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Abstract

Increasing interest in new pattern recognition methods has been mo-
tivated by bioinformatics research. The analysis of gene expression data
originated from microarrays constitutes an important application area for
classification algorithms, and illustrates the need for identifying impor-
tant predictors. We show that the Goodman-Kruskal coefficient can be
used for constructing minimal classifiers for tabular data and we give an
algorithm that construct such classifiers.

1 Introduction

Global gene expression profiling using DNA microarrays has emerged as a rapid
means to explore, classify, and predict the biological processes underlying hu-
man diseases. In the field of cancer, this revolutionary technology permits the
simultaneous measurement of the transcription of tens of thousands of genes,
and of their relative expression between normal, dysplastic and malignant cells.
Since the first report of microarrays [SSDB95], the number of cancer and mi-
croarray related publications has increased exponentially, from approximately
30 publications in the first four years (1995-1999), to almost 600 publications
in the past 24 months. Microarrays have evolved from depositing DNA onto a
solid support to measure gene expression profiles to DNA copy number analysis
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(comparative genomic hybridization arrays, CGH) [PSS*98] and more recently
protein and antibody spotted microarrays [HDBO01].

The construction of gene expression databases requires technologies that can
accurately and reproducibly measure changes in global mRNA expression lev-
els. Ideally, these technologies should be able to screen all gene transcripts,
be applicable across a wide range of cell and tissue types, require minimal
amounts of biological material, and be capable of processing large number
of samples. There are currently two commonly used types of DNA microar-
rays: spotted complementary DNA (cDNA) microarrays [AKG'91] and short
oligonucleotide arrays (Affymetrix GeneChips)[LFGL99]. ¢cDNA arrays repre-
sent a popular platform in which double-stranded polymerase chain reaction
(PCR) products amplified from expressed sequence tag (EST) clones are robot-
ically spotted onto glass slides. The average product size ranges from 100-1,000
nucleotides in length. ¢cDNA arrays offer versatility where project specific ar-
rays can be custom designed. For example, it is possible to build cancer-specific
and chromosome-specific arrays, and they can be employed in the simultaneous
analysis of two different biological samples (normal versus malignant tissues,
tumors of different stages, cancer cell lines, etc.). More importantly is the op-
portunity to discover novel genes since, in addition to well-characterized genes,
expressed sequence tags (ESTs) of unknown function can be spotted on the
DNA arrays. This approach has been used by several groups for cancer research
[AED*00, BMC*00, PJvdR*99]. GeneChips on the other hand are manufac-
tured by synthesizing one nucleotide at a time onto a glass slide and consist of
short oligonucleotides. These oligonucleotide arrays have also been used widely
in cancer research[ABNt99, GST+99, LYC'02]. In general, there are advan-
tages and disadvantages to both microarray technology platforms; however, the
crucial difference between the way ¢cDNA and oligonucleotide microarrays are
commonly used is that cDNA experiments return the amount of each transcript
relative to another sample, whereas oligonucleotide experiments return an abso-
lute amount of each transcript. This implies a major difference in the ability to
group and universally compare across different microarray platforms [KJB+02].
Regardless of the technology platform chosen, microarray experiments yield far
more information than we were used to process in biological experiments.

Classical empirical approaches to anticancer therapy strategies are still be-
ing used, although global approaches to identify new targets for anticancer
drugs represent a faster strategy. However, several bottlenecks still exist and
translating microarrays findings into clinical applications remains a work in
progress. Recent microarray studies involving cancer research have focused in
tumor classification, outcome prediction. and progression of disease. Combining
expression analysis with emerging technologies, such as CGH microarrays, laser
capture microdissection (LCM) [TLKO02], and single-nucleotide polymorphisms
(SNPs) and proteomics analyses may provide new possibilities to understand
the genetic changes associated with cancer etiology and development. Ulti-
mately, this may allow the discovery of new biomarkers for disease diagnosis
and prognosis prediction, and development of therapeutic strategies for cancer
treatment.



