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Preliminaries
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Dissimilarities and Metrics
Let S be a set (patients, phenotypes, clinics, etc).
Dissimilarity: a function

d : S × S −→ R+

such thatd(p, q) = 0 if and only if p = q.

d(p, q) measures the dissimilarity between two
objects; ifd(p, r) < d(p, q) this means thatr
resembles more top thenq does.
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If d is a dissimilarity onS such that

d(p, q) = d(q, p)

for every objectsp, q, thend is asymmetric
dissimilarity.

A metricon the setS is a symmetric dissimilarity that
satisfies the triangular inequality:

d(p, q) + d(q, r) ≥ d(p, r)

for everyp, q, r ∈ S.
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Why the triangular axiom?
If the triangular axiom is violated we may have the
paradoxical situation of three objectsu, v, w such that:

d(u,w) + d(v, w) < d(u, v).

• bothu andv are similar tow, but
• u andv are very different from each other!
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Examples
• Standard distance on real line:

d(p, q) = |p− q|

• Minkowski distance inRn:

dk(p,q) =

(

n
∑

i=1

|pi − qi|
k

)
1

k

for p = (p1, . . . , pn) andq = (q1, . . . , qn) ∈ R
n.
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Examples
In R

2:

d1(p,q) = |p1 − q1|+ |p2 − q2|

(Manhattan distance)

d2(p,q) =
√

|p1 − q1|2 + |p2 − q2|2

(Euclidean distance)
d∞(p,q) = lim

k→∞
dk(p,q)

= max{|p1 − q1|, |p2 − q2|}

(Canberra distance)
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-

6

p = (p1, p2)

q = (q1, q2)

|p1 − q1|

|p2 − q2|

R2
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Partitions
PART(S): set of partitions of setS
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Partitions Partial Order
σ ≤ π if each blockC of σ is included in a block ofπ.
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Let L ⊆ S andπ = {B1, . . . , Bn}. Thetrace of the
partition π onL is:

πL = {Bi ∩ L | 1 ≤ i ≤ k andBi ∩ L 6= ∅}.
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Key Issue for Data Mining:

Defining Dissimilarities and
Metrics for Partitions
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Shannon’s Entropy
For random variables...
The Shannon entropy is introduced for a random
variable distribution

X :

(

x1 · · · xn

p1 · · · pn

)

isH(X) = −
∑n

i=1 pi log2 pi.

Metric Methods in Data Mining – p. 15/103



Shannon entropy
... for partitions
A partitionπ = {B1, . . . , Bm} on a finite, nonempty
setA generates naturally a random variable:

Xπ :

(

B1 · · · Bm
|B1|
|S| · · ·

|Bm|
|S|

)

We define the Shannon entropy ofπ as the Shannon
entropy ofXπ.
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Measuring concentration of val-
ues
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H1(π1) = 2.3219

H1(π2) = 2.1709

H1(π3) = 2.0464

H1(π4) = 1.9609
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Gini’s Index

H2(π) = 1−
n
∑

i=1

p2
i
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H1(π1) = 0.80

H1(π2) = 0.79

H1(π3) = 0.72

H1(π4) = 0.68
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Generalized Entropy of Parti-
tions
Daróczy’sβ-generalized entropy of
π = {B1, . . . , Bn}:

Hβ(π) =
1

1− 21−β

(

1−
n
∑

i=1

(

|Bi|

|S|

)β
)

.

Forβ = 2 we obtain the Gini index. Also,
limβ→1Hβ(π) is Shannon’s entropy

H(π) = −
n
∑

i=1

|Bi|

|S|
log2

|Bi|

|S|
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Set Purity and Entropy
H(πL) measures the impurity of the setL relative to
the partitionπ: the larger the entropy, the moreL is
scattered among the blocks ofπ.
If π, σ ∈ PART(S), the average impurity of the
blocks ofσ relative toπ is theconditional entropy of
π relative toσ:

H(π|σ) =
m
∑

j=1

|Qj|

|S|
H(πQj

),

whereσ = {Q1, . . . , Qm}.
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Generalized Conditional En-
tropy
Forπ, σ ∈ PART(S) such that

