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Preliminaries



Dissimilarities and Metrics

Let S be a set (patients, phenotypes, clinics, etc).
Dissimilarity: a function

d: S x5 —Rr,

such thati(p, q) = 0 ifand only if p = gq.

d(p,q) measures the dissimilarity between two

objects; ifd(p, r) < d(p, q) this means that
resembles more tptheng does.
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If d Is a dissimilarity onS such that

d(p,q) = d(q, p)

for every object®, ¢, thend is asymmetric
dissimilarity:.

A metricon the setS is a symmetric dissimilarity tha
satisfies the triangular inequality:

d(p,q) +d(q,7) > d(p,r)

for everyp,q,r € S.
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Why the triangular axiom?

If the triangular axiom is violated we may have the
paradoxical situation of three objeetsv, w such that:

d(u,w) + d(v,w) < d(u,v).

bothu andv are similar tow, but
uw andv are very different from each other!
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Examples

Standard distance on real line:

d(p,q) = |p — ¢

Minkowski distance InR":

dr(p,q) = (Z i — qq;k)
1=1

forp=(p1,...,p,) andq = (q1,...,q,) € R".
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Examples

In R?:

p1— @] + [p2 — @
(Manhattan distance)

dy(p,q) = \/’pl —q1]* + [p2 — @]
(Euclidean distance)

lim di(p, q)

k— 00

= max{|p1 — q, |p2 — @[}
(Canberra distance)

di(p,q)

dso (P, Q)
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P=(p1,p2) |p1— ¢

\pz — (]2!

q= (Q17 Q2)
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Partitions
PART(S): set of partitions of sef

Partitiont = { By, ..., B}

Bl, c e ey B7 a,re thdeOCkSOf TC Metric Methods in Data Mining — p. 11/



Partitions Partial Order
o < m if each blockC of ¢ is included in a block ofr.

Partitiono = {C1,...,Cp} <«
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Let L C Sandwr = {B,..., B,}. Thetrace of the
partition r on L IS:

WL:{BiﬂLll SlgkandB@mL#@}
Trace of partitiontr = { By, ..., B;} on setL
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Key Issue for Data Mining:

Defining Dissimilarities and
Metrics for Partitions



Shannon’s Entropy

For random variables...
The Shannon entropy is introduced for a random

variable distribution
v (371 mﬂ)
P1 - DPn

ISH(X) = — > i_1 pilog, pi.
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Shannon entropy

... for partitions
A partitionT = { By, ..., B,,} on a finite, nonempty
setA generates naturally a random variable:

B, --- B,
Ar i\ 1Bl .. |Bul
S| S|

We define the Shannon entropymohs the Shannon
entropy ofX.
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vVieasuring concentration ot val-

ues

Hl (7'('4) — 1.9609

Hi(m3) = 2.0464

| Hy () = 2.1709

. Hl(ﬂ'l) = 2.3219
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Gini’s Index

Hom) = 1- 51
1=1
Hy(my) = 0.68
H, (75) = 0.72
Hy () = 0.79
Hy(m) = 0.80
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Generalized Entropy or Parti-
tions

Daroczy’s-generalized entropy of
T = {Bl,...,Bn}:

Hy(m) =~ (1 By (i)ﬁ) |

1=1

For 5 = 2 we obtain the Gini index. Also,
limg_,; Hg(m) is Shannon’s entropy
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Set Purity and Entropy

H (7w ) measures the impurity of the sktrelative to
the partitions: the larger the entropy, the mofeis
scattered among the blocksof

If 7,0 € PART(S), the average impurity of the
blocks ofo relative tor Is theconditional entropy of
w relative too:

Q; !
H(m|o) = Z \Sj\

whereoc = {Q1,...,Qmn}.
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ocliCiallZcU CLOUlNdiutorial Ell-

tropy

Form,o € PART(S) such that

W:{le”apk}
o ={Q1,...,Qn}

the conditional3-entropyHs(m|o) is:

N\ P
Ho(rlo) = 27 () Holma,)
= et (S S 1P Qi = S Qi17)
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FTOpCIilUcS Ul CONUiuorial cli-

tropy

(w|o) = 0ifand only if o < ;
Ha(m A o) =Hg(rlo) + Hslo) =
(o|m) + Ha(m);