Tumor classification using microarray data can be implemented using al-
gorithms that identify minimal classification criteria for tabular data. We
present such an algorithm starting with the Goodman-Kruskal association in-
dex (see [GKS80, Lie83]), which is one of two measures of association introduced
in [GK80] that can be naturally interpreted as a probability of misclassification.

Let X, Y be two discrete random variables. We assume that we deal with a
finite probability space where the elementary events are pairs of values (a;, b;),
where a; is a value of X and b; is a value of Y. The Goodman-Kruskal coefficient
of X and Y is defined by

l
GK(X,Y) = > P(X =a;) (1 - lrgféckP(Y =b|X = ai))

l
1- ;P(X = a;) 1r£jankP(Y =b;|X = a;).

Goodman and Kruskal adopt the classification rule that prescribes that an
elementary event is to be classified in the class that has the maximal probability.
In the absence of any knowledge about X, an elementary event will be classified
in the Y-class b; if b; corresponds to the highest value among the probabilities
P(Y =b;) for1 <j <k If P(Y =b;|X = a;) is the probability of predicting
the value b; for Y when X = a;, then an event that has the component X = a;
will be classified in the Y-class b; if j is the number for which P(Y = b;|X = a;)
has the largest value. The probability of misclassification committed by applying
this rule is 1 — max;<j<x P(Y = b;|X = a;). Thus, GK(X,Y) is the expected
probability that in a randomly chosen case the value of Y will be incorrectly
predicted from X.

The Goodman-Kruskal association index Ay x, commonly used in literature,
is the relative reduction in the probability of prediction error:

GK(X,Y)
1-— maxi<;j<k P(Y = bj)

Ay|x =1—

In other words, Ay x is the proportion of the relative error in predicting the
value of Y that can be eliminated by knowledge of the X-value.

In the rest of the paper we use exclusively the Goodman-Kruskal coefficient.

In the next section we formulate a definition of the Goodman-Kruskal coef-
ficient GK within a purely algebraic setting, using partitions of finite sets. The
main advantage of this formulation is that we can use the properties of the
partially ordered set of partitions of a set in our considerations.

Starting from the properties of GK discussed in Section 2, we formulate an
algorithm that identifies minimal classification criteria for tabular data. We
applied this algorithm to two well-known sets of data discussed in [KWR*01]
and in [GSTT99]. The data set of [KWR™01] is used to differentiate between
four types of childhood tumors known collectively as round blue cell tumors. The
second set, presented in [GSTT99] is used to distinguish between acute myeloid



leukemia (AML) and acute lymphoblastic leukemia (ALL). Both data sets were
intensively explored in recent publications [MTS*t98, OMVW02, YRT+01] using
fuzzy sets, neural networks, and support vector machines.

2 The Goodman-Kruskal Coefficient for Parti-
tions

Let S be a finite set. A partition of S is a family of its subsets {B;, Ba, ..., By}
such that Ule B;=Sand B;NBj =0 forall 1 <i<j<k. Let PART(S) be
the set of partitions of S. For m,0 € PART(S) we write m < o if for every block
B of 7 there exists a block C' of ¢ such that B C C'. It is easy to verify that the
relation “<” is a partial order on PART(S). For example if S = {1,2,...,5},
then {{1,2}, {3}, {4,5}} < {{1,2,3},{4,5}}.

Consider two partitions 7 = {By, ..., B;} and o = {C1,...,C}} in PART(S).
Define the Goodman-Kruskal coefficient of these partitions GK(m, o) as the num-

ber:
l

N B;
GK(ﬂ',a)zl—Zmax I 0 Bil

LTS

The partitions 7,0 define two random variables

1 ... l 1 ... k
Xl B . Bl andY:| oy |Gl
El El El EiE

such that conditional probability P(Y = j|X = i) is given by:

PY=jAX=14) _ |CjﬂBi|
P(X=4d) B

P(Y = jIX = i) =
Thus, for a fixed i, the largest error in predicting Y is

v |C; N By
1 lrgféckP(Y_ﬂX_z)_l 121?5}{16 B

The expected value of this error is

! !

