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Abstract

We introduce purity dependencies as generalizations of functional de-
pendencies in relational databases starting from the notion of impurity
measure. The impurity measure of a subset of a set relative to a partition
of that set and the relative impurity of two partitions allow us to define
the relative impurity of two attribute sets of a table of a relational data-
base and to introduce purity dependencies. We discuss properties of these
dependencies that generalize similar properties of functional dependencies
and we highlight their relevance for approximate classifications. Finally,
an algorithm that mines datasets for these dependencies is presented.

1 Introduction

Functional dependencies play an important role in the design of databases, due
to their role in the normalization theory that aims to minimize redundancy
and anomalies in relational databases. The identification of these dependencies
satisfied by database schemas is an important topic in data mining literature
(see [KM95, HKPT97]).

We propose a generalization of the notion of functional dependency starting
from the notion of impurity of a subset of a set S relative to a partition of
S; this notion is extended to the notion of relative impurity of two partitions.
Since sets of attributes of a table of a relational database naturally generate
partitions on the set of tuples (as we show in Section 3) it becomes possible
to define the relative impurity of two sets of attributes. When this impurity is
below a certain limit we say that the table satisfies a purity dependency. Purity
dependencies have properties that are similar to those of functional dependen-
cies. For example, in the presence of certain purity dependencies it is possible to
limit the number of spurious tuples that occur in lossy decompositions of tables
(cf. Theorem 3.5). As we show in the final section of this paper, they can be



useful in approximative classifications, that is, in classifications where certain
errors are tolerable.

Unless stated otherwise, all sets considered below are finite. We begin with
a few notations and definitions of terms. The set

{P1,---,pk) €ER* | p; >0and py + -+ pp = 1}.

will be denoted by SIMPLEX;_; and will be referred to as the k-dimensional
simplex.
A function f: R — R is:

e concave on a set S C Rif f(ax + (1 — a)y) > af(z) + (1 — a)f(y) for
a €0,1] and z,y € S;

o sub-additive on S if f(x +y) < f(z) + f(y) for z,y € S.

For example, z — 22

the set [0, 1].
In [CHH99] a concave impurity measure is defined as a real-valued function
i : SIMPLEX;_; — R that satisfies the following conditions:

is concave on the set R and —logx is sub-additive on

@) ilap + 1 — @)q) > «i(p) + (1 — a)i(q) for any a € [0,1] and p,q €
SIMPLEX},_1, with equality if and only if p = q;

(ii) if p=(p1,...,pk), then i(p) =0 if p; =1 for some 4, 1 < i < k.

The corresponding frequency-weighted impurity measure is the real-valued
function I : N¥ — R given by
. (T 23
I(ny,...,ng) = Ni (W’”"ﬁ)’
where N = Zle n;.

In [CHH99] it is noted that both the Gini impurity measure and the entropy
can be generated using a simple one-argument function that satisfies certain
conditions. In this paper we additionally require subadditivity of this function,
as shown in the next definition.

Definition 1.1 A function f : [0,1] — R is a generator if it is concave, sub-
additive, and f(0) = f(1) =0.

The monogenic impurity measure induced by the generator f is the impu-
rity measure generated by the concave impurity measure ¢ having the form
i(p1,...,pr) = f(p1) + - + f(pr), where (p1,...,pr) € SIMPLEX;_1. 0

It is easy to verify that such functions as fgini(p) = p—p?, fent(p) = —plogp,
fsa(P) = /P —p; or

fom P T0<p<05
peaklP) = if05<p<1
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Figure 1: A 4-block partition of S and an impure subset L

are generators. (We assume that 0-oo = 0 in the definition of fens.) Thus, both
the Gini impurity measure, induced by fgini, and the entropy measure, induced
by fent, are monogenic impurity measures.

Our definition of the entropy measure is an alternative approach to the ax-
iomatic definitions of entropy, a subject much discussed in information theory
(see, for Example [Khi56, Khi57, IU62, GT66, MR75]), and has the advantage
of opening the possibility of some useful generalizations. For an axiomatic pre-
sentation of partition entropies see [SJO1].

Further examples of generators are fsn(p) = sin@p, feirce = VP — D%,

folp) =1— eP”~P, where p € [0,1], or

1 if0o<p<1
flp) = e _
0 ifp=0orp=1.

