑

i=1

h(a)

h(ab)
Hh(αA×{yi})

= µh(ab) − b
h(a)

h(ab)
· µh(a),

which implies

µh(ab) = µh(b) + b
h(a)

h(ab)
µh(a) = µh(b) + b

1

h(b)
µh(a), (2)

for a, b ∈ N1, sinceh is a multiplicative function. Inverting the roles ofa andb we
obtain also

µh(ab) = µh(a) + a
1

h(a)
µh(b),

which implies
µh(a)

1 − a
h(a)

=
µh(b)

1 − b
h(b)

,

for everya, b ∈ N1, which yields the desired equality forµh.
An entropy is said to benon-Shannonif it is defined by a(Φ, h)-system of axioms

such thath(n) 6= n for n ∈ N. If h(n) = n for n ∈ N, then the entropy will be referred
to as aShannonentropy. As we shall see, the choice of the functionh determines the
form of the functionΦ. Initially we focus on non-Shannon entropies.

The next Corollary shows that within the framework of our axiomatization the one
obtains necessarily the non-Shannon generalized entropy introduced in [4, 5]).

Corollary 2.10 If h : N −→ R≥0 is a multiplicative function used in a(Φ, h) axiom-
atization of a non-Shannon entropy, thenh(n) = nβ for someβ > 1 andµh(n) =
k(1 − n1−β).

Proof. We observed that Axiom(P2) implies thatµh is an increasing function.
Since, by Theorem 2.9,h(n) = n

1−
µh(n)

k

, it follows thath is also a non-decreasing

function. Applying a result of Moser and Lambeck [11], the functionh has the form
h(n) = nβ for someβ ∈ R≥0. The equality definingµh follows immediately and,
sinceµ is a non-decreasing function we also haveβ > 1.

Corollary 2.11 If Hh is a non-Shannon entropy defined by a(Φ, h)-system of axioms
andπ ∈ PART(S), whereπ = {B1, . . . , Bm}, then there exists a constantk ∈ R such
that

Hh(π) = k

[

1 −
n
∑

i=1

(

|Bi|

|S|

)β
]

(3)

for someβ > 1.
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Proof. We saw that for non-Shannon entropy, the functionh is necessarily of the
form h(n) = nβ for n ∈ N andβ > 1. By Corollary 2.6 we have

Hh(π) = µh(|S|) −
m
∑

i=1

(

|Bi|

|S|

)β

µh(|Bi|)

= k(1 − |S|1−β) − k

m
∑

i=1

(

|Bi|

|S|

)β

(1 − |Bi|
1−β)

= k(1 − |S|1−β) − k

m
∑

i=1

(

|Bi|

|S|

)β

+ k|S|1−β

= k

[

1 −
n
∑

i=1

(

|Bi|

|S|

)β
]

.

The next theorem shows that the functionΦ introduced by Definition 2.2 and used
in Axiom (P4) is essentially determined by the choice made forh.

Theorem 2.12 LetHh be the non-Shannon entropy defined by a(Φ, h)-system, where
h(n) = nβ for someβ > 1.

The functionΦ of Axiom(P4) is given by

Φ(x, y) = x + y −
1

k
xy

for x, y ∈ R≥0.

Proof. Let π = {B1, . . . , Bm} ∈ PART(S) andσ = {C1, . . . , Cn} ∈ PART(T )
be two partitions. Since

m
∑

i=1

(

|Bi|

|S|

)β

= 1 −
1

k
Hh(π)

n
∑

j=1

(

|Cj |

|T |

)β

= 1 −
1

k
Hh(σ)

we can write:

Hh(π × σ) = k



1 −
m
∑

i=1

n
∑

j=1

(

|Bi||Cj |

|S||T |

)β





= k

(

1 −

(

1 −
1

k
Hh(π)

)(

1 −
1

k
Hh(σ)

))

= Hh(π) + Hh(σ) −
1

k
Hh(π)Hh(σ).

Sinceβ > 1 the set of rational numbers of the form

1 −
n
∑

l=1

rβ
l ,
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whererl ∈ Q, 0 ≤ rl ≤ 1 for 1 ≤ l ≤ n and
∑n

l=1 rl = 1, for somen ∈ N1,
is dense in the interval[0, 1]. Thus, formula (3) shows that the set of entropy values
is dense in the interval[0, k] because the setsB1, . . . , Bm are finite but of arbitrarily
large cardinalities. Since the set of values of entropies isdense in the interval[0, k], the
continuity ofΦ implies the desired form ofΦ.

Choosingk = 1
1−21−β in the equality (3) we obtain the Havrda-Charvat entropy

(see [5]):

Hh(π) =
1

1 − 21−β
·

(

1 −
m
∑

i=1

(

|Bi|

|S|

)β
)

.

If β = 2 we obtainH2(π) which is twice the Gini index,

Hh(π) = 2 ·

(

1 −
m
∑

i=1

(

|Bi|

|S|

)2
)

.