B; C;NB; N B;
E IBi] 1— max G N Bl _ 1-— max 1G5 N Bi| ’|,
= 13l 1<i<k By S 1<i<h S|

which is exactly the Goodman-Kruskal coefficient GK(X,Y).
Several properties of GK important from the point of view of classification
are given next. The proofs can be found in Appendix A.

Theorem 2.1 Let S be a finite set, and let 7,0 € PART(S), where ¢ =
{C1,...,Cy}. We have:

|G
<1- —.
GK(m,0) <1 1?;2{1; i3]



Proof. See Appendix A.1. |

Theorem 2.2 Let S be a finite set and let m = {By,...,B;} ando = {C4,...,Cy}
be two partitions of the set S. We have GK(w,0) =0 if and only if 7 < 0.

Proof. See Appendix A.2. |

Theorem 2.3 The function GK is monotonic in its first argument and dually
monotonic in its second. In other words, if m,7',0 are three partitions of the
set S such that # < 7', then GK(m,0) < GK(n',0), and if n,0',0 are three
partitions of the set S such that o < o', then GK(w,0) > GK(w,d').

Proof. See Appendix A.3. |
The Goodman-Kruskal coefficient allows us to define a metric on PART(S).
Consider the function dgx : PART(S) x PART(S) — R given by

dek(m,0) = GK(rw, o) + GK(a, 7).
for m,0 € PART(S).
Theorem 2.4 The function dgg is a metric on the set PART(S).

Proof. See Appendix A.4. |

3 An Algorithm for Predictor Identification

We use standard relational database terminology, as it appears, for example
in [ST95]. A database table 7 is a triple 7 = (T, H, p), where T is table’s name,
H its header, and p its contents. The header is a set of symbols H = A; --- 4,
called attributes, which serve as labels of the columns of the table (see Figure 1).
For each attribute A; we have a set called the domain of A; that is denoted by
Dom(A4;). Only values of Dom(A4;) may appear in the column labeled A;. The
content of the table consists of a set of rows, {t1,...,tn} that belong to the
set product Dom(A;) X --- x Dom(A,). Every attribute set K C H induces a

T
A 4, |- |4,
t1 |ayn | a2 | -0 | a1n
ta | as1 | a2 | -+ | G2,
tm am1 am?2 oo Amn

Figure 1: The structure of a table

partition mg on the contents of the table. Namely, two tuples ¢ and ¢ belong to
the same block of the partition 7 if they have equal values on the attributes of



K, that is, t[K] = t'[K] (see Figure 2). Thus, the tuples t1, t2, t3 belong to the
same block of the partition mx because they have equal values for the attributes
of K, etc. Therefore terms attribute set and partition are used interchangeably.

T
o | +— K —
ty |- k1
to | - ky
ts | - ky
|- k,
tipr | oo k,
tipn | oo k,
tno1 | - &,
tn | - k,

Figure 2: The partition of the content induced by a set of rows

Let 7 = (T, H, p) be a table and let K, L be two sets of attributes, K, L C H.
The Goodman-Kruskal coefficient GK(K, L) of the sets of attributes K, L is
defined as GK (7, 7r) and can be interpreted as the expected error that occurs
when we try to predict the value of ¢[L] from the value of t[K]. If K1 C Ko,
then, by Theorem 2.3, g, < 7k,, hence GK(K>, L) < GK(K1, L), which has
an intuitive interpretation: the expected error of a larger set of attributes is
smaller than the expected error of a small set of attributes.

Using a mechanism similar the metric dgg can be transferred to the col-
lection of sets of attributes of a table by defining dgx(K,L) = dox(7k,7L)
for any two sets of attributes K, L. The new metric can be used for construct-
ing classifiers, for performing discretization of continuous attributes, and for
attribute clustering.

Definition 3.1 An e-predictor for a set of attributes Y is a set of attributes K
such that GK(K,Y) <. 0

If K is an e-predictor for Y, then any superset K’ of K is also a e-predictor
for Y. An e-predictor such that none of its proper subsets is an e-predictor is
called minimal.