(

Hgs(m|o) = 0 is dually monotonic with respect t
m and Is monotonic with respect to
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Metrics on Partition Sets
Lopez de Mantaras:

d(m,0) = H(m|o) + H(o|m)
Simovicl and Jaroszewicz:
dg(m,0) = Hg(r|o) + Hp(o|r)
— (21—5_11),5,5 (2 ' ZL 2?21 PN Qj’ﬁ
-SRI = SR Q1)

éirri dg(m,0) =d(m, o)
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Tables

A database table = (T, H, p), whereT is thename
H=A;---A,istheheaderDom(A4;) is domainof
A; andp = {tl, - ,tm},

p C Dom(A;) x --- x Dom(A,) is itscontent

T
Al A2 An
t1 | ann | a2 a1n
to | a1 | a9 A2n
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Parttions inauced by Atlribute
Sets

T
— K —

1 k1

to k1

Every attribute tg |- k1
setKk C H N :
Induces a i k,
partition g tigg | - k,
tl+2 kp

£ | k.

£ | - k.
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Classification in Data Mining



General Classification Model

.~ Test Data |,
Training Set CLASSIFIER
Initial Data Set "

AN

Classification of test data
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Decision Trees as Classifiers

outlook | temp | hum | windy | play

1 sunny h h F no

2 sunny h h T no

3 overcast| h h F yes

4 rain I h F yes

Data setfor s |an | h | F yes
predicting 6 | rain | I T no
7 overcast| | I T es

weather for | -7 o
tennis 9 | sunny || I F yes
10 | rain h h F yes

11 | sunny h I T yes

12 | overcast| h h T yes

13 | overcast| h h F yes

14 | rain h h T no
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A Decision Tree

Y:

N:
M
Y: 2 Y:

N:

Y:
N:

0

5

utlook
overcast rain

4
0

N: 3
humidity
h I
2 Y. O
3

N:

Y:

3

Y:
N:
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Another Decision Tree

Y: 9
N: 5 t
em
o
I
Y 5 Y: 4
N: 4 N: 1
wind
outlook  /E
sunny overcast rain
Y: 0 Y: 3 Y: 1 Y: 1 Y: 3
N: 3 N: 0 N: 1 N: 1 N:
humidity wind outlook
H | T F overcast rain
Y: 0 Y: Y: 0 Y: 1 Y: 1 Y: 0
N: 3 N: 0 N: 1 N: 0 N: 0 N:
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DT as predictive models
a DT iIs a mapping of observations about an ite
to conclusions about class of the item;
each interior node corresponds to a variable;

an arc to a child represents a possible value of
that variable;

a leaf represents the predicted value of the cla
given the values of the variables represented «
the path from the root; thus, a leaft must be as
pure as possible.
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The Yield of a DT:

a set of rules allowingewdata to be classified

Thus, we prefer trees which:
have few leaves (less fragmentation);

have relatively small depth (generate simple
rules).
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I'ne choice or the splitting at-
tribute for DTs

The leaves of a DT should contaifrpure or
almostC-pure sets of objects- for each leaf we

must haveH (7§ ) as close td as possible.

'0 take into account the size of the leaves note
that the collection of sets of objects assigned t
thecurrent leafgs a partitionx of .S and that we
need to minimize:

zw: (%) ﬁ Hps(7s, ),

which isH (7%|k).
H(m% k) = 0iffif x < 7°.

Metric Methods in Data Mining — p. 33/



The Information Gain Criterion

Hs(rs,) — Ms(rs, |75,).

When(3 — 1 we obtain the information gain
linked to Shannon entropy. Wheh= 2 one
obtains the selection criteria for the Gini index
using the CART algorithm.

This criterion favors attributes with large
domains, which in turn, generate bushy trees.
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The Information Gain Ratio

Ha(n§ ) — Hp(ng |76 )
Ha(m§ ) ’

This introduces the compensating divi§es(7§ ).
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A New Crierion: Ihe Metric
Choice
Minimizes the distance

A A
dg(n§ w8 ) = He(n§ |75 )+ Ha(rd |7 ).

Advantages:
limits both conditional entropiekls(7§ |75 )
andHg(m§ 7§ );
first limitation provides a high information gain;

the second limitation insures that attributes wit
large domains are not favored over attributes v
smaller domains.
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Experimental Results - |

Audiology Hepatitis
(| accuracy| size | leaves £ | accuracy| size | leaves
250| 5354 | 53 36 250 81.94 15 8
2.25| 5442 | 53 36 2.25| 81.94 9 5
2.00| 54.87 54 37 2.00| 8194 9 5
1.75| 53.10 47 32 1.75| 83.23 )
1.50| 76.99 | 29 19 1.50| 84.52 9 5
1.25| 78.32 29 19 1.25| 84.52 11 6
1.00| 76.99 | 29 19 1.00| 85.16 11 6
0.75| 76.99 | 29 19 0.75| 85.81 5
050 76.99 | 29 19 0.50| 83.23 3
0.25| 78.76 | 33 21 0.25| 82.58 3
Ja8| 77.88 | 54 32 J48 | 83.87 21 11
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Primary-tumor \ote

(| accuracy| size | leaves £ | accuracy| size | leaves
250 3481 | 50 28 250 | 94.94 7 4
2.25| 3599 | 31 17 2.25| 94.94 7 4
2.00| 37.76 | 33 18 2.00| 94.94 7 4
1.75| 36.28 29 16 1.75| 94.94 7 4
1.50| 41.89 40 22 1.50| 95.17 7 4
1.25| 42.18 38 21 1.25| 95.17 7 4
1.00| 42.48 81 45 1.00| 95.17 7 4
0.75| 41.30 48 27 0.75| 94.94 7 4
0.50| 43.36 | 62 35 0.50| 95.17 9 5
0.25| 44.25 | 56 32 0.25| 95.17 9 5

J48 | 39.82 88 47 J48| 94.94 7 4
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A Metric to Incremental
Clustering



What is Clustering?

Clustering is an unsupervised learning process the
partitions data such that similar data items are
grouped together in sets referred to as clusters.
Applications of clustering:

condensing and identifying patterns in data;
classifying data.
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Clustering Is hard

“there is no clustering technique that is
universally applicable in uncovering the variety
of structures present in multidimensional data
sets”

what exactly does it mean that objects that bel
to the same cluster are similar? how similar?

what exactly does it mean that objects that bel
to different cluster are dissimilar? how
dissimilar?
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Points given analytically

p1
p2
p3
P4
ps5
Pe
p7
ps8
P9
p1o

T |y
6 13
8 16
9 | 11
11 | 13
19 | 19
20 | 15
22 | 18
23 | 20
24 | 16
23 | 12

P11
P12
P13
P14
P15
P16
pi7
P18
P19

T |y
23 | 3
26 | 3
29 | 3
26 | 6
29 | 5
33 | 7
26
28
10 | 29
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“Natural Clusters”
N

X

4 visible clusters! Eyes + brain solve problem
Instantly!
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COlpulallorially icasibic DUl CA-
pansive

Forn objects we need to:

compute@ inter-object distances;
keep the distance matrix in memory;

manage object groups.

For 1,000,000 objects we need to manage about 5
billion numbers!
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INcremental clustering or nomi-
nal data

Arriving objects

IC CLUST.
ALGORITHM

[
>

main memory usage is minimal since there is 1
need to keep in memory the inter-object distan

algorithms are scalable with respect to the size
the set of objects and the number of attributes.
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We seek a clustering = {C,...,C,} € PART(S)
such that the total distance frofrto the partitions of
the attributes:

D(k) = Z dy(r, )

IS minimal.
The definition ofd, allows us to write:

n ma n  ma
do(r,mh) =Y |G+ IBAP=2) " |CinB; P
i1 j=1

i=1 j=1
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Suppose now thatis a new object. The following
cases may OCcCur:

1. the object Iis added to an existing clusté;;

2. anew cluster,,.; Is created that consists only
of .

Also, from the point of view of partitiom, ¢ is
added to the bIocIB;‘[‘A], which corresponds to the

valuet| A] of the A-component of.

Thus, ifming 3° 4 |Cr, @ Bfl»| < 3° 4 |Bjfy | we addt
to a clustelCy, for which 3~ , |Cy. @ By | is minimal;
otherwise, we create a new one-object cluster.
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Experimental Results

Initial Run Random Permutation
Cluster  Size|| Cluster  Size| Distribution
(Original cluster)
1 1548 1 1692 | 1692 (2)
2 1693 2 1552 | 1548 (1),3(3),1(2)
3 1655 3 1672 | 1672 (5)
4 1711 4 1711 | 1711 (4)
5 1672 5 1652 | 1652 (3)
6 1616 6 1616 | 1616 (6)
7 1 7 85 | 85 (8)
8 85 8 10 | 10 (9)
9 10 9 8 | 8(10)
10 8 10 1(11)
11 1 11 1] 1(7)
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Clustering mushrooms

Cl. Poisonous/Edible Total Percentage o
num. dominant group
1 825/2752| 3577 76.9%
2 8/1050| 1058 99.2%
3 1304/0| 1304 100%
4 0/163| 163 100%
5 1735/28| 1763 98.4%
6 0/7 7 100%
7 0/192| 192 100%
8 36/16| 52 69%
9 8/0 8 100%

f
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Goodman-Kruskal Associatic
Index and Metric



1The Goodman-Kruskal Coeftil-
clent

Let X, Y be two discrete random variables. The
Goodman-Kruskal coefficieof X andY is defined

by
GK(X Y)

P(X 1 — P(Y =b;|X = a;
Z =) (1= mux POV = bX =)

= 1— ZP(X — q;) max P(Y = b;|X = a;).

1<5<k

Classification rulean elementary event is classified
the class that has the maximal probabillity.
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GK Classification Rule

P(Y =b;|X = q;): the probability of predicting
the valueb; for Y whenX = q;

An event that has the componeXit= q; IS
classified in th& -classb; if j Is the number for

which P(Y = b;| X = a;) has the largest value.
The probability of misclassification:

1 — max P(Y =b;|X = ;).

1<j<k
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GK(X,Y) is the expected probability that in a
randomly chosen case the valueYofwvill be
iIncorrectly predicted fronk'.

Ay x Is the relative reduction in the probability of

prediction error:
GK(X,Y)
1 — maXlng]{ P(Y = b])

AY\X =1

Ay|x Is the proportion of the relative error in

predicting the value oY that can be eliminated by
knowledge of theX -value.
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1The Goodman-Kruskal Coeftll-
cient for Partitions
Consider two partitions

W:{Bl,...,Bl}andU:{Clp~"70k}°

Define theGoodman-Kruskal coefficiewnf these
partitionsGK(r, o) as the number:
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Partitions and Ranhdom Varil-
ables
The partitionsr, o define two random variables

1 e ] 1 - k
Xl g jandY ey jal
S| K S| 5]

such that conditional probabiliti (Y = j| X =) is
given by:

PY=7jANX=1i) |C;NDB

PY =j|X =1i) = P(X =) | Bi
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Interpretation of GK

For a fixed:, the largest error in predictinyg Is:

v C; N By
1—1I£]a§€P(Y—j‘X—Z)—1—121]&;%{ B

The expected value of the largest error in predictin
IS:

[
B
; S

{ — ma C N By
- — X
1<j<k | B;

: C; N B;
= 1 — max :
— 1<j<k |5

1=1

Wh I C h IS exaCtI)G K (X’ Y) . Metric Methods in Data Mining — p. 56/




Properties of GK

We haveGK(m,0) =0ifand only if 7 < o.
The functionGK is monotonic in its first
argumentanddually monotonic in its second.:
If =, 7", o are three partitions of the sgtsuch
thatr < 7/, thenGK(r, o) < GK(7', o).
If 7,0, 0 are three partitions of the sgtsuch
thato < ¢/, thenGK(7, o) > GK(7, o').

GK satisfies a triangular inequality:
GK(m, o) < GK(m, 1) + GK(T,0).
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Metric Associated toGK

The Goodman-Kruskal coefficient allows us to defi
a metric onPART(S).

Letdgy : PART(S) x PART(S) — & be
dag(m,0) = GK(m,0) + GK(o, 7).

for m,0 € PART(S).
The functiondg is ametricon the sePART(.5).
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Goodman-Kruskal Coertricient
for Attribute Sets

Let K, L be two sets of attributes of a table.
DefineGK(K, L) = GK(ng, 71 ): the expected error
that occurs when we try to predict the valuet i
from the value ot | K.

| K1 C Ko, thenwK2 < TK,, S0
GK(K», L) < GK(K,, L).

If Ly C Ly, thenGK(K, Ls) < GK(K, L1 ).

~
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Goodman-Kruskal Metric on
Attribute Sets

Definedgi (K, L) = dai (m, ) for any two sets of
attributesk’, L.
The new metric can be used for:

constructing classifiers;
discretization of continuous attributes;

attribute clustering, feature selection and data
compression.
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e-predictors

An e-predictorfor a set of attribute$” is a set of
attributesk such thaGK(K,Y) <.

If K is ane-predictor forY, then any superset’
of K Is also a-predictor forY'.

An e-predictor such that no of its proper subse!
IS ane-predictor Is calleaninimal

Metric Methods in Data Mining — p. 61/



AT APTIOTT-HKE AIYOTIUIT 1or - e-
predictors

Input: A set of attributed?, a target attribut®”, Y ¢ H
Output: SetP of all minimal e-predictors from/H.

(1) Cand
(2) P
(3) P
(4) Cand
(5) Cand

(6) goto (3);

= {{A}: Ae H};
= 0
= PU{K e Cand:GK(K,Y) <¢};
= Cand\ P;
= {LCH: forall K C L,
K| =|L| — 1we haveK € Cand};
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If a set is a nonminimal predictor, so are all of |
supersets, which can thus be skipped.

Initialize candidate set of predicto@Gand to
Include one-set attributes.

The set of minimal predicton8 is constructed
starting fromCand.
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Initialize P to include all singleton predictors
whose error is below the threshaldRemove
those fromC and the search for minimal
two-attribute predictors makes use of the
remaining candidate attributes, etc.

The stopping condition could be exceeding the
maximum predictor size or finding a predictor
with desired prediction error.
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Experimental Results — KHAN

J. Khan et.al.: Classification and Diagnhostic
Prediction of Cancers using gene expression
profiling and artificial neural networks,
Nature Medicine, vol 7., 2001

Differential diagnosis of four small round blue cell
tumors of childhood (SRBCTS)

NB: neuroblastoma
RMS: rhabdomyosarcoma
BL: Burkitt ymphoma
EWS: Ewing family of sarcomas
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Previous work:

single layer neural networks (Khan)
logistic regression model (Weber)
SVMs (Mukerjee)

combined classifiers (Yeo)
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Khan Data

2308 genes were measured using cDNA
microarrays

Training Data:63 cases (12 NB, 20 RMS, 8 BL,
and 23 EWS)

Test Data25 cases (6 EWS, 5 RMS, 6 NB, 3B
and5 non-SRBCTE

The test cases includecases which do not
belong to any of the predicted SRBCT types.
Such cases are not present in the training set.
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Preprocessing

Replace each class attribute witlbinary attributes,
one for each cancer type.

original attribute, computed attributes

Cancertype | NB | RMS|BL | EWS
NB 1 0 0 0
EWS 0 0 0 1
RMS 0 1 0 0
other 0 0 0 0
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A separate predictor is built for each binary
attribute to allow for handling of cases of type
‘other’ present in the test set, but absent in the
training set.

We expect that for ‘other’ cancer type all of the
predictors will give the value di thus indicated
that none of the cancer types Is present.
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Predictors may contradict each other
(infrequently, because low error rate of individt
classifiers).

If presence of more than one cancer type Is
predicted consider it misclassified.

Small predictors decrease the risk of overfitting
(small number of training cases!)
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Discretization

Every gene expression lev&l attribute is
discretized into two intervalsX < T and
X >T.

T 1s chosen such that the Shannon entropy
H(Y|X") of the target” conditional on the
discretized attribut&’ is minimal.

A separate discretization (using Fayyad-Irani)
been performed with respect to each cancer ty
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Limitations on the Computation

We find all predictors with or 2 attributes,

allowing up to one misclassified instance on th
training set.

The stopping rule: reaching the maximum
prescribed size of the predictor, or obtaining al
error rate less than th, wheret is the size of the
training set.

All but 30 most predictive attributes are
discarded.

For each cancer type the first predictor with
minimal training error iIs manually picked at
random (without looking at its test set
performance to avoid bias in the choice).
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Cancer | selected predictor image ids mtr | mte | 1GP | 2GP

type

BL WAS < 0.69 = BL 236282 0 15 )

EWS FCGRT< 1.59 = EWS 770394 1 2 10

NB MAP1B > 2.17 629896 - 383188 O 28
or RCV1> 1.98 = NB

RMS TNNT2 > 0.55 298062 - 796258 0 2 0 25
or SGCA> 0.44 = RMS

Legend:

mte misclassified cases in test set

mtr misclassified cases in training set

1GP number of one-gene predictors

2GP number of two-gene predictors
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A fairly large number (2-30) of very simple
predictors have been found for each cancer ty,

Each of those predictors has very good
classification rate on the training set: up to one
misclassified case is allowed.

The results show that there are many genes b:
on which a diagnosis can be made for each ca

type.

All genes except for the one that predicts BL
were reported among the 96 selected in Khan.
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Bonferroni Correction

The probabillity that a single gene expression pred
BL perfectly on training set when there is no
correlation between the gene and the tumor type:

5! - 8!
63!

much less than.05/2308 = 2.16 - 1072, the5%
significance level after Bonferroni correction.
This shows that selected gene is with very high
probabillity related to BL.

—5.16-10"1

2

Metric Methods in Data Mining — p. 75/



If a classifier for only one type of tumor gave a
positive prediction, then the instance was
classified as this type of tumor.

If none of them gave positive prediction we
declared the case as ‘other tumor type’.

If more than one classifier was active the case
was considered a prediction error.

The combined classifier used a totalbajenes
and classified correctly9 out of 25 test cases.

Out of the6 misclassified case8,gave
classifications when the real outcome was ‘oth
3 SRBCT cases were undetected, and therelw
conflict.
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Experimental Results - GOLUB

Training data:38 cases (27 acute lymphoblasti
leukemia and 11 acute myelocytic leukemia)
Test data34 cases (20 ALL and 14 AML);

Data involves 6817 genes.

We discretized the gene expression levels usir
Fayyad-Irani

20 genes were retained for which the
Goodman-Kruskal coefficient was below 0.04.
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Five single-genes predictors and 66 two-gene
predictors were identified.

We identified two two-genes predictors (MGST
APLP2 and CD33, CystatinA) for which the
errors on the test set abeand0.0294118,
respectively.

CD33 was among the 50 genes selected by G
et al.
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Distribution of the errors on the test set for the
remaining set of minimal two-genes predictors:

Error Interval | Number of 2-attribute
predictors

0.0, 0.05] 2
(0.05,0.10] | 9
(0.10,0.15] | 10
(0.15,0.20] | 7

(0.20, 0.25] 13
(0.25,0.30] | 14
(0.30,0.35] | 3
(0.35,0.40] | 4
(0.40,0.45] | 3
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Voting Mechanism

We retained 19 one-attribute predictors whose
prediction error on the training set did not exce
5.3% (that Is, two errors out of the 38 training
cases).

A vote was taken, and the instance was classi
according to the majority vote.

We obtained 3 errors on the test set of 34 case
Namely, the errors occurred on the 57th, 60th .
66th cases of the original Golub test set

("unclassifiable" in the original study (Golub)).
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Advantages of UsingGK

The Goodman-Kruskal dissimilaritgK is a
simple, but powerful measure of predictive pov
that can be used to produce robust classifiers.

The small number of training cases makes
reliable construction of more complex models
like Bayesian networks or C4.5 trees very harc
even impossible.

Naive Bayesian classifiers suffer from
iIndependence assumptions which may not be
satisfied in the microarray setting where most
genes are correlated with each other.

The Bonferroni correction, though conservative
yields valid results.
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A Metric Approach to
Discretization



From

numerical to nominal

Previous work on discretization:

fixed k-interval discretization (J. Dougherty, R.
Kohavi, M. Sahami, 1995)

fuzzy discretization (Kononenko 1992-1993)

Shannon-entropy discretization (Fayyad and
Irani, 1993)

pro
We

hig

portionalk-interval discretization (Yang and
n, 2001, 2003)

nly dependent attributes (M. Robnik and 1.

Kononenko, 1995)
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Why Metric Discretization?
a generalization of Fayyad-Irani discretization
technique

a geometric criterion for halting the discretizati
process

better results in building
naive Bayes classifiers
decision trees
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DiscCretizalion of a numeric at-

tribute B

Set of cutpointssS = {ty,...,t,} in aDom(B), where

b1 <to < -+ < 1y

t to t
| |

| .
Qo Q1 X Qe Qi

Discretization partitiorof aDom(B):

m ={Qo, .., Q}
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Boundary Points

Recall thatr* the partition of the set of tuples of a
table determined by the values of an attribdte

select » fromT group by A

t1,...,t,. the list of tuples sorted on the values of ¢

attribute .
7.4 IS the partition ohDom(B) that consists of the

longest runs of B-components of the
tuples in this list that belong to the of
the partitionmy.