TheGini index, gini(π) = 1 −
∑m

i=1

(

|Bi|
|S|

)2

is widely used in machine learning and

data mining.
The limit case,limβ→1 Hh(π) yields

lim
β→1

Hh(π) = lim
β→1

1

1 − 21−β
·

(

1 −
m
∑

i=1

(

|Bi|

|S|

)β
)

= lim
β→1

1

21−β ln 2
·

(

−
m
∑

i=1

(

|Bi|

|S|

)β

ln
|Bi|

|S|

)

= −
m
∑

i=1

|Bi|

|S|
log2

|Bi|

|S|
,

which is the Shannon entropy ofπ.
Whenβ = 1, by Theorem 2.9, we have

µ(ab) = µ(a) + µ(b)

for a, b ∈ N1. If η : N1 −→ R is the function defined byη(a) = aµ(a) for a ∈ N1,
thenη is clearly an increasing function and we have

η(ab) = abµ(ab) = bη(a) + aη(b)

for a, b ∈ N1. By Theorem A.6 , there exists a constantc ∈ R such thatη(a) =
ca log2 a for a ∈ N1, soµ(a) = c log2(a). Then, equation (1) implies:

Hh(π) = c ·
m
∑

i=1

ai

a
log2

ai

a
,

for every partitionπ = {A1, . . . , Am} of a setA, where|Ai| = ai for 1 ≤ i ≤ m, and
|A| = a. This is exactly the expression of Shannon’s entropy.
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The continuous functionΦ is determined, as in the previous case. Indeed, ifA, B
are two sets such that|A| = a and|B| = b, then we must have

c · log2 ab = Hh(αA × αB) = Φ(c · log2 a, c · log2 b)

for anya, b ∈ N1 and anyc ∈ R. The continuity ofΦ impliesΦ(x, y) = x + y.
If h(n) = nβ for n ∈ N andβ > 1, we shall refer to theHh(π) as theβ-entropy

of π and will denote this entropy from now on byHβ(π).

3 Generalized Conditional Entropies

The entropies previously introduced generate corresponding conditional entropies.
Let π ∈ PART(S) and letC ⊆ S. Denote byπC the “trace” ofπ onC given by

πC = {B ∩ C|B ∈ π such thatB ∩ C 6= ∅}.

Clearly,πC ∈ PART(C); also, ifC is a block ofπ, thenπC = ωC .

Definition 3.1 Let π, σ ∈ PART(S) and letσ = {C1, . . . , Cn}. Theβ-conditional
entropy of the partitionsπ, σ ∈ PART(S) (whereβ > 1) is the functionHβ :
PART(S)2 −→ R≥0 defined by:

Hβ(π|σ) =

n
∑

j=1

(

|Cj |

|S|

)β

Hβ(πCj
)

Observe thatHβ(π|ωS) = Hβ(π) and thatHβ(ωS |π) = Hβ(π|αS) = 0 for every
partitionπ ∈ PART(S).

For π = {B1, . . . , Bm} andσ = {C1, . . . , Cn} the conditional entropy can be
written explicitly as:

Hβ(π|σ) =
n
∑

j=1

(

|Cj |

|S|

)β m
∑

i=1

1

1 − 21−β

[

1 −

(

|Bi ∩ Cj |

|Cj |

)β
]

=
1

1 − 21−β

n
∑

j=1

(

(

|Cj |

|S|

)β

−
m
∑

i=1

(

|Bi ∩ Cj |

|S|

)β
)

. (4)

For the special case whenπ = αS we can write

Hβ(αS |σ) =

n
∑

j=1

(

|Cj |

|S|

)β

Hβ(αCj
) =

1

1 − 21−β





n
∑

j=1

(

|Cj |

|S|

)β

−
1

|S|β−1



 .

(5)

Theorem 3.2 Letπ, σ be two partitions of a finite setS. We haveHβ(π|σ) = 0 if and
only if σ ≤ π.
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Proof. Suppose thatσ = {C1, . . . , Cn}. If σ ≤ π, thenπCj
= ωCj

for 1 ≤ j ≤ n
and, therefore,

Hβ(π|σ) =

n
∑

j=1

(

|Cj |

|S|

)β

Hβ(ωCj
) = 0.

Conversely, suppose that

Hβ(π|σ) =

n
∑

j=1

(

|Cj |

|S|

)β

Hβ(πCj
) = 0.

This impliesHβ(πCj
) = 0 for 1 ≤ j ≤ n, which means thatπCj

= ωCj
for 1 ≤ j ≤ n

by a previous remark. This means that every blockCj of σ is included in a block ofπ.
soσ ≤ π.

The next statement is a generalization of a well-known property of Shannon’s en-
tropy.

Theorem 3.3 Letπ, σ be two partitions of a finite setS. We have:

Hβ(π ∧ σ) = Hβ(π|σ) + Hβ(σ) = Hβ(σ|π) + Hβ(π),

Proof. Suppose thatπ = {B1, . . . , Bm} and thatσ = {C1, . . . , Cn}. Observe that

π ∧ σ = πC1 + · · · + πCn
= σB1 + · · · + σBm

.

Therefore, by Corollary 2.8 we have:

Hβ(π ∧ σ) =
n
∑

j=1

(

|Cj |

|S|

)β

Hβ(πCj
) + Hβ(σ),

which implies
Hβ(π ∧ σ) = Hβ(π|σ) + Hβ(σ).