To find e-predictors we use the following algorithm:



Input: A set of attributes H, a target attribute Y, Y ¢ H and an error level e.
Output: Set P of all minimal e-predictors from H.
(1) Cand ={{A}: Ae H};

(2) P

(3)P= PU{K € Cand : GK(K,Y) < €};

(4) Cand = Cand \ P;

(5) Cand={LC H: forall K C L, |K|=|L| —1 we have K € Cand};
(6) goto (3);

The algorithm works in a manner very similar to the well-known data-mining
Apriori algorithm [HKO01], using the fact that if a set is a nonminimal predictor,
so are all of its supersets, which can thus be skipped. It begins by constructing
a candidate set of predictors Cand in which all one-set attributes are initially
included. The set of minimal predictors P is constructed starting from Cand.
Initially, we include in P all one-attribute predictors whose error is below the
threshold e. These attributes are removed from P and the search for mini-
mal two-attribute predictors makes use of the remaining candidate attributes,
etc. The stopping condition could be exceeding the maximum predictor size or
finding a predictor with desired prediction error.

4 Experimental Results

As experimental data we used the blood cell tumor microarray data of Khan
et al. [KWR*01] and the leukemia data of Golub et al. [GSTT99]. In both
datasets gene expression levels have been normalized.

Full descriptions of experimental procedures and normalization methods
used can be found in the original paper [KWR™01]; details on normaliza-
tion methods applied to the second set of data are available at the web site
www-genome.wi.mit.edu/mpr/publications/projects/Leukemia, which is a
companion of [GST199].

The first data set (in [KWR™'01]) involves microarray data that is used for
differential diagnosis of four round blue cell tumors of childhood (SRBCTs) :
neuroblastoma (NB), rhabdomyosarcoma (RMS), Burkitt lymphoma (BL), and
the Ewing family of sarcomas (EWS). The expression levels of 2308 genes were
measured using cDNA microarrays and the results of a predictive model based
on a single layer neural network architecture [KWR*01] and a logistic regression
model [WVOMO02] were previously reported.

There are 63 training (12 NB, 20 RMS, 8 BL, and 23 EWS) and 25 test
cases (6 EWS, 5 RMS, 6 NB, 3 BL, and 5 non-SRBCTs) in the dataset, which
includes samples obtained from cell lines and biopsies . The test cases include
5 cases which do not belong to any of the predicted SRBCT types. Such cases
are not present in the training set.

In the initial preprocessing step, we replace each class attribute with 4 binary
attributes, one for each cancer type. Each of the 4 binary attributes has value 1
if and only if the corresponding caner type is present. The table below illustrates



this

| original attribute | computed attributes |
Cancer type NB | RMS | BL | EWS
NB 1 0 0 0
RMS 0 1 0 0
BL 0 0 1 0
EWS 0 0 0 1
other 0 0 0 0

Then a separate predictor is built for each of the new binary attributes, i.e.
we try to predict every tumor type separately. The main reason for this is to
allow for handling of cases of type ‘other’ present in the test set, but absent in
the training set. We expect that for ‘other’ cancer type all of the predictors will
give the value of 0 thus indicated that none of the 4 cancer types is present.

A disadvantage is that predictors may contradict each other, however the
experiments have shown that such cases are infrequent due to low error rate
of individual classifiers. If however, presence of more than one cancer type is
predicted, we assume that the prediction cannot be made in such a case, and
consider it misclassified.

Since the number of training cases is very small, there is a serious risk of
the so called overfitting, that is building a complex classifier that fits particular
training data very well, but does not generalize to unseen cases. Building a
separate predictor for each cancer type makes the predictors very simple and
thus less likely to overfit the data.

Next, every gene expression level X attribute is discretized into two intervals:
X < T and X > T for some threshold T, thus changing the continuous gene
expression level X into a binary attribute X'. The threshold T is chosen such
that the Shannon entropy H (Y| X’) of the target Y conditional on the discretized
attribute X' is minimal. A separate discretization has been performed with
respect to each cancer type. To identify the thresholds used in discretization we
applied the Fayyad-Irani algorithm presented in [Fay91, FI93].