π = {P1, . . . , Pk}

σ = {Q1, . . . , Qm}

the conditionalβ-entropyHβ(π|σ) is:

Hβ(π|σ) =
∑m

j=1

(

|Qj |
|S|

)β

Hβ(πQj
)

= 1
(21−β−1)|S|β

(

∑k
i=1

∑m
j=1 |Pi ∩Qj|

β −
∑m

j=1 |Qj|
β
)

.
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Properties of Conditional En-
tropy
• Hβ(π|σ) = 0 if and only if σ ≤ π;

• Hβ(π ∧ σ) = Hβ(π|σ) +Hβ(σ) =
Hβ(σ|π) +Hβ(π);

• Hβ(π|σ) = 0 is dually monotonic with respect to
π and is monotonic with respect toσ.
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Metrics on Partition Sets
López de Mántaras:

d(π, σ) = H(π|σ) +H(σ|π)

Simovici and Jaroszewicz:

dβ(π, σ) = Hβ(π|σ) +Hβ(σ|π)

= 1
(21−β−1)|S|β

(

2 ·
∑k

i=1

∑m
j=1 |Pi ∩Qj|

β

−
∑n

i=1 |Pi|
β −

∑m
j=1 |Qj|

β
)

.

lim
β→1

dβ(π, σ) = d(π, σ)
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Tables
A database tableτ = (T,H, ρ), whereT is thename,
H = A1 · · ·An is theheader, Dom(Ai) is domainof
Ai andρ = {t1, . . . , tm},
ρ ⊆ Dom(A1)× · · · × Dom(An) is its content:

T

A1 A2 · · · An

t1 a11 a12 · · · a1n

t2 a21 a22 · · · a2n
... ... ... ... ...
tm am1 am2 · · · amn
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Partitions induced by Attribute
Sets

Every attribute
setK ⊆ H

induces a
partitionπK :

T

· · · ←− K −→ · · ·

t1 · · · k1 · · ·

t2 · · · k1 · · ·

t3 · · · k1 · · ·
... ... ... ...

tl · · · kp · · ·

tl+1 · · · kp · · ·

tl+2 · · · kp · · ·
... ... ... ...

tn−1 · · · kr · · ·

tn · · · kr · · ·
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Classification in Data Mining
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General Classification Model

Training Set
Initial Data Set CLASSIFIER-

Test Data

?

/ w· · ·

Classification of test data
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Decision Trees as Classifiers

Data set for
predicting
weather for
tennis

outlook temp hum windy play

1 sunny h h F no

2 sunny h h T no

3 overcast h h F yes

4 rain l h F yes

5 rain l h F yes

6 rain l l T no

7 overcast l l T yes

8 sunny h h F no

9 sunny l l F yes

10 rain h h F yes

11 sunny h l T yes

12 overcast h h T yes

13 overcast h h F yes

14 rain h h T no
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A Decision Tree
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Another Decision Tree
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DT as predictive models
• a DT is a mapping of observations about an item

to conclusions about class of the item;
• each interior node corresponds to a variable;
• an arc to a child represents a possible value of

that variable;
• a leaf represents the predicted value of the class

given the values of the variables represented by
the path from the root; thus, a leaft must be as
pure as possible.
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The Yield of a DT:
• a set of rules allowingnewdata to be classified

Thus, we prefer trees which:
• have few leaves (less fragmentation);
• have relatively small depth (generate simple

rules).
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The choice of the splitting at-
tribute for DTs
• The leaves of a DT should containC-pure or

almostC-pure sets of objects⇒ for each leaf we
must haveHβ(π

C
Sw

) as close to0 as possible.

• To take into account the size of the leaves note
that the collection of sets of objects assigned to
thecurrent leafsis a partitionκ of S and that we
need to minimize:

∑

w

(

|Sw|

|S|

)β

Hβ(πC
Sw

),

which isH(πC |κ).

• H(πC |κ) = 0 iff if κ ≤ πC.
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The Information Gain Criterion
Hβ(πC

Sw
)−Hβ(πC

Sw
|πA

Sw
).