The second equality has a similar proof.

Corollary 3.4 If Hβ(π ∧ σ) = Hβ(π), thenπ ≤ σ.

Proof. SinceHβ(π ∧ σ) = Hβ(π), Theorem 3.3 impliesHβ(σ|π) = 0. By
Theorem 3.2 we haveπ ≤ σ.

Lemma 3.5 Letβ ≥ 1. If w1, . . . , wn aren positive numbers such that
∑n

k=1 wk = 1,
anda1, . . . , an ∈ [0, 1], then

1 −

(

n
∑

i=1

wiai

)β

−

(

n
∑

i=1

wi(1 − ai)

)β

≥
n
∑

i=1

wβ
i

(

1 − aβ
i − (1 − ai)

β
)

.

11



Proof. Let φ : [0, 1] −→ R be the function given by:φ(x) = xβ + (1 − x)β

for x ∈ [0, 1]. It is easy to see thatφ(0) = φ(1) = 1 and thatφ has a minimum for
x = 1/2, φ(1/2) = 1/21−β. Thus, we have:

xβ + (1 − x)β ≤ 1 (6)

for x ∈ [0, 1].
Inequality (6) implies

wi(1 − aβ
i − (1 − ai)

β) ≥ wβ
i (1 − aβ

i − (1 − ai)
β),

becausewi ∈ [0, 1] andβ > 1.
By applying Jensen’s inequality for the convex functionf(x) = xβ we obtain the

inequalities:

(

n
∑

i=1

wiai

)β

≤
n
∑

i=1

wia
β
i ,

(

n
∑

i=1

wi(1 − ai)

)β

≤
n
∑

i=1

wi(1 − ai)
β .

Thus, we can write

1 −

(

n
∑

i=1

wiai

)β

−

(

n
∑

i=1

wi(1 − ai)

)β

=

n
∑

i=1

wi −

(

n
∑

i=1

wiai

)β

−

(

n
∑

i=1

wi(1 − ai)

)β

≥
n
∑

i=1

wi −
n
∑

i=1

wia
β
i −

n
∑

i=1

wi(1 − ai)
β

=

n
∑

i=1

wi

(

1 − aβ
i − (1 − ai)

β
)

≥
n
∑

i=1

wβ
i

(

1 − aβ
i − (1 − ai)

β
)

,

which is desired inequality.

Theorem 3.6 LetS be a set,π ∈ PART(S) and letC, D be two disjoint subsets ofS.
For β ≥ 1 we have:

(

|C ∪ D|

|S|

)β

Hβ(πC∪D) ≥

(

|C|

|S|

)β

Hβ(πC) +

(

|D|

|S|

)β

Hβ(πD).

12



Proof. Suppose thatπ = {B1, . . . , Bm} is a partition ofS. Define the numbers

wi =
|Bi ∩ (C ∪ D)|

|C ∪ D|

for 1 ≤ i ≤ m. It is clear that
∑m

i=1 wi = 1. Let

ai =
|Bi ∩ C|

|Bi ∩ (C ∪ D)|
,

for 1 ≤ i ≤. It is immediate that1 − ai = |Bi∩D|
|Bi∩(C∪D)| .

Applying Lemma 3.5 to the numbersw1, . . . , wm anda1, . . . , am we obtain:

1 −

(

n
∑

i=1

|Bi ∩ C|

|C ∪ D|

)β

−

(

n
∑

i=1

|Bi ∩ D|

|C ∪ D|

)β

≥
n
∑

i=1

(

|Bi ∩ (C ∪ D)|

|C ∪ D|

)β
(

1 −

(

|Bi ∩ C|

|Bi ∩ (C ∪ D)|

)β

−

(

|Bi ∩ D|

|Bi ∩ (C ∪ D)|

)β
)

.

Since
n
∑

i=1

|Bi ∩ C|

|C ∪ D|
=

|C|

|C ∪ D|
and

n
∑

i=1

|Bi ∩ D|

|C ∪ D|
=

|D|

|C ∪ D|
,

the last inequality can be written:

1 −

(

|C|

|C ∪ D|

)β

−

(

|D|

|C ∪ D|

)β

≥
n
∑

i=1

(

|Bi ∩ (C ∪ D)|

|C ∪ D|

)β

−
n
∑

i=1

(

|Bi ∩ C|

|C ∪ D|

)β

−
n
∑

i=1

(

|Bi ∩ D|

|C ∪ D|

)β

,

which is equivalent to

1 −
n
∑

i=1

(

|Bi ∩ (C ∪ D)|

|C ∪ D|

)β

≥

(

|C|

|C ∪ D|

)β
(

1 −
n
∑

i=1

(

|Bi ∩ C|

|C|

)β
)

+

(

|D|

|C ∪ D|

)β
(

1 −
n
∑

i=1

(

|Bi ∩ D|

|D|

)β
)

,

which yields the inequality of the theorem.
The next result shows that theβ-conditional entropy is dually monotonic with re-

spect to its first argument and is monotonic with respect to its second argument.