Afterwards, the algorithm given above is used to find all predictors with 1 or
2 attributes, allowing up to one misclassified instance on the training set. Thus,
the stopping rule for the learning algorithm is reaching the maximum prescribed
size of the predictor, or obtaining an error rate less than to %, where t is the size
of the training set. Building classifiers with more attributes would incur a large
risk of overfitting due to small number of training cases (see [Mit97]). Since the
number of attributes is huge, there is an extra attribute selection step involved;
namely, before the algorithm is applied, all but 30 most predictive attributes
are discarded.

For each class (cancer type) the first predictor with minimal training error
is manually picked at random (without looking at its test set performance to
avoid bias in the choice). The results are summarized in table below



Cancer selected predictor image ids mtr mte 1GP 2GP
type

BL WAS < 0.69 = BL 236282 0 1 15 5
EWS FCGRT < 1.59 = EWS 770394 1 3 2 10
NB MAPIB > 2.17 or RCV1 > 1.98 = NB 6290896 - 383188 0 0 2 28
RMS TNNT2 > 0.55 or SGCA > 0.44 = RMS 298062 - 796258 0 2 0 25

Legend:
mte misclassified cases in test set
mtr misclassified cases in training set
1GP number of one-gene predictors
2GP number of two-gene predictors

The results show that a fairly large number (12-30) of very simple predictors
have been found for each cancer type. Each of those predictors has very good
classification rate on the training set: up to one misclassified case is allowed.

For each cancer type number of errors on the test set is also given for selected
predictors. The predictions on the test are slightly worse than on the training
set, but still fairly accurate. This suggests that overfitting was not a serious
issue here.

The results show that there are many genes based on which a diagnosis can
be made for each cancer type.

Of note, all genes except for the one that predicts BL were reported among
the 96 selected in [KWR101]. The probability that a single gene expression
predicts BL perfectly on training set when there is no correlation between the
gene and the tumor type:

55!-8! _10

2 el 5.16- 10
much less than 0.05/2308 = 2.16-1075, the 5% significance level after Bonferroni
correction. This shows that selected gene is with very high probability related
to BL. Similar statements hold for other cancer types. Bonferroni correction
has been used since the number of attributes is large and there could be a
possibility that one of them passes the statistical test due to chance rather than
true correlation. In the absence of the attribute independence the Bonferroni
correction is overly conservative. However, the inferences using this correction
are correct.

We combined the classifiers for each tumor type in the following way: if a
classifier for only one type of tumor gave a positive prediction, then the instance
was classified as this type of tumor. If none of them gave positive prediction we
declared the case as ‘other tumor type’. If more than one classifier was active
the case was considered a prediction error.

The combined classifier used a total of 6 genes and classified correctly 18 out
of 25 cases. Out of the 6 misclassified cases, 2 gave classifications when the real
outcome was ‘other’, 3 SRBCT cases were undetected, and there was 1 conflict.

The leukemia training data set contains 38 cases (27 acute lymphoblastic
leukemia and 11 acute myelocytic leukemia) and the test set contains 34 cases
(20 ALL and 14 AML); the data refer to 6817 genes. We discretized the gene
expression levels using the same procedure as for the [KWR*01] data. We
retained 20 genes for which the Goodman-Kruskal coefficient was below 0.04.
Five single-genes predictors and 66 two-gene predictors were identified.



