
Mining Approximative Descriptions of Sets Using Rough Sets

Dan A. Simovici and Selim Mimaroglu
Univ. of Massachusetts Boston,

Dept. of Comp. Science,
100 Morrissey Blvd.

Boston, Massachusetts
02125 USA

{dsim,smimarog}@cs.umb.edu

Abstract

Using concepts from rough set theory we investigate
the existence of approximative descriptions of collections
of objects that can be extracted from in data set, a problem
of interest for biologists that need to find succinct descrip-
tions of families of taxonomic units. Our algorithm is based
on an anti-monotonicity of borders of object set and makes
use of an approach that is, in a certain sense, a dual of the
Apriori algorithm used in identifying frequent item sets.

1 Introduction
Rough sets are approximative descriptions of sets that
can be achieved using equivalences (or partitions). This
fertile idea was introduced by the Polish mathematician Z.
Pawlak in [6]. Excellent surveys supplemented by large
bibliographies are [3] and [1]. The reference [4] contains a
rich collection of applications of rough sets.

The problem that we address here is mining a table (or,
in the terminology of rough sets, an information system) for
approximative descriptions of sets of objects. Finding such
descriptions is relevant for biological applications, where
such descriptions serve for specimen identification in the
field work.

We begin by introducing some terminology and basic
facts from rough set theory. Unless stated otherwise, all
sets are finite. If U is a subset of a set S, we denote its
complement S − U by U c.

Let S be a set. An approximation space is a pair (S, ρ),
where ρ is an equivalence relation defined on the set S.

DEFINITION 1.1. Let (S, ρ) be an approximation space
and let U be a subset of S. The ρ-lower approximation
of U is the union of all ρ-equivalence classes included in
the set U :

lapρ(U) =
⋃
{[x]ρ ∈ S/ρ | [x]ρ ⊆ U}.

The ρ-upper approximation of U is the union of ρ-
equivalence classes that have a nonempty intersection with
the set U :

uapρ(U) =
⋃
{[x]ρ ∈ S/ρ | [x]ρ ∩ U 6= ∅}.

The following statements hold in an approximation
space (S, ρ) (see, for example [7]):

lapρ(∅) = uapρ(∅) = ∅ (1.1)
lapρ(S) = uapρ(S) = S, (1.2)

lapρ(U ∩ V) = lapρ(U) ∩ lapρ(V