Theorem 3.7 Let π, σ, σ′ ∈ PART(S), whereS is a finite set. Ifσ ≤ σ′, then
Hβ(σ|π) ≥ Hβ(σ′|π) andHβ(π|σ) ≤ Hβ(π|σ′).

13



Proof. Sinceσ ≤ σ′ we haveπ ∧ σ ≤ π ∧ σ′, soHβ(π ∧ σ) ≥ Hβ(π ∧ σ′).
Therefore,Hβ(σ|π) + Hβ(π) ≥ Hβ(σ′|π) + Hβ(π), which impliesHβ(σ|π) ≥
Hβ(σ′|π).

For the second part of the theorem it suffices to prove the inequality for partitions
σ, σ′ such thatσ ≺ σ′. Without restricting the generality we may assume thatσ =
{C1, . . . , Cn−2, Cn−1, Cn} andσ′ = {C1, . . . , Cn−2, Cn−1 ∪ Cn}. Thus, we can
write:

Hβ(π|σ′)

=

n−2
∑

j=1

(

|Cj |

|S|

)β

Hβ(πCj
) +

(

|Cn−1 ∪ Cn|

|S|

)β

Hβ(πCn−1∪Cn
)

≥

(

|Cj |

|S|

)β

Hβ(πCj
) +

(

|Cn−1|

|S|

)β

Hβ(πCn−1) +

(

|Cn|

|S|

)β

Hβ(πCn
)

(by Theorem 3.6)

= H(π|σ).

Corollary 3.8 We haveHβ(π) ≥ Hβ(π|σ) for everyπ, σ ∈ PART(S).

Proof. We observed thatHβ(π) = Hβ(π|ωS). SinceωS ≥ σ the statement
follows from the second part of Theorem 3.7.

Corollary 3.9 Let ξ, θ, θ′ be three partitions of a finite setS. If θ ≥ θ′, then

Hβ(ξ ∧ θ) − Hβ(θ) ≥ Hβ(ξ ∧ θ′) − Hβ(θ′).

Proof. By Theorem 3.3 we have:

Hβ(ξ ∧ θ) − Hβ(ξ ∧ θ′) = Hβ(ξ|θ) + Hβ(θ) − Hβ(ξ|θ′) − Hβ(θ′).

The monotonicity ofHβ(|) in its second argument means that:Hβ(ξ|θ)−Hβ(ξ|θ′) ≥
0, soHβ(ξ∧θ)−Hβ(ξ∧θ′) ≥ Hβ(θ)−Hβ(θ′), which implies the desired inequality.

The behavior ofβ-conditional entropies with respect to the “addition” of partitions
is discussed in the next statement.

Theorem 3.10 LetS be a finite set,π, θ be two partitions ofS, whereθ = {D1, . . . , Dh}.
If σi ∈ PART(Di) for 1 ≤ i ≤ h, then

Hβ(π|σ1 + · · · + σh) =

h
∑

i=1

(

|Di|

|S|

)β

Hβ(πDi
|σi).

If τ = {F1, . . . , Fk}, σ = {C1, . . . , Cn} be two partitions ofS, and letπi ∈
PART(Fi) for 1 ≤ i ≤ k. Then,

Hβ(π1 + · · · + πk|σ) =

k
∑

i=1

(

|Fi|

|S|

)β

Hβ(πi|σFi
) + Hβ(τ |σ).

14



Proof. Suppose thatσi = {E`
i | 1 ≤ ` ≤ pi}. The blocks of the partition

σ1 + · · · + σh are the sets of the collection
⋃h

i=1{E
`
i | 1 ≤ ` ≤ pi}. Thus, we have:

Hβ(π|σ1 + · · · + σh) =

h
∑

i=1

pi
∑

`=1

(

|E`
i |

|S|

)β

Hβ(πE`
i
).

On the other hand, since(πDi
)E`

i
= πE`

i
, we have:

h
∑

i=1

(

|Di|

|S|

)β

Hβ(πDi
|σi) =

h
∑

i=1

(

|Di|

|S|

)β pi
∑

`=1

(

|E`
i |

|Di|

)β

Hβ(πE`
i
)

=

h
∑

i=1

pi
∑

`=1

(

|E`
i |

|S|

)β

Hβ(πE`
i
),

which gives the first equality of the theorem.
To prove the second part observe that(π1 + · · ·+ πk)Cj

= (π1)Cj
+ · · ·+ (πk)Cj

for every blockCj of σ. Thus, we have:

Hβ((π1 + · · · + πk|σ) =

n
∑

j=1

(

|Cj |

|S|

)β

Hβ((π1)Cj
+ · · · + (πk)Cj

).

By applying Corollary 2.8 to partitions(π1)Cj
, . . . , (πk)Cj

of Cj we can write:

Hβ((π1)Cj
+ · · · + (πk)Cj

) =

k
∑

i=1

(

|Fi ∩ Cj |

|Cj |

)β

Hβ((πi)Cj
) + Hβ(τCj

).