It is worth noting that our technique identified two two-genes predictors
(MGST1, APLP2 and CD33, CystatinA) for which the errors on the test set
are 0 and 0.0294118, respectively. CD33 was among the 50 genes selected in
[GST*99]. The distribution of the errors on the test set for the remaining set
of minimal two-genes predictors is shown below:

Error Interval | Number of 2-attribute
predictors

[0.0,0.05] 2
(0.05,0.10 9
(0.10,0.15 10
(0.15,0.20 7
(0.20,0.25 13
(0.25,0.30 14
(0.30,0.35 3
(0.35,0.40 4
(0.40,0.45 3

To obtain a robust classifier, we used a voting mechanism on the second
data set. Initially, we extracted 19 one-attribute predictors whose prediction
error on the training set did not exceed 5.3% (that is, two errors out of the 38
training cases). A vote was taken, and the instance was classified according to
the majority vote. We obtained 3 errors on the test set of 34 cases. Namely, the
errors occurred on the 57th, 60th and 66th cases of the original Golub test set.
It is worth mentioning that all errors occurred on cases that had low prediction
strengths and were considered ”unclassifiable” in [GST99].

5 Conclusions and Future Research

The Goodman-Kruskal dissimilarity GK is a simple, but powerful measure of
predictive power that can be used to produce robust classifiers that are com-
parable with those obtained using more complex techniques. In our opinion,
the small number of training cases makes reliable construction of more complex
models like Bayesian networks or C4.5 trees very hard or even impossible. On
the other hand, methods related to Naive Bayesian classifiers suffer from in-
dependence assumptions which may not be satisfied in the microarray setting
where most gene measurements are correlated with each other. As we mentioned
earlier, the use of the Bonferroni correction, although conservative, yields valid
results.

It would be interesting to see how some more sophisticated attribute selec-
tion techniques influence the quality of classification for microarray data, see
e.g. [ILES00, KJ97, LM98].

The fact that GK generates a metric suggests one could use this metric to
cluster attributes such that those that belong to a cluster have similar predic-
tive power and, thus, are interchangeable in classifiers. The clustering structure

10



could be used in forming the voting committees, and in simplifying and increas-
ing the robustness of predictive algorithms. This approach dovetails with other
metrics on partitions that we explored in [SJ03].
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A Lemmas and Proofs of Theorems

Lemma A.1 Let {z;;|1 <i<1,1<j <k} bea collection of lk real numbers.
We have:

max E Zij < E max ;.
1<j<k & —1<j<k
1= 1=

Proof. Observe that z;; < maxi<;<kx;; for every ,j, which implies
S miy < YL maxg<j<p xi for every j. Thus, we obtain

max E Zij < E max ;.
1<j<k — — 1<i<k
1= 1=

|
A.1 Proof of Theorem 2.1
The definition of GK(w, o) gives
1
|Cj N Bi|
K =1- —_
k(o) =1~ 3 max (G,
where m = {By, ..., B;}. By Lemma A.1 we can write:
|C ﬁ Bil Gl
y<1-— _ A}
K, 1 121]32}(192 =1 1952k |S]’
which is the desired inequality. |
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A.2 Proof of Theorem 2.2
Suppose that GK(7,0) = 0, which means that

!
|C; N B;|
maxX —— =

L% s

1.

This is possible only if for every B; there exists C; such that B; C Cj, that is,
if m < 0. The reverse implication is clear. |

A.3 Proof of Theorem 2.3

To prove the monotonicity of GK in its first argument it suffices to show that if 7/
is obtained from 7 by fusing two blocks B; and By, then GK(w, o) < GK(#', 7).
We claim that for every i, h we have:

max, |C; N (B; UB)| < max, |C; N B;| + max |C; N By|

Indeed, observe that |C] N (B; UBh)| = |CJ ﬂBi| + |CJ N Bh| < maxj<j<k |CJ N
B;| + maxi<;<y |Cj N Bp|. This gives the desired inequality. Thus,

GK(m, o)
l
. Bm . Bz’ . B
= 1= Z 1% 0 B |+max 1€ 0 Bil |+ma 1G5 N Ba|
o 1<i<k || 1<j<k  |S] 1<i<k ||
m=1,m#i,h
l
C;NB, C;,Nn(B;UB
< 1- Z max €31 Bu| + max 1G5 0 (B U Bu)| = GK(r', o).
m=Lmgih =" 5] 1si<k 15

For the second part of the theorem it suffices to show that if ¢’ is obtained from
o by fusing two blocks C; and C}, then the above inequality holds.
For a block B; of m we have:

max{'-BiﬂCl|a---a|Binci'a---a|BiﬂCh|a---a|Bi ﬂCk|} <
max{|B,~ n Cl|, R |Bz n (C, @] Ch)l, cey |Bz n Ck'}
Therefore,
k k
. 1??%1;'3’00]' < Zmax{|BzﬂC]||C] S O'I},
=1 i=1
which gives the inequality of the theorem. |

A.4 Proof of Theorem 2.4

It is obvious that the function dgx is non-negative and symmetric.