For a concave function f, the inequality

fo) +++ 1 <k () (1)

holds for every (p1,...,pr) € SIMPLEX;_1, and is known as Jensen’s inequality.
This implies that the largest value of the sum f(p1) +--- + f(px) is achieved
if and only if p1 = --- = pp = % Therefore, for the monogenic impurity
measure generated by the function f we have 0 < i(p1,...,px) < kf(3) for

(pl; . ,pk) € SlMPLEXk_l
2 Impurity of Sets and Partitions
In this section we introduce the notion of impurity of a subset of a set S relative

to a partition. In turn, this notion is used to define the impurity of a partition
relative to another partition.



Definition 2.1 Let f be a generator, S be a set and let PART(S) be the set
of all partitions of S. The impurity of a subset L of S relative to a partition
m € PART(S) and generated by fis the monogenic impurity measure induced by

f:

where m = {Bs,...,Bn}.
The specific impurity of L relative to © and generated by f is

, _IMPL(L) _ (LN B LN By

When the subset L is included in one of the blocks of partition 7, IMPZ (L)
0 and L is called a w-pure set; otherwise, L is called 7-impure.

=l

Note that if L is m-impure, then |L| > 2.

In Figure 1, we show an impure set L that intersects three of the four blocks
of a partition of a set S.

Note that Jensen’s inequality (1) implies that the impurity of a set L C S
relative to a partition # = {Bj,...,Bp} of S as defined in (2) cannot exceed
the value 1

mf . =Ll £2). 4)

The next theorems present some important properties of the impurity mea-

sures.

Theorem 2.2 Let K, L be two disjoint subsets of the set S and let m €
PART(S). Then, we have

IMPZ (K U L) > IMPL(K) + IMPL(L).

Proof. The definition of imp/ allows us to write

=1

- s ('KﬂBg|+ |LnBe|)
pa |K U L| ’

because K and L are disjoint.
. KNBy|+|LNB,| - o KNB,
Since % is a convex combination of . ] ¢l an
cavity of f allows us to write

|KﬂB@| -+ |Lﬂ Bgl |K| |KﬂB¢| |L| |Lﬁ Bgl
f KUlL 2 K Lf K + K Lf L ’
|[KUL| |K| + |L] K| |K|+ |L| \L|

d L0B¢

AR the con-




SO

|K| f Ll . g
impf (K UL imp! (K) + mp? (L),

which gives immediately the desired 1nequality. |
The following corollary shows that the impurity of a set increases with the
size of the set.

Corollary 2.3 If K, L are subsets of S such that K C L and m € PART(S),
then IMPY (K) < IMP/(L).

Proof. Let H = L — K. By Theorem 2.2, since K, H are disjoint, we have:
IMP (L) = IMPY(K U H) > IMP/(K) + IMPL(H),

so IMPZ (L) > IMP/ (K). |

Let 7 and o be two partitions in PART(S). We write 7 < ¢ if each block of
the partition 7 is included in a block of the partition ¢; in this case we say that
7 s a finer partition than o. The following theorem shows that the impurity of
a set increases if the partition with respect to which the impurity is computed
is finer.

Theorem 2.4 Let 1 = {By,...,B,} and 0 = {C4,...,Cp,} be two partitions
of a set S. If m < o, then IMPL(K) < IMPL(K) for every subset K of S.

Proof. Since m < o every block C; of ¢ is the union of some blocks of the
partition =, C; = U{Bn | h € H;}, where Hy,..., Hy, is a partition of the set
{1,...,n}. Therefore,

()= 35 (FR 1) < leh;f(lKﬂBh‘>=imp£(K),

due to the subadditivity of f. This implies immediately the inequality of the
theorem. ]

Lemma 2.5 Let 7 = {Bi,...,Bp}, ( = {D1,...,Dp} be two partitions of a
set S. If K is a subset of S such that K C Dy, for some block Dy € (, then
IMP!, (K) = IMPL(K).