Thus,

Hβ(π1 + · · · + πk|σ)

=

n
∑

j=1

k
∑

i=1

(

|Fi ∩ Cj |

|S|

)β

Hβ((πi)Cj
) +

n
∑

j=1

(

|Cj |

|S|

)β

Hβ(τCj
)

=

k
∑

i=1

(

|Fi|

|S|

)β n
∑

j=1

(

|Fi ∩ Cj |

|Fi|

)β

Hβ((πi)Fi∩Cj
) + Hβ(τ |σ)

=

k
∑

i=1

(

|Fi|

|S|

)β

Hβ(πi|σFi
) + Hβ(τ |σ),

which is the desired equality.

Theorem 3.11 Letπ, σ, τ be three partitions of the finite setS. We have:

Hβ(π|σ ∧ τ) + Hβ(σ|τ) = Hβ(π ∧ σ|τ).
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Proof. By Theorem 3.3 we can write

Hβ(π|σ ∧ τ) = Hβ(π ∧ σ ∧ τ) − Hβ(σ ∧ τ)

Hβ(σ|τ) = Hβ(σ ∧ τ) − Hβ(τ).

By adding these equalities and applying again Theorem 3.3 weobtain the equality of
the theorem.

Corollary 3.12 Letπ, σ, τ be three partitions of the finite setS. Then, we have:

Hβ(π|σ) + Hβ(σ|τ) ≥ Hβ(π|τ).

Proof. By Theorem 3.11, the monotonicity ofβ-conditional entropy in its second
argument and the anti-monotonicity of the same in its first argument we can write:

Hβ(π|σ) + Hβ(σ|τ) ≥ Hβ(π|σ ∧ τ) + Hβ(σ|τ)

= Hβ(π ∧ σ|τ)

≥ Hβ(π|τ),

which is the desired inequality.

Corollary 3.13 Letπ, σ be two partitions of the finite setS. Then, we have:

Hβ(π ∨ σ) + Hβ(π ∧ σ) ≤ Hβ(π) + Hβ(σ).

Proof. By Corollary 3.12 we haveHβ(π|σ) ≤ Hβ(π|τ) + Hβ(τ |σ). Then, by
Theorem 3.3 we obtain

Hβ(π ∧ σ) − Hβ(σ) ≤ Hβ(π ∧ τ) − Hβ(τ) + Hβ(τ ∧ σ) − Hβ(σ),

hence
Hβ(τ) + Hβ(π ∧ σ) ≤ Hβ(π ∧ τ) + Hβ(τ ∧ σ).

Choosingτ = π ∨ σ implies immediately the inequality of the Corollary.
The property ofHβ described in Corollary 3.13 is known as thesubmodularityof

the generalized entropy. This result generalizes the modularity of the Gini index proven
in [15] and gives an elementary proof of a result shown in [8] concerning Shannon’s
entropy.

4 Generalized Entropic Metrics and Their Axiomatiza-
tion

In [6] L. de Mántaras proved that Shannon’s entropy generates a metricd : PART(S)2 −→
R2 given byd(π, σ) = H(π|σ) + H(σ|π), for π, σ ∈ PART(S). His result can be ex-
tended to a class of metrics that can be defined byβ-entropies, thereby improving our
earlier results [17].

We can show now a central result:
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Theorem 4.1 The mappingdβ : PART(S)2 −→ R≥0 defined by:dβ(π, σ) = Hβ(π|σ)+
Hβ(σ|π) for π, σ ∈ PART(S) is a metric onPART(S).

Proof. A double application of Corollary 3.12 yields:

Hβ(π|σ) + Hβ(σ|τ) ≥ Hβ(π|τ),

Hβ(σ|π) + Hβ(τ |σ) ≥ Hβ(τ |π).

Adding these inequality gives

dβ(π, σ) + dβ(σ, τ) ≥ dβ(π, τ),

which is the triangular inequality fordβ .
The symmetry ofdβ is obvious and it is clear thatdβ(π, π) = 0 for everyπ ∈

PART(S).
Suppose now thatdβ(π, σ) = 0. Since the values ofβ-conditional entropies are

non-negative this impliesHβ(π|σ) = Hβ(σ|π) = 0. By Theorem 3.2 we have both
σ ≤ π andπ ≤ σ, respectively, soπ = σ. Thus,dβ is a metric onPART(S).

It is clear thatdβ(π, ωS) = Hβ(π) anddβ(π, αS) = Hβ(αS |π).
Another useful form ofdβ can be obtained starting from the equalities SinceHβ(π|σ) =

Hβ(π ∧ σ) − Hβ(σ) andHβ(σ|π) = Hβ(π ∧ σ) − Hβ(σ). Thus, we have:

dβ(π, σ) = 2Hβ(π ∧ σ) − Hβ(π) − Hβ(σ), (7)

for π, σ ∈ PART(S).
The behavior of the distancedβ with respect to partition addition is discussed in

the next statement.

Theorem 4.2 LetS be a finite set,π, θ be two partitions ofS, whereθ = {D1, . . . , Dh}.
If σi ∈ PART(Di) for 1 ≤ i ≤ h, then

dβ(π, σ1 + · · · + σh) =

h
∑

i=1

(

|Di|

|S|

)β

dβ(πDi
, σi) + Hβ(θ|π).