• Whenβ → 1 we obtain the information gain
linked to Shannon entropy. Whenβ = 2 one
obtains the selection criteria for the Gini index
using the CART algorithm.

• This criterion favors attributes with large
domains, which in turn, generate bushy trees.

Metric Methods in Data Mining – p. 34/103



The Information Gain Ratio
Hβ(πC

Sw
)−Hβ(πC

Sw
|πA

Sw
)

Hβ(πA
Sw

)
,

This introduces the compensating divisorHβ(πA
Sw

).
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A New Crierion: The Metric
Choice
Minimizes the distance

dβ(π
C
Sw

, πA
Sw

) = Hβ(πC
Sw
|πA

Sw
) +Hβ(πA

Sw
|πC

Sw
).

Advantages:

• limits both conditional entropiesHβ(π
C
Sw
|πA

Sw
)

andHβ(πA
Sw
|πC

Sw
);

• first limitation provides a high information gain;
• the second limitation insures that attributes with

large domains are not favored over attributes with
smaller domains.
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Experimental Results - I
Audiology

β accuracy size leaves

2.50 53.54 53 36

2.25 54.42 53 36

2.00 54.87 54 37

1.75 53.10 47 32

1.50 76.99 29 19

1.25 78.32 29 19

1.00 76.99 29 19

0.75 76.99 29 19

0.50 76.99 29 19

0.25 78.76 33 21

J48 77.88 54 32

Hepatitis

β accuracy size leaves

2.50 81.94 15 8

2.25 81.94 9 5

2.00 81.94 9 5

1.75 83.23 9 5

1.50 84.52 9 5

1.25 84.52 11 6

1.00 85.16 11 6

0.75 85.81 9 5

0.50 83.23 5 3

0.25 82.58 5 3

J48 83.87 21 11
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Primary-tumor

β accuracy size leaves

2.50 34.81 50 28

2.25 35.99 31 17

2.00 37.76 33 18

1.75 36.28 29 16

1.50 41.89 40 22

1.25 42.18 38 21

1.00 42.48 81 45

0.75 41.30 48 27

0.50 43.36 62 35

0.25 44.25 56 32

J48 39.82 88 47

Vote

β accuracy size leaves

2.50 94.94 7 4

2.25 94.94 7 4

2.00 94.94 7 4

1.75 94.94 7 4

1.50 95.17 7 4

1.25 95.17 7 4

1.00 95.17 7 4

0.75 94.94 7 4

0.50 95.17 9 5

0.25 95.17 9 5

J48 94.94 7 4
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A Metric to Incremental
Clustering
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What is Clustering?
Clustering is an unsupervised learning process that
partitions data such that similar data items are
grouped together in sets referred to as clusters.
Applications of clustering:
• condensing and identifying patterns in data;
• classifying data.
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Clustering is hard
• “there is no clustering technique that is

universally applicable in uncovering the variety
of structures present in multidimensional data
sets”

• what exactly does it mean that objects that belong
to the same cluster are similar? how similar?

•

• what exactly does it mean that objects that belong
to different cluster are dissimilar? how
dissimilar?
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Points given analytically
x y

p1 6 13

p2 8 16

p3 9 11

p4 11 13

p5 19 19

p6 20 15

p7 22 18

p8 23 20

p9 24 16

p10 23 12

x y

p11 23 3

p12 26 3

p13 29 3

p14 26 6

p15 29 5

p16 33 7

p17 9 26

p18 8 28

p19 10 29
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“Natural Clusters”
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4 visibleclusters! Eyes + brain solve problem
instantly!
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Computationally feasible but ex-
pansive
Forn objects we need to:

• computen(n−1)
2 inter-object distances;

• keep the distance matrix in memory;
• manage object groups.

For 1,000,000 objects we need to manage about 500
billion numbers!
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Incremental clustering of nomi-
nal data

IC CLUST.