Theboundary point®f the partitionrp 4 are the leas
and the largest elements of each of the blocks of tt
partitionmp 4.

We haverp 4, < 7 for any attributeB.
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Main Results -l

Theorem:Let T be a table where the class of the
tuples is determined by the attributieand let

B e (1,2].
If S'Is a set of cutpoints such that the conditional
entropyH s(m4|72) is minimal among the set of

cutpoints with the same number of elements, then
consists of boundary points of the partitiop 4 of

aDom(B).
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Main Results -l

Theorem:Let 3 € (1,2].
If S'Is a set of cutpoints such that the distance

dg(m#, 72) is minimal among the set of cutpoints wi
the same number of elements, thtenonsists of
boundary points of the partitions 4 of aDom(B).
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To discretizeaDom(B) we seek a set of cutpoints
such that

dg(m?,72) = Ha(n|7?) + H(m|m?)
IS minimal.

Seek a set of cutpoints$ such that the partition?
Induced on the set of rows Is as close as possible t

the target partitionr<.
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Discretization Algorithm

Input: A table T, a class attribute 4
and a real -valued attribute B.
Output: A discretized attribute B.

BP Is the set of boundary points of partitiai 4.
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Method:

sort 1" on b5
conput e BP;
S =10;d= o
whi | e BP # () do
| et ¢t = arg mintedeg(wA,wa{t});
i f d> dg(x?,72"") t hen
begi n
S = SU{t}; BP = BP — {t};
d = dg(m?, 7?)

end
el se exit while |oop;
end whil e

for 7m0 ={Qo,...,Q/} replace
every value Iin @Q; by + for 0<s</.
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dy(m?, w2) as a function of|.S|
dg(m, 72)

>I<

" erveeesreeanasanss S|

CO0000000
FRPNWPHAOOIOON0 O

5 10 15 20 25 30
78% of the total time is spent on decreasing the
distance by the lagt)o
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dg(n?, 72) = Ha(m?|m0) + Hg(nd|7?)
If S C S thent® > 7 ano

s(mf|m)
s(m? |m?).

Process starts with = ), som? = w.
Practical halting criterion:

H
H

IN TV

d — dg(m?, 7591 > 0.01d.
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Experimental Results

Accuracy measured in stratified 10-fold
cross-validation

UCI datasets witl € {1.5,1.8.1.9,2}

Metric Methods in Data Mining — p. 94/



Experimental Results - |

Method | Size| Leaves| Accuracy
| 8=15] 20 14 77.36
heartc: ', _ 15| 28/ 18  77.36
=19 35 22 76.01
=201 54 32 76.01
=15 132|24|71.02
glass: | =18 |56|50|77.10
=19 64|58|67.57
5 =20 192|82|66.35
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Experimental Results - Il

15| 8| 95.44
19|12 88.31
15|10 90.02
15]10| 90.02

lonosphere:
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I r
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QD @ @
|
O © 0o Ot

96
96
96
96

IrsS:

D @
[l
DO = ¢
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~N N NN
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Experimental Results -

diabetes:

14

w

10

75.78
75.39
76.30
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Heart-c
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100 93 100
o 4 f 2
- ] . [
047 55 04 =2 70 58
60- Z 60- 50 g
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301 = 30 24 =
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Tree size Number of leaves

Accuracy 188
stanFIard 301 71 77 67
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Nalve Bayes Classifiers

Error Rate

Discretization| Diabetes Glass| lonosphere Iris
Method

—=1.5 34.9 25.2 14.8 2.7

= 1.8 24.2 22.4 | 8.3 4

—1.9 24.9 23.4 | 8.5 4
6 =2.0 25.4 24.3 1 9.1 4.7
weighted prop 25.5 38.4 | 10.3 6.9
prop. 26.3 33.6 | 10.4 7.5
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Conclusions and Future Wor



Conclusions

An appropriate choice of yields better classifiers
and discretization methods.
Open Issues:

identifying simple parameters of data sets that
Inform the best choice of;

metric discretization for data with missing valu
the metric space of attributes can be used to
cluster attributes:

similar attribute are grouped in clusters, tha
may have a significance.

retaining one attribute per cluster (e.g., the
medoid) allows for data compression and fc
simplification of decision techniques.
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Thanks for Listening!
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