Proof. This statement follows directly from Theorem 3.10.
The next statement is a generalization of the axiom system proposed in [9] for the

Shannon entropic metric and for the Mirkin metric.

Theorem 4.3 The following properties hold in the metric space(PART(S), dβ):

1. if σ ≤ π, thendβ(π, σ) = Hβ(σ) − Hβ(π);

2. dβ(αS , σ) + dβ(σ, ωS) = dβ(αS , ωS);

3. dβ(π, π ∧ σ) + dβ(π ∧ σ, σ) = dβ(π, σ),

for every partitionsπ, σ ∈ PART(S).

Furthermore, we haved(ωT , αT ) = 1−|T |1−β

1−21−β , for every subsetT of S.
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Proof. The first three statements of the theorem follow immediatelyfrom Equal-
ity 7; the last part is an application of the definition ofdβ .

A generalization of a result obtained in [9] is contained in the next statement, which
gives an axiomatization of the metricdβ .

Theorem 4.4 Let d : PART(S)2 −→ R≥0 be a function that satisfies the following
conditions:

(D1) d is symmetric, that is,d(π, σ) = d(σ, π);

(D2) d(αS , σ) + d(σ, ωS) = d(αS , ωS);

(D3) d(π, σ) = d(π, π ∧ σ) + d(π ∧ σ, σ);

(D4) if σ, θ ∈ PART(S) such thatθ = {D1, . . . , Dh} andσ ≤ θ then we have:

d(θ, σ) =
h
∑

i=1

(

|Di|

|S|

)β

d(ωDi
, σDi

);

(D5) d(ωT , αT ) = 1−|T |1−β

1−21−β , for everyT ⊆ S.

Then,d = dβ .

Proof. Choosingσ = αS in axiom(D4) and using(D5) we can write:

d(αS , θ) =

h
∑

i=1

(

|Di|

|S|

)β

d(ωDi
, αDi

)

=

h
∑

i=1

(

|Di|

|S|

)β
1 − |Di|1−β

1 − 21−β

=

∑h
i=1 |Di|

β − |S|

(1 − 21−β)|S|β
.

From Axioms(D2) and(D5) it follows that

d(θ, ωS) = d(αS , ωS) − d(αS , θ)

=
1 − |S|1−β

1 − 21−β
−

∑h

i=1 |Di|β − |S|

(1 − 21−β)|S|β

=
|S|β −

∑h

i=1 |Di|β

(1 − 21−β)|S|β
.

Let now π, σ ∈ PART(S), whereπ = {B1, . . . , Bm} andσ = {C1, . . . , Cn}.
Sinceπ ∧ σ ≤ π andσBi

= {C1 ∩ Bi, . . . , Cn ∩ Bi}, an application of Axiom(D4)
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yields

d(π, π ∧ σ)

=

m
∑

i=1

(

|Bi|

|S|

)β

d(ωBi
, (π ∧ σ)Bi

)

=

m
∑

i=1

(

|Bi|

|S|

)β

d(ωBi
, σBi

)

=

m
∑

i=1

(

|Bi|

|S|

)β |Bi|β −
∑n

j=1 |Bi ∩ Cj |β

(1 − 21−β)|Bi|β

=
1

(1 − 21−β)|S|β





m
∑

i=1

|Bi|
β −

n
∑

j=1

n
∑

i=1

|Bi ∩ Cj |
β



 ,

because(π ∧ σ)Bi
= σBi

.
By Axiom (D1) we obtain the similar equality:

d(π ∧ σ, σ)

=
1

(1 − 21−β)|S|β





m
∑

i=1

|Bi|
β −

n
∑

j=1

n
∑

i=1

|Bi ∩ Cj |
β



 ,

which, by Axiom(D3), implies:

d(π, σ)

=
1

(1 − 21−β)|S|β





m
∑

i=1

|Bi|
β +

n
∑

j=1

|Cj |
β

−2

n
∑

j=1

n
∑

i=1

|Bi ∩ Cj |
β



 ,

that isd(π, σ) = dβ(π, σ).
In fact, the Mirkin metric [10] (up to a multiplicative constant) is obtained for

β = 2:

d2(π, σ) =
2

|S|2





m
∑

i=1

|Bi|
2 +

n
∑

j=1

|Cj |
2

−2

m
∑

i=1

n
∑

j=1

|Bi ∩ Cj |
2



 .

The corresponding generalized entropyH2(π) is double the Gini index of the partition
π = {B1, . . . , Bm}:

H2(π) = 2

(

m
∑

i=1

(

|Bi|

|S|

)2

− 1

)
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It is worth noting that one could axiomatize the entropy starting from the notion
metric between partitions. Indeed, if theβ-entropy of a partitionπ ∈ PART(S) is
defined as:

Hβ(π) = dβ(π, ωS),

then we would retrieve theβ-entropy:

Hβ(π) =
1

1 − 21−β

(

1 −
m
∑

i=1

(

|Bi|

|S|

)β
)

.

5 Partition Valuations and β-Entropy

Metrics generated byβ-conditional entropies are closely related to lower valuations
of the upper semi-modular lattices of partitions of finite sets. This connection was
established in [3] and studied in [2, 1, 12].