ALGORITHM
-v

Arriving objects

• main memory usage is minimal since there is no
need to keep in memory the inter-object distances

• algorithms are scalable with respect to the size of
the set of objects and the number of attributes.
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We seek a clusteringκ = {C1, . . . , Cn} ∈ PART(S)
such that the total distance fromκ to the partitions of
the attributes:

D(κ) =
n
∑

i=1

d2(κ, πAi)

is minimal.
The definition ofd2 allows us to write:

d2(κ, πA) =
n
∑

i=1

|Ci|
2+

mA
∑

j=1

|BA
aj
|2−2

n
∑

i=1

mA
∑

j=1

|Ci∩B
A
aj
|2,
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Suppose now thatt is a new object. The following
cases may occur:

1. the objectt is added to an existing clusterCk;

2. a new cluster,Cn+1 is created that consists only
of t.

Also, from the point of view of partitionπA, t is
added to the blockBA

t[A], which corresponds to the

valuet[A] of theA-component oft.
Thus, ifmink

∑

A |Ck ⊕BA
t[A]| <

∑

A |B
A
t[A]| we addt

to a clusterCk for which
∑

A |Ck ⊕BA
t[A]| is minimal;

otherwise, we create a new one-object cluster.
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Experimental Results
Initial Run Random Permutation

Cluster Size Cluster Size Distribution

(Original cluster)

1 1548 1 1692 1692 (2)

2 1693 2 1552 1548 (1), 3 (3), 1 (2)

3 1655 3 1672 1672 (5)

4 1711 4 1711 1711 (4)

5 1672 5 1652 1652 (3)

6 1616 6 1616 1616 (6)

7 1 7 85 85 (8)

8 85 8 10 10 (9)

9 10 9 8 8 (10)

10 8 10 1 1 (11)

11 1 11 1 1 (7)
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Clustering mushrooms

Cl. Poisonous/Edible Total Percentage of

num. dominant group

1 825/2752 3577 76.9%

2 8/1050 1058 99.2%

3 1304/0 1304 100%

4 0/163 163 100%

5 1735/28 1763 98.4%

6 0/7 7 100%

7 0/192 192 100%

8 36/16 52 69%

9 8/0 8 100%
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Goodman-Kruskal Association
Index and Metric
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The Goodman-Kruskal Coeffi-
cient
Let X, Y be two discrete random variables. The
Goodman-Kruskal coefficientof X andY is defined
by

GK(X,Y )

=
l
∑

i=1

P (X = ai)

(

1− max
1≤j≤k

P (Y = bj|X = ai)

)

= 1−
l
∑

i=1

P (X = ai) max
1≤j≤k

P (Y = bj|X = ai).

Classification rule:an elementary event is classified in
the class that has the maximal probability.
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GK Classification Rule
• P (Y = bj|X = ai): the probability of predicting

the valuebj for Y whenX = ai

An event that has the componentX = ai is
classified in theY -classbj if j is the number for
whichP (Y = bj|X = ai) has the largest value.

• The probability of misclassification:

1− max
1≤j≤k

P (Y = bj|X = ai).
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GK(X,Y ) is the expected probability that in a
randomly chosen case the value ofY will be
incorrectly predicted fromX.
λY |X is the relative reduction in the probability of
prediction error:

λY |X = 1−
GK(X,Y )

1−max1≤j≤k P (Y = bj)

λY |X is the proportion of the relative error in
predicting the value ofY that can be eliminated by
knowledge of theX-value.

Metric Methods in Data Mining – p. 53/103



The Goodman-Kruskal Coeffi-
cient for Partitions
Consider two partitions

π = {B1, . . . , Bl} andσ = {C1, . . . , Ck}.

Define theGoodman-Kruskal coefficientof these
partitionsGK(π, σ) as the number:

GK(π, σ) = 1−
l
∑

i=1

max
1≤j≤k

|Cj ∩Bi|

|S|
.
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Partitions and Random Vari-
ables
The partitionsπ, σ define two random variables

X :

(

1 · · · l
|B1|
|S| · · ·

|Bl|
|S|

)

andY :

(

1 · · · k
|C1|
|S| · · ·

|Ck|
|S| .