Proof. Since the blocks of the partition 7 N ¢ have the form By, N D; we have
n p
|K N BN D,
imp! () =33 f (TJ .
h=1 j=1

KNBLND; .
Each sum Y ?_ [KOBaND;1) ontains at most one non-null term, namel
j=1 K| )

(ot (55m)

if KN By, # 0, which implies the desired equality. |



Definition 2.6 Let S be a finite set and let 7,0 € PART(S) be two partitions,
where 7 = {Bi,...,Bp} and 0 = {C4,...,Cyr}. The impurity of o with respect
to 7 generated by f is given by

IMP? () = rggmMPf(C) (5)
A partition o is a-impure with respect to partition = if IMPfr (o) La. [

There are other ways of defining a measure of impurity between partitions,
for example we could have used the following formula:

IMP? (o Z ||S| IMPZ(C (6)

which takes into consideration the impurities of all the blocks of o with respect
to w. Both definitions lead to measures that have similar properties. We prefer
to use (5) rather than (6) since, as we will show in Section 3, its values are easier
to interpret.

Informally, the impurity of a partition o with respect to a partition 7 gives
us a measure of how well do the blocks of o fit inside the blocks of 7. When
o < w this impurity will be 0 as proved by the following Corollary 2.8.

Theorem 2.7 Let S be a finite set and let w,0,( € PART(S) be partitions of
S. We have:

(i) if o <, then IMPL(¢) <IMP(¢) and IMP (o) < IMP{();
(i) IMP!, (o A ¢) < IMP(0).

Proof. The first part of the Theorem is an immediate consequence of Theo-
rem 2.4.

To prove the second part assume that D is a block of ¢, # = {Bi,..., B},
and o = {C4,...,Cy}. By Lemma 2.5 we have IMP Ac(CiND) = IMPfr(C]-ﬁD),

so IMP/ .(C; N D) < IMP/(C}) due to Corollary 2. 3 Thus, IMP] | (C;ND) <

IMP? () for every block C; N D of o A ¢ and this implies the second inequality.
1

Corollary 2.8 Let o, be two partitions of a set S. We have o < 7 if and only
if IMPY(0) = 0.

Proof. It is easy to see that IMP/ (o) = 0. Therefore, by the first part of
Theorem 2.7, we have IMP/ (0) = 0.

Conversely, if IMP/ (o) = 0, then IMP/ (D) = 0 for every block D of o. This
implies f (%) = 0 for every block B of 7, so we have either BN D =0, or
BN D =D (that is, D C B). This implies ¢ < 7. 1



3 Purity Dependencies

In this section we introduce the notion of purity dependencies which are a gen-
eralization of functional dependencies based on the notion of impurity measure
between two sets. We begin by introducing the notation that we will use. Let
7= (T, H, p) be a table, where T is the name of the table, H = A; -- - A, is the
heading of the table, and p C Dom(A;) x --- x Dom(A4,). Here Dom(A4;) is the
domain of the attribute A; for 1 < i < n. The projection of a tuple ¢t € p on a
set of attributes X will be denoted by ¢[X].

The notion of the active domain of an attribute of a table is extended to sets
of attributes as follows. The active domain of the set of attributes X of the table
T is the set of all values that appear under X in 7, that is, aDom,(X) = {¢[X] |
t € p}. For relational terminology and notations see, for example [Mai83, ST95].

For X C H we define the equivalence =x on the set of tuples p by u =x v
if u[X] = v[X]; the corresponding partition of the set of tuples p is denoted by
mx. Clearly, mx is the partition of the tuples of p that would be obtained using
a group by X clause in SQL.

Note that if U,V are two subsets of H such that U C V, then 7y < my.

Example 3.1 Our running example is the mushroom database from University
of California - Irvine (see [BM98]). This dataset describes 23 attributes of 8124
different types of North American mushrooms. We adopted this dataset for
several reasons: it is well-known and well-documented, its attributes are easy
to understand, it has a large enough number of tuples, and it also has more
nominal attributes than other UCI datasets. Thus, there was a good chance of
finding interesting patterns embedded in the data.

The class attribute specifies whether a mushroom is edible or poisonous,
so |aDom(class)| = 2. Similarly, an attribute like odor has 7 values: almond,
anise, creosote, fishy, foul, musty, none, pungent, and spicy, so the corresponding
partition 7,40, has seven blocks. 0

The specific impurity of the set of tuples p relative to a partition wx repre-
sents the entropy of the attribute set X as defined in [SJ00].