A lower valuationon a lattice(L,∨,∧) is a mappingv : L −→ R such that
v(π ∨ σ) + v(π ∧ σ) ≥ v(π) + v(σ) for everyπ, σ ∈ L. If the reverse inequality is
satisfied, that is, ifv(π ∨ σ) + v(π ∧ σ) ≤ v(π) + v(σ) for everyπ, σ ∈ L, thenv is
referred to as anupper valuation.

If v ∈ L is both a lower and upper valuation, that is, ifv(π ∨ σ) + v(π ∧ σ) =
v(π) + v(σ) for everyπ, σ ∈ L, thenv is a valuation onL.

We have the following result:

Theorem 5.1 Letπ, σ ∈ PART(S) be two partitions. We have:

dβ(π, σ) = 2 · dβ(π ∧ σ, ωS) − dβ(π, ωS) − dβ(σ, ωS)

= dβ(αS , π) + dβ(αS , σ) − 2 · dβ(αS , π ∧ σ).

Proof. The equalities of the theorem can be immediately verified by using the
definition ofdβ .

Corollary 5.2 Let θ, τ be two partitions fromPART(S). If θ ≤ τ and we have either
dβ(θ, ωS) = dβ(τ, ωS) or dβ(αS , θ) = dβ(αS , τ), thenθ = τ .

Proof. Observe that ifθ ≤ τ , then Theorem 5.1 implies

dβ(θ, τ) + dβ(τ, ωS) = dβ(θ, ωS),

and
dβ(θ, τ) = dβ(αS , τ) − dβ(αS , θ).

Suppose thatdβ(θ, ωS) = dβ(τ, ωS). Sincedβ(τ, ωS) = dβ(θ, ωS) it follows that
dβ(θ, τ) = 0, soθ = τ .

If dβ(αS , θ) = dβ(αS , τ) the same conclusion can be reached immediately.
It is known [3] that if there exists a positive valuationv on L, thenL must be a

modular lattice. Since the partition lattice of a set is an upper-semimodular lattice that
is not modular ([3]) it is clear that positive valuations do not exist on partition lattices.
However, lower and upper valuations do exist, as shown next:
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Theorem 5.3 Let S be a finite set. Define the mappingsvβ : PART(S) −→ R and
let wβ : PART(S) −→ R be byvβ(π) = dβ(αS , π) andwβ(π) = dβ(π, ωS), respec-
tively, forπ ∈ PART(S). Then,vβ is a lower valuation andwβ is an upper valuation
on the lattice(PART(S),∨,∧).

Proof. Theorem 5.1 allows us to write:

dβ(π, σ) = vβ(π) + vβ(σ) − 2vβ(π ∧ σ)

= 2wβ(π ∧ σ) − wβ(π) − wβ(σ),

for everyπ, σ ∈ PART(S).
If we rewrite the triangular inequalitydβ(π, τ) + dβ(τ, σ) ≥ dβ(π, σ) using the

valuationsvβ andwβ we obtain:

vβ(τ) + vβ(π ∧ σ) ≥ vβ(π ∧ τ) + vβ(τ ∧ σ),

wβ(π ∧ τ) + wβ(τ ∧ σ) ≥ wβ(τ) + wβ(π ∧ σ),

for everyπ, τ, σ ∈ PART(S). If we chooseτ = π ∨ σ the last inequalities yield:

vβ(π) + vβ(σ) ≤ vβ(π ∨ σ) + vβ(π ∧ σ)

wβ(π) + wβ(σ) ≥ wβ(π ∨ σ) + wβ(π ∧ σ),

for everyπ, σ ∈ PART(S), which shows thatvβ is a lower valuation andwβ is an
upper valuation on the lattice(PART(S),∨,∧).

6 Conclusion and Future Work

We introduced an axiomatization of a generalization of entropy that has as special case
Shannon entropy and Havrda-Charvat entropy. Moreover, we have shown, that under
certain assumption the Havrda-Charvat entropy is the unique alternative to Shannon’s
entropy.

A general axiomatization of a family of metrics on the set of partitions of a finite set
that is related to generalized entropies was also introduced. These metrics are used for
a variety of data mining tasks ranging from clustering [9, 19] to classification [17, 18]
and discretization [13].

The value of the parameterβ that gives optimal results depends on the statistical
properties of the data set that is analyzed. Developing algorithms that learn the values
of β for a specific data set and mining task remains an open problem.
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A A Useful Characterization of a Function

The goal of this section is to show that ifh : N −→ R is an increasing function such
thath(2) = 2 andh(mn) = mh(n) + nh(m) for m, n ∈ N, thenh(n) = n log2 n for
everyn ∈ N1.

For a numberx ∈ R we denote the largest integer that is less or equal tox by bxc;
thefractional partof x will be denoted by〈x〉, where〈x〉 = x − bxc.

The following technical Lemma is a special case of a result ofDirichlet (see[20],
pp.235).

Lemma A.1 Let α be a real number and letq be a positive integer. There existsm

such that1 ≤ m < q and an integern such that|mα − n| <
1

q
<

1

m
.