)

such that conditional probabilityP (Y = j|X = i) is
given by:

P (Y = j|X = i) =
P (Y = j ∧X = i)

P (X = i)
=
|Cj ∩Bi|

|Bi|
.
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Interpretation of GK
For a fixedi, the largest error in predictingY is:

1− max
1≤j≤k

P (Y = j|X = i) = 1− max
1≤j≤k

|Cj ∩ Bi|

|Bi|
.

The expected value of the largest error in predictingY
is:

l
∑

i=1

|Bi|

|S|
·

(

1− max
1≤j≤k

|Cj ∩ Bi|

|Bi|

)

= 1−
l
∑

i=1

max
1≤j≤k

|Cj ∩ Bi|

|S|
,

which is exactlyGK(X,Y ). Metric Methods in Data Mining – p. 56/103



Properties ofGK
• We haveGK(π, σ) = 0 if and only if π ≤ σ.
• The functionGK is monotonic in its first

argumentanddually monotonic in its second:
• If π, π′, σ are three partitions of the setS such

thatπ ≤ π′, thenGK(π, σ) ≤ GK(π′, σ).
• If π, σ′, σ are three partitions of the setS such

thatσ ≤ σ′, thenGK(π, σ) ≥ GK(π, σ′).
• GK satisfies a triangular inequality:

GK(π, σ) ≤ GK(π, τ) + GK(τ, σ).
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Metric Associated toGK
The Goodman-Kruskal coefficient allows us to define
a metric onPART(S).
Let dGK : PART(S)× PART(S) −→ R be

dGK(π, σ) = GK(π, σ) + GK(σ, π).

for π, σ ∈ PART(S).
The functiondGK is ametricon the setPART(S).
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Goodman-Kruskal Coefficient
for Attribute Sets
Let K,L be two sets of attributes of a table.
DefineGK(K,L) = GK(πK , πL): the expected error
that occurs when we try to predict the value oft[L]
from the value oft[K].
• If K1 ⊆ K2, thenπK2

≤ πK1
, so

GK(K2, L) ≤ GK(K1, L).
• If L1 ⊆ L2, thenGK(K,L2) ≤ GK(K,L1).
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Goodman-Kruskal Metric on
Attribute Sets
DefinedGK(K,L) = dGK(πK , πL) for any two sets of
attributesK,L.
The new metric can be used for:
• constructing classifiers;
• discretization of continuous attributes;
• attribute clustering, feature selection and data

compression.
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ε-predictors
An ε-predictor for a set of attributesY is a set of
attributesK such thatGK(K,Y ) ≤ ε.

• If K is anε-predictor forY , then any supersetK ′

of K is also aε-predictor forY .
• An ε-predictor such that no of its proper subsets

is anε-predictor is calledminimal.
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An Apriori-like Algorithm for ε-
predictors

Input: A set of attributesH, a target attributeY , Y 6∈ H and
Output: SetP of all minimal ε-predictors fromH.
(1) Cand = {{A} : A ∈ H};
(2) P = ∅;
(3) P = P ∪ {K ∈ Cand : GK(K,Y ) ≤ ε};
(4) Cand = Cand \ P;
(5) Cand = {L ⊆ H : for all K ⊂ L,

|K| = |L| − 1 we haveK ∈ Cand};
(6) goto (3);
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• If a set is a nonminimal predictor, so are all of its
supersets, which can thus be skipped.

• Initialize candidate set of predictorsCand to
include one-set attributes.

• The set of minimal predictorsP is constructed
starting fromCand.
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• Initialize P to include all singleton predictors
whose error is below the thresholdε. Remove
those fromC and the search for minimal
two-attribute predictors makes use of the
remaining candidate attributes, etc.