It is easy to see that a table satisfies a functional dependency X — Y if and
only if mx < 7wy, or equivalently, if and only if IMPer (rx) = 0, according to
Corollary 2.8. This amounts to requiring that every block B of the partition
mx is a wy-pure set. Thus, functional dependencies could be generalized by
imposing an upper bound «a on the impurity of the blocks of the partition 7x
relative to the partition 7y . This suggests the following definition:

Definition 3.2 Let 7 = (T, H, p) be a table and let X, Y C H be two sets of

attributes. 7 satisfies the purity dependency X Iy it IMPfrY (rx) < a. i

In other words, the table 7 satisfies the purity dependency X 2%y the largest
f-impurity of a block B of 7mx relative to the partition 7y does not exceed a.



Example 3.3 We are interested in finding purity dependencies of the form

X Q) class in the mushroom database mentioned in Example 3.1; in other
words, we were interested in finding sets of attributes X such that IMPfrdm (rx) <
a. Thus, by examining the values of the attributes X we could predict with a
certain error margin, the value of the attribute class. Of course, given the na-
ture of this dataset, there would be little use in predicting whether a mushroom
is edible or poisonous with less than 100% accuracy. However, as we will show
in Section 4, even though we searched for purity dependencies with an a value
different than 0, some of the facts that we discovered presented 100% accuracy.

In a rule of the form X 23 A with |aDom,(A)| = 2 the properties of the
blocks of mx depend on the choice of the function f.
For example if the mushroom dataset contained a purity dependency of the

form odor fﬂa class, then for every set of mushrooms M having the same
odor attribute value, if M.y C M represents the set of edible mushrooms and
M,, C M represents the set of poisonous mushrooms, we have:

2|]\/[ed| i |Mp0| <a.
|Med| + |Mp0|

In other words, the harmonic average of the sizes of M.q and M,, does not
exceed a. Thus, one of the sets has fewer than a elements and the other has at
least |U| — a elements.

If the mushroom database satisfies the purity dependency odor frﬂ)'a class,
then at least one of the sets M,q, M;, will have size less than /2, so the other
set will have at least |U| — § elements. il

If r = (T,H,p) is atable and U, V are subsets of the heading H of 7 such that
UUV = H, then we have p C p[U] X p[V]. The tuples in (p[U] X p[V]) — p are
referred to as (U, V')-spurious tuples or simply as spurious tuples when the pair
(U, V) is clear from context. The number of spurious tuples of the decomposition
(U, V) of the table 7 is denoted by nyy .

The (U, V)-pure part of the relation p is the set of tuples

ppU&‘r/e = U{B € myny|B is either my-pure or 7y -pure}.
Correspondingly, the (U, V)-impure part of p is p% =p- pg&‘fe. A table
7= (T,H,p) is (U,V)-impure if its content p coincides with its (U, V)-impure
part.
Splitting the content of the table 7 = (T, H, p) in its (U, V)-pure part pJ.y,
and its impure part pg’n‘; is significant for the decomposition (U, V') because only
the impure part generates spurious tuples as we show in the next example.



Example 3.4 Let 7 = (T, ABC, p) be the table:

A|B|C
t1|a | b1 |c
to | ax | b1 | c2
ts | a1 | b2 | c2
ta a2 | b2 |1
ts | a1 | b3 | c3
te | a1 | b3 | c4

and let U = AB and V = BC. The partition myny = wp has the blocks
By = {t1,t2}, B2 = {ts,t4}, and Bs = {t5,ts}. Note that B; and B, are neither

TAp-pure, nor Tpc-pure; however, Bz is map-pure. Thus, pAB.BC = (¢ ¢51

T pure
while pi,fp’Bc = {t1,t2,t3,24}.

The relation p[AB] X p[BC] is given by

T[AB] X T[BC]

A|B c
tl[AB] X t1 [BC] ay b1 C1
tl[AB] X t2 [BC] ay b1 C2 \/
t2 [AB] X t1 [BC] as b1 C1 \/
t2 [AB] X t2 [BC] as b1 C2
t3 [AB] X t3 [BC] ay bz Co
t3 [AB] X t4[BC] ay bz C1 \/
t4 [AB] X t3 [BC] as bz Co \/
t4 [AB] X t4[BC] as b2 C1
t5 [AB] X t5 [BC] ap b3 C3
t6 [AB] X t6 [BC] ap b3 Cy4

The spurious tuples are marked by +/; note that they all result by joining tuples
from the impure part of p. 0

Purity dependencies induce limits on the number of spurious tuples that can
be generated by a decomposition of a table, as shown in the next theorem.
Next, we extend a well-known property of functional dependencies.

Theorem 3.5 Let T = (T, H, p) be a table and let U,V be subsets of the heading
H of 7 such that UUV = H and UNV # 0. If 7 is (U, V)-impure and it satisfies

bothUNV L3 U andUnvV L2 vV, where

1 ifo<p<l1

f(p):{o ifp=0orp=1,

then nyy < 22[aDom(U N V)| — |p|.



Proof. Let B be a block of the partition myny. Since if B is not a wy-pure
set, we have |B| > 2 and IMPf,U (B) = |B|rp, where rp is the number of blocks
C of the partition 7y such that BN C # 0; similarly, let gg be the number of
blocks D of 7y such that BN D # {.

The number of spurious tuples nyy is given by:

nyy = {rBgs | B € munv} —|p|
>

Since IMPZ_(nynv) < a and IMPL (myny) < B, if B is a block of muny,

then rp < % and gp < |%|, SO

o
nyy < Z{%|B€WUOV}_|P|

1
< aBZ{@ | Bemmv} 1ol

TUny
aﬁ% = |pl

< pabom(U N V)| - |ol,

<

which gives the desired inequality. We have used here the fact that all blocks
of Tyny are my-impure and 7wy -impure, which implies |B| > 2. |

Example 3.6 Let 7' = (T', ABC, p') be the table:

A|B|C
ty ar | b1 | ¢
ty [az | by | co
t3 [ay | by | co
ta|ax | b2 |

Clearly, 7' is an impure table since it consists of the “impure part” of the table
7 introduced in Example 3.4. Note that 7' satisfies the impurity dependencies
B4 AB and B L3 AC, where f is the function defined in Theorem 3.5 and
each block of mg consists of two rows and intersects two blocks of w45 and of
mgc- Thus, the number of spurious tuples is no more than 4 -4 - % —4 =4,
and, indeed, it is easy to see that the decomposition (U, V) yields exactly four
spurious tuples. 0

Next, we generalize the Armstrong inference rules for functional dependen-
cies (see [Mai83, ST95]) to purity dependencies.

Theorem 3.7 Let 7 = (T, H, p) be a table and let X,Y, Z be subsets of H. The
following statements hold:

10



1. if T satisfies X =Y and Y ELL Z, then T satisfies X B (left transi-
tivity property);

2. if T satisfies X %y wmd Yy = Z, then 7 satisfies X By (right
transitivity property);

3. if T satisfies X Eiit Y, then XUZ P8 yyz (the augmentation property).

Proof. Suppose that 7 satisfies X - Y and Y Ry Then, we have 7x < 7y
and IMPfrZ (my) < a. By Theorem 2.7, we have IMPfrZ (rx) < IMPf,Z (my), so
IMPﬁZ (mx) < a, which justifies the first part of the theorem.

Now, suppose that 7 satisfies X Iy andY = 7, 80 IMPer (rx) < a and
Ty < mz. Again, by Theorem 2.7, we have IMP/ (7x) < IMPL_(7x), which

implies that 7 satisfies X EL Yy
To prove the augmentation property observe that myuy = 7y A my for all
sets of attributes U,V of 7. The second part of Theorem 2.7 implies that

IMPY_ (7xuz) = IMP{

YUz Ty Nz

(7TX /\71'2) < |MP£Y(7Tx) <a,

which means that 7 satisfies the purity dependency X U Z B) YUZ. |

Theorem 3.8 If the table T satisfies the dependency X EiLY Y, X C X', and
Y' CY, then T satisfies both X' T4y and x L3y,

Proof. Since 7 satisfies X £3 Y we have IMPer (rx) < a. As we noticed
above, X C X’ and Y’ C Y imply IMP/ (7x/) < IMPL (7x) < a and
IMPer, (rx) < IMPer (rx) < a, which give the desired conclusions.
Alternatively, the statement follows from the transitivity properties. |
The purity dependencies that we introduced are essentially based on the
generalization of the notion of entropy formulated in terms of partitions. In a
different but related direction, Kivinen and Manilla ([KM95]) studied functional
dependencies that are approximatively satisfied by tables. They introduced
three pairs of measures (denoted by G;, g; for 1 <4 < 3) that evaluate the extent
to which a table violates a functional dependency. Specifically, G1(X — Y, 7)
equals the number of pairs of tuples in p that violate X — Y, G2(X — Y, 1)
gives the number of tuples that participate in such a violation, and G3(X —
Y, 7) is the minimum number of tuples that must be removed from p to obtain a

relation that satisfies X — Y. The g¢;s are given by g4 (X = Y, 7) = %

and g;(X = Y,7) = W for i = 2,3, respectively. The measures G; and
G- can be expressed using the partitions generated by attribute sets; however,
they are not impurity measures in the sense of this paper. Indeed, let X,Y be
two sets of attributes of the table 7 = (T, H,p), and let nx = {Bi,...,Bn},

11



and my = {C1,...,Cn}. We can write:

Gl(X—>Y,T)= E E |B,~ﬁCj|-|B,~ﬂCl|.
i=1 ji=1
i#l

Similarly, Go(X — Y, 7) = > {|Bi| | B: is my — impure}.

4 Purity Dependencies and Approximate Clas-
sifications

Let X be a set of attributes of a table 7 = (T, H, p) and let A be an attribute of
the same table. Suppose that the tuples of 7 are classified in groups based on
the values of A and that we must determine the groups where the tuples belong
based on tests on the remaining attributes. Of course, we are interested in using
a minimal number of tests in the classification process. This task is frequently
encountered in areas such as biology, medicine, social sciences, etc.

We mention here an important difference between this problem and the
problem of finding a decision tree: this is the fact that whereas in a decision
tree we can use a large number of attributes on different paths of the decision
tree, here we are looking for a fixed set of attributes, whose examination will
allow us to classify a tuple. We will look for such sets of attributes that are
minimal in the sense that any of their subsets will not allow us to perform the
classification with the desired precision.

Note that if 7 satisfies the purity dependency X EALY A, then, the impurity
of every group of tuples defined by a common X-value relative to the partition
generated by A is less than «; this implies that the A blocks are approximate
unions of X-groups.

Theorem 3.8 shows that if 7 satisfies the purity dependency X EiLY A, then

7 also satisfies X' ©% A for every superset X' of X. Thus, it is important to
determine those sets X that are minimal with respect to set inclusion such that

x 28 A Next, we present an algorithm for finding these minimal sets.

The input of the algorithm is the value a and the attribute A. The algorithm
yields the collection Minimal that consists of all minimal sets of attributes X
such that IMP (7x) < a.

The algorithm uses the collections of sets of attributes: Candidates, and
NewCandidates.

There are N attributes in our dataset.

Minimal = empty

Candidates = empty
NewCandidates = empty

add to Candidates all sets of attributes

12



consisting of one attribute distinct from A;
for step = 1 to N-1 do
scan dataset and compute IMP/ , (mx) for each set of
attributes X from Candidates;
foreach set of attributes X from Candidates do
if IMPL (rx) < a do
add X to Minimal;
remove X from Candidates;
endif;
apriori_gen(Candidates, NewCandidates);
if NewCandidates is empty
end algorithm and return Minimal;
Candidates = NewCandidates;
endfor;
return Minimal;

The apriori_gen procedure is the same procedure used in the Apriori algo-
rithm [AMS196].

This algorithm resembles Apriori; however, whereas in Apriori the frequent
set property is hereditary (i.e., is inherited from a set by its subsets), we use in

our algorithm the fact that the property {X | X C H, X EALY A} contains all
the supersets of any of its members, which means that it is dually hereditary.
This algorithm was implemented and executed on the mushroom dataset
from UCI introduced in Example 3.1. The class attribute of the mushroom
database was chosen as A.
The results of an experiment using four different types of functions for dif-
ferent values of a are summarized in the table below:

Number of Minimal Sets Total number of
of Attributes Found candidate sets examined

a | fgini fent | fpeak fsa Fgini Sent Speak fsa
2000 46 120 113 18 153 1367 834 57
1750 53 177 109 45 278 2110 1128 160
1500 86 238 121 69 451 3926 1750 290
1250 95 310 142 93 770 5275 2365 524
1000 128 433 264 107 1217 9062 4101 952
750 170 530 332 216 2905 16897 8295 2387
500 376 914 434 425 7559 39659 20017 7742
250 796 1434 664 984 33189 126141 76257 35274

Our algorithm presents the user with the minimal sets sorted in lexicographic
order beginning with the sets of the smallest cardinality.

For example, among the minimal sets returned by the algorithm using the
fpeax generator and a = 250 we have the sets of attributes:

{odor} and {cap_color, spore_print_color}.

Using a relational database we verified that the odor is indeed a very good
classifier criterion.

13



The edible mushrooms are classified using odor in one of 3 sets of cardinalities
400, 400, and 3408. The poisonous mushrooms are classified using odor in one of
7 blocks of cardinalities 192, 2160, 36, 120, 256, 576, and 576. There is only one
set characterized by odor that contains both edible and poisonous mushrooms
and this set corresponds to the value "none” (no odor) and contains 3408 edible
mushrooms and 120 poisonous mushrooms. It is interesting to note that even
though we searched for rules that were impure, we discovered interesting facts
that hold in 100% of the cases.

This situation conforms to Example 3.3 since we have indeed in the smaller
intersection less elements than half of the value of « (which was 250 in this case).
We can conclude that we can classify very well mushrooms based on odor, the
classification needing to be refined only in the case of odorless mushrooms.

As another example, the edible mushrooms are classified using cap_color
and spore_print_color in 25 sets. The poisonous mushrooms are classified in
20 sets. There are 11 sets characterized by particular values of cap_color and
spore_print_color that contain both edible and poisonous mushrooms:

cap-color spore_print_color edible poisonous
cinnamon white 32 12
red white 48 876
gray black 440 32
gray brown 440 32
brown black 488 64
brown brown 536 64
brown white 96 892
white chocolate 16 96
white black 256 96
white brown 280 96
white white 144 8

As this table shows, the ambiguous classifications tend to contain predomi-
nantly either poisonous or edible mushrooms. In this case we were not able to
find 100% accurate rules of classifying mushrooms based on cap color and spore
color.

Note that all the above mentioned minimal sets were found both using the
feini and the fieak generators.

To compare results obtained with various generator functions in constructing

the set of all minimal sets of attributes X such that X M) A consider the set
G of all generator functions and define an equivalence ~ on the set § x R by

(faa)N(flaal) if ,
o (67

 (rocan)  # (o)

If (f,a) ~ (f',a'), then it is easy to see that we have m{m < « if and only if

mfﬂr < o, where m{m was introduced by Equality (4). This gives us a base for
comparing the results obtained for several generator functions. For instance, in
the case of a binary attribute A the partition w4 has two blocks. Therefore, we

have (f,a) ~ (f',a') if 705 = ﬁol.s)' Thus, the experimental results obtained
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Figure 2: Dependency of time requirement on the number of tuples

in determining the purity dependencies of the form X 2% A for a = 1000 and
f = fgini are comparable to results obtained through experiments described in
the following table:

f fgini fent fpeak fsq
a | 1000 | 2000 | 2000 | 828

Our algorithm is scalable relative to the number of tuples as shown by its
time performance in an experiment whose results are shown in Figure 2. In
this experiment we sought to determine the minimal sets of attributes X that

satisfy a purity dependency X L% 4 for a fixed A by increasing the threshold
a in proportion with the number of tuples. The set of purity dependencies was
kept constant across these experiments by replicating the initial dataset for a
sufficient number of times to achieve the desired number of tuples.

5 Conclusions and Open Problems

In this paper we introduced purity dependencies as generalizations of functional
dependencies by using the notion of relative impurity of partitions. They can
also be regarded as reflecting an “approximative” satisfaction of functional de-
pendencies by tables in relational databases. As Theorem 3.5 shows, they can
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be linked with table decompositions with limited information loss. Regardless of
the generator function of the impurity measure used, purity dependencies have
properties that are similar but not identical to Armstrong’s Rules of functional
dependencies (cf. Theorem 3.7).

The approach to classification that we propose in this paper generalizes well-
known classification techniques in data mining such as the one proposed in the
CART system which is based on the Gini impurity measure (see [BFOS84]).
The algorithm described in our paper is reasonably fast and is scalable.

The role played by impurity measures in the definition and study of purity
dependencies suggests the need to investigate an axiomatization of these mea-
sures. Specifically, given a finite set S and a partition 7 = {By,...,B,} we
are seeking necessary and sufficient conditions for a function u : P(S) — R to

respect the formula:
n
LNB;
un) =10y s ()
i=1

for some generator function f. The properties of impurity measures obtained
in this paper constitute a good starting point in this investigation.
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