Proof. Divide the setI = {x ∈ R|0 ≤ x < 1} into q equal subintervals
[

i−1
q

, i
q

)

for 1 ≤ i ≤ q. Of theq + 1 numbers〈nα〉, where0 ≤ n ≤ q, at least two, say〈n1α〉
and 〈n2α〉 are in the same subinterval. This means|〈n1α〉 − 〈n2α〉| < 1

q
. Setting

bn1αc = n′ andbn2αc = n′′ we obtain|n1α − bn1αc − n2α + bn2αc| < 1
q
, or

|(n1 − n2)α − (n′ − n′′)| < 1
q
. We can takem = n1 − n2 ≥ 1 andn = n′ − m′′ in

order to obtain the desired inequality.

Lemma A.2 If n ≤ mε < n + ε, then there existm′, n′ such thatn′ − ε < m′ε < n′.
Similarly, if n − ε < mε < n, there existn′′, m′′ such thatn′′ ≤ m′′ε < n′′ + ε.

Proof. Let θ, σ > 0. We haveθn + σα ≤ (θm + σ)α < θn + θε + σα. Choose
θ > max{1, 1/ε}. Under this choice, the interval[θn+σα, θn+ θε+σα) is of length
greater than 1 and, therefore, there is an integerm′ in this interval for any choice ofσ.
This allows us to chooseθ andσ such thatθm + σ = m′ andθn + θε + σα = n′.
Note that if we make these choices, thenθn + σα = n′ − θε > n′ − ε and, therefore,
n′ − ε ≤ mα < n′.

The second part of the argument is similar and it is left to thereader.

Lemma A.3 If h : N −→ R is a function such that

h(mn) = mh(n) + nh(m),

for everym, n ∈ N, thenh(pk) = kpk−1h(p) for everyp, k ∈ N andk ≥ 1.

Proof. The argument is by induction onk and it is left to the reader.

Lemma A.4 If h : N −→ R is a function such that

h(mn) = mh(n) + nh(m),

for everym, n ∈ N, then

h(pk1
1 pk2

2 · · · pkn
n ) = pk1

1 pk2
2 · · · pkn

n

∑

1≤i≤n

kih(pi)

pi

.
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Let ` : N −→ R be the function given by

`(n) =

{

0 if n = 0,
h(n)

n
if n > 0.

Note that̀ (mn) = `(m) + `(n) and, therefore,

`(pk1
1 pk2

2 · · · pkn
n ) = `(pk1

1 ) + `(pk2
2 ) + · · · + `(pkn

n ).

Since`(pk) =
k

p
h(p) (because of Lemma A.3 we obtain:

`(pk1
1 pk2

2 · · · pkn
n ) =

∑

1≤i≤n

kih(pi)

pi

,

which gives immediately the equality of the Lemma.

Theorem A.5 Leth : N −→ R be a function such thath(p) = p log p if p = 1 or if p
is prime. Ifh(mn) = mh(n) + nh(m) for everym, n ∈ N, thenh(n) = n log n for
everyn ∈ N, n ≥ 1.

Proof. Since every positive integern other than 1 can be written uniquely as a
product of powers of primesn = pk1

1 pk2
2 · · · pkn

n , we have:

h(n) = pk1
1 pk2

2 · · · pkn
n

∑

1≤i≤n

kih(pi)

pi

= n
∑

1≤i≤n

ki log pi

= n logn,

for n ≥ 2.

Theorem A.6 Leth : N −→ R be an increasing function such thath(mn) = mh(n)+
nh(m) for everym, n ∈ N. If h(2) = 2, thenh(n) = n log2 n for n ∈ N.

Proof. Define the functionb : {n ∈ N|n > 1} −→ R by b(n) = h(n)/(n ∗ log n).
We shall prove initially that ifp > 2 is a prime number, thanb(p) ≥ 1. Letε > 0 be

a real number. Takingq < 1/ε in Lemma A.1 we obtain the existence ofm, n ∈ N such
that|mα−n| < ε. In other words, we haven− ε < mα < n+ ε. If n < mα < n+ ε,
then by Lemma A.2, there arem′, n′ such thatn′− ε < m′ε < n′. If n− ε < mα < n,
then the same lemma implies the existence ofn′′, m′′ such thatn′′ ≤ m′′ε < n′′ + ε.

If we chooseα = log p, then we may assume that there arem, n ∈ N, m, n ≥ 1
such thatn ≤ m log p < n + ε. Equivalently, we have2n ≤ pm < 2n 2ε. Sinceh is
an increasing function, we obtainn2n ≤ h(pm), or n2n ≤ mpm−1h(p). Because of
the definition ofb we haven2n ≤ mpmb(p) log p, or n2n ≤ b(p)pm log pm. In view
of the previous inequality, this implies

n2n ≤ b(p)2n2ε(n + ε),
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or, equivalently,

b(p) ≥
n

2ε(n + ε)
.

Takingε → 0 we obtainb(p) ≥ 1.
Similarly, there exists a numberm ∈ N such thatn − ε < m log p ≤ n. A similar

argument which makes use of Lemma A.2 shows thatb(p) ≤ 1, sob(p) = 1, which
proves thath(p) = p log p for every primep.
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