• The stopping condition could be exceeding the
maximum predictor size or finding a predictor
with desired prediction error.
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Experimental Results – KHAN
J. Khan et.al.: Classification and Diagnostic
Prediction of Cancers using gene expression
profiling and artificial neural networks,
Nature Medicine, vol 7., 2001

Differential diagnosis of four small round blue cell
tumors of childhood (SRBCTs) :

NB: neuroblastoma

RMS: rhabdomyosarcoma

BL: Burkitt lymphoma

EWS: Ewing family of sarcomas
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Previous work:

single layer neural networks (Khan)
logistic regression model (Weber)
SVMs (Mukerjee)
combined classifiers (Yeo)
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Khan Data
• 2308 genes were measured using cDNA

microarrays
• Training Data:63 cases (12 NB, 20 RMS, 8 BL,

and 23 EWS)
• Test Data:25 cases (6 EWS, 5 RMS, 6 NB, 3 BL,

and5 non-SRBCTs)
• The test cases include5 cases which do not

belong to any of the predicted SRBCT types.
Such cases are not present in the training set.

Metric Methods in Data Mining – p. 67/103



Preprocessing
Replace each class attribute with4 binary attributes,
one for each cancer type.

original attribute computed attributes

Cancer type NB RMS BL EWS
NB 1 0 0 0

EWS 0 0 0 1
RMS 0 1 0 0
other 0 0 0 0
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• A separate predictor is built for each binary
attribute to allow for handling of cases of type
‘other’ present in the test set, but absent in the
training set.

• We expect that for ‘other’ cancer type all of the
predictors will give the value of0 thus indicated
that none of the4 cancer types is present.
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• Predictors may contradict each other
(infrequently, because low error rate of individual
classifiers).

• If presence of more than one cancer type is
predicted consider it misclassified.

• Small predictors decrease the risk of overfitting
(small number of training cases!)
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Discretization
• Every gene expression levelX attribute is

discretized into two intervals:X ≤ T and
X > T .

• T is chosen such that the Shannon entropy
H(Y |X ′) of the targetY conditional on the
discretized attributeX ′ is minimal.

• A separate discretization (using Fayyad-Irani) has
been performed with respect to each cancer type.
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Limitations on the Computation
• We find all predictors with1 or 2 attributes,

allowing up to one misclassified instance on the
training set.

• The stopping rule: reaching the maximum
prescribed size of the predictor, or obtaining an
error rate less than to1

t
, wheret is the size of the

training set.
• All but 30 most predictive attributes are

discarded.
• For each cancer type the first predictor with

minimal training error is manually picked at
random (without looking at its test set
performance to avoid bias in the choice).
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Cancer selected predictor image ids mtr mte 1GP 2GP

type

BL WAS ≤ 0.69 ⇒ BL 236282 0 1 15 5

EWS FCGRT≤ 1.59 ⇒ EWS 770394 1 3 2 10

NB MAP1B > 2.17 629896 - 383188 0 0 2 28

or RCV1> 1.98 ⇒ NB

RMS TNNT2 > 0.55 298062 - 796258 0 2 0 25

or SGCA> 0.44 ⇒ RMS

Legend:
mte misclassified cases in test set
mtr misclassified cases in training set
1GP number of one-gene predictors
2GP number of two-gene predictors
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• A fairly large number (12–30) of very simple
predictors have been found for each cancer type.

• Each of those predictors has very good
classification rate on the training set: up to one
misclassified case is allowed.

• The results show that there are many genes based
on which a diagnosis can be made for each cancer
type.

• All genes except for the one that predicts BL
were reported among the 96 selected in Khan.
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Bonferroni Correction
The probability that a single gene expression predicts
BL perfectly on training set when there is no
correlation between the gene and the tumor type:

2 ·
55! · 8!

63!
= 5.16 · 10−10

much less than0.05/2308 = 2.16 · 10−5, the5%
significance level after Bonferroni correction.
This shows that selected gene is with very high
probability related to BL.
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• If a classifier for only one type of tumor gave a
positive prediction, then the instance was
classified as this type of tumor.

• If none of them gave positive prediction we
declared the case as ‘other tumor type’.

• If more than one classifier was active the case
was considered a prediction error.

• The combined classifier used a total of6 genes
and classified correctly19 out of25 test cases.

• Out of the6 misclassified cases,2 gave
classifications when the real outcome was ‘other’,
3 SRBCT cases were undetected, and there was1
conflict.
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Experimental Results - GOLUB
• Training data:38 cases (27 acute lymphoblastic

leukemia and 11 acute myelocytic leukemia)
Test data:34 cases (20 ALL and 14 AML);

• Data involves 6817 genes.
• We discretized the gene expression levels using

Fayyad-Irani
• 20 genes were retained for which the

Goodman-Kruskal coefficient was below 0.04.
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• Five single-genes predictors and 66 two-gene
predictors were identified.

• We identified two two-genes predictors (MGST1,
APLP2 and CD33, CystatinA) for which the
errors on the test set are0 and0.0294118,
respectively.

• CD33 was among the 50 genes selected by Golub
et al.
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Distribution of the errors on the test set for the
remaining set of minimal two-genes predictors:

Error Interval Number of 2-attribute

predictors

[0.0, 0.05] 2

(0.05, 0.10] 9

(0.10, 0.15] 10

(0.15, 0.20] 7

(0.20, 0.25] 13

(0.25, 0.30] 14

(0.30, 0.35] 3

(0.35, 0.40] 4

(0.40, 0.45] 3
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Voting Mechanism
• We retained 19 one-attribute predictors whose

prediction error on the training set did not exceed
5.3% (that is, two errors out of the 38 training
cases).

• A vote was taken, and the instance was classified
according to the majority vote.

• We obtained 3 errors on the test set of 34 cases.
Namely, the errors occurred on the 57th, 60th and
66th cases of the original Golub test set
("unclassifiable" in the original study (Golub)).
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Advantages of UsingGK
• The Goodman-Kruskal dissimilarityGK is a

simple, but powerful measure of predictive power
that can be used to produce robust classifiers.

• The small number of training cases makes
reliable construction of more complex models
like Bayesian networks or C4.5 trees very hard or
even impossible.

• Naive Bayesian classifiers suffer from
independence assumptions which may not be
satisfied in the microarray setting where most
genes are correlated with each other.

• The Bonferroni correction, though conservative,
yields valid results.
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A Metric Approach to
Discretization
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From numerical to nominal
Previous work on discretization:
• fixedk-interval discretization (J. Dougherty, R.

Kohavi, M. Sahami, 1995)
• fuzzy discretization (Kononenko 1992-1993)
• Shannon-entropy discretization (Fayyad and

Irani, 1993)
• proportionalk-interval discretization (Yang and

Web, 2001, 2003)
• highly dependent attributes (M. Robnik and I.

Kononenko, 1995)
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Why Metric Discretization?
• a generalization of Fayyad-Irani discretization

technique
• a geometric criterion for halting the discretization

process
• better results in building

• naive Bayes classifiers
• decision trees
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Discretization of a numeric at-
tribute B
Set of cutpoints:S = {t1, . . . , t`} in aDom(B), where
t1 < t2 < · · · < t`.

-
t1 t2 · · · t`

Q0 Q1 · · · Ql+1Q`

Discretization partitionof aDom(B):

πS = {Q0, . . . , Q`}

Metric Methods in Data Mining – p. 85/103



Boundary Points
Recall thatπA the partition of the set of tuples of a
table determined by the values of an attributeA:

select * from T group by A
t1, . . . , tn: the list of tuples sorted on the values of an
attributeB.
πB,A is the partition ofaDom(B) that consists of the
longest runs ofconsecutiveB-components of the
tuples in this list that belong to thesame blockK of
the partitionπA.
Theboundary pointsof the partitionπB,A are the least
and the largest elements of each of the blocks of the
partitionπB,A.
We haveπB,A∗ ≤ πA for any attributeB.
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Main Results -I
Theorem:Let T be a table where the class of the
tuples is determined by the attributeA and let
β ∈ (1, 2].
If S is a set of cutpoints such that the conditional
entropyHβ(πA|π

S
∗ ) is minimal among the set of

cutpoints with the same number of elements, thenS
consists of boundary points of the partitionπB,A of
aDom(B).
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Main Results -II
Theorem:Let β ∈ (1, 2].
If S is a set of cutpoints such that the distance
dβ(π

A, πS
∗ ) is minimal among the set of cutpoints with

the same number of elements, thenS consists of
boundary points of the partitionπB,A of aDom(B).
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To discretizeaDom(B) we seek a set of cutpoints
such that

dβ(πA, πS
∗ ) = Hβ(π

A|πS
∗ ) +Hβ(πS

∗ |π
A)

is minimal.
Seek a set of cutpointsS such that the partitionπS

∗
induced on the set of rows is as close as possible to
the target partitionπA.
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Discretization Algorithm
Input: A table T, a class attribute A

and a real-valued attribute B.
Output: A discretized attribute B.

BP is the set of boundary points of partitionπB,A∗
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Method:
sort T on B;
compute BP;
S = ∅; d =∞;
while BP 6= ∅ do

let t = arg mint∈BPdβ(π
A, π

S∪{t}
∗ );

if d ≥ dβ(π
A, π

S∪{t}
∗ ) then

begin
S = S ∪ {t}; BP = BP− {t};
d = dβ(π

A, πS
∗ )

end
else exit while loop;

end while
for πS

∗ = {Q0, . . . , Q`} replace
every value in Qi by i for 0 ≤ i ≤ `.
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dβ(πA, πS
∗ ) as a function of|S|

-

6
dβ(π

A, πS
∗ )

|S|0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

5 10 15 20 25 30

r

r

r

r
r r r r r r r r r r r r r r r r r r r

78% of the total time is spent on decreasing the
distance by the last1%
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dβ(πA, πS
∗ ) = Hβ(π

A|πS
∗ ) +Hβ(πS

∗ |π
A)

If S ⊆ S′ thenπS ≥ πS′

and

Hβ(π
A|πS

∗ ) ≥ Hβ(πA|πS′

∗ )

Hβ(π
S
∗ |π

A) ≤ Hβ(πS′

∗ |π
A).

Process starts withS = ∅, soπS
∗ = ω.

Practical halting criterion:

|d− dβ(π
A, πS∪{t}

∗ )| > 0.01d.

Metric Methods in Data Mining – p. 93/103



Experimental Results

• Accuracy measured in stratified 10-fold
cross-validation

• UCI datasets withβ ∈ {1.5, 1.8.1.9, 2}
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Experimental Results - I

heart-c:

Method Size Leaves Accuracy
standard 51 30 79.20
β = 1.5 20 14 77.36
β = 1.8 28 18 77.36
β = 1.9 35 22 76.01
β = 2.0 54 32 76.01

glass:

standard 57 30 57.28
β = 1.5 32 24 71.02
β = 1.8 56 50 77.10
β = 1.9 64 58 67.57
β = 2.0 92 82 66.35
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Experimental Results - II

ionosphere:

standard 35 18 90.88
β = 1.5 15 8 95.44
β = 1.8 19 12 88.31
β = 1.9 15 10 90.02
β = 2.0 15 10 90.02

iris:

standard 9 5 95.33
β = 1.5 7 5 96
β = 1.8 7 5 96
β = 1.9 7 5 96
β = 2.0 7 5 96
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Experimental Results - III

diabetes:

standard 43 22 74.08
β = 1.8 5 3 75.78
β = 1.9 7 4 75.39
β = 2.0 14 10 76.30
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Glass
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Naive Bayes Classifiers
Error Rate

Discretization Diabetes Glass Ionosphere Iris
Method
β = 1.5 34.9 25.2 4.8 2.7
β = 1.8 24.2 22.4 8.3 4
β = 1.9 24.9 23.4 8.5 4
β = 2.0 25.4 24.3 9.1 4.7
weighted prop 25.5 38.4 10.3 6.9
prop. 26.3 33.6 10.4 7.5
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Conclusions and Future Work
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Conclusions
An appropriate choice ofβ yields better classifiers
and discretization methods.
Open issues:
• identifying simple parameters of data sets that

inform the best choice ofβ;
• metric discretization for data with missing values.
• the metric space of attributes can be used to

cluster attributes:
• similar attribute are grouped in clusters, that

may have a significance.
• retaining one attribute per cluster (e.g., the

medoid) allows for data compression and for
simplification of decision techniques.

Metric Methods in Data Mining – p. 102/103



Thanks for Listening!
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