12



Suppose that dgk (7,0) = 0, which implies GK(7, o) = GK(o, 7) = 0. Thus,
by Theorem 2.2 we have both 7 < ¢ and ¢ < m, which implies # = ¢. Since
dak (m,m) = 0 for any partition # € PART(S) it follows that dgk (w,0) = 0 if
and only if 7 = 0.

Let (bjn) be a k x g matrix where bj, > 0for 1 < j<kand1<h<y.
Let jo be a integer between 1 and k and let hg be the least integer in {1,...,g}
such that bjoho = MaXj<p<g bjoh- We claim that

] k
ijoh +Z max bjh Zijh +ijh0. (1)
j=1

j=1 h=1

Inequality (1) can be written as:

k k 9 k
Zfél;?i{gb D D bin+ D bine

Jj=1 - J=L,j#jo0 h=1 Jj=1
or
k
E max b]‘h—|- max b]oh < E E b]h+ E b]ho;
= 1<h<y 1<h<
J=1,j#jo J=L,j#jo h=1

which follows from the fact that max;<p<g bj,n is one of the members of the
sum Ele bjn, in view of the definition of hy. This proves Inequality (1). Con-
sequently, we have

9 k k g k
E bjoh + E m}??g th E E th + max bjh
h=1 j=1 j=1h=1 9=t
for every jo which, in turn, implies:
9 k k g l
max bin + E max b;, < E E + max E bin. 2
1<y<k e T Laingy M S bin + BEX <" @

Consider the partitions # = {B1,...,B;,...,Bi}, 0 = {C1,...,Cj,...,Cx},
and 7 = {Di,...,Dp,..., Dy} on the set S and define a;;, = |B; NC; N Dy| for
1<i<l,1<j<k,and 1 <h <g. Inequality (2) implies

maxga +Emaxa Ega~-+ma,x2a~-.
1<j<k 4 igh 1<h<g ijh < : h T Ry 4 f igh

for 1 < ¢ <[. Summing on i we have:

l g Ik I kg

maan--+EEmaxa <222a +Emax§a.
;gjgkh / ijh 1<h<g k= ijh 1<h<g ih
= —

i=1 j=1 i=1 j=1 h=1

13



Equivalently,

Z max, |B nC|+ZZ max a“h<|5|+z max |B NDyl. (3

zlgl—

Observe that:
l k
Z}l?f;(k'Bi“Cj'+Zlf;13§g'Cf“Dh'
1= =

l l
= [wax |B; mC|+Z Z|B N C;j N Dy

i1
! k
< Zmax |B; mC|+ZZ max |B; N Cj N Dy
i=1 Jj=1i=1 — —
(by Lemma A.1)
! ko1
- 1<J |BﬂC|+Zerélﬁa§ ik
j=11i=1
l
<

BinD
|S|+;11;1,§%<g| i N Dy

(due to Inequality (3)).

After an elementary transformation the last inequality can be written as:

l

k
1
1= D max, |B NC; |+1——ler£’?§g|cjmph| >1- Z max |B,ﬁDh|

S| & S| 1S =
which is equivalent to:
GK(m,0) + GK(o,7) > GK(m, 7). 4)
Similarly, we can write
GK(r,0) + GK(o,7) > GK(7, ). (5)

Adding the inequalities (4) and (5) yields the triangular inequality: dgx (7, o)+
dek(o,7) > dgk (m, 7). This allows us to conclude that dgk is a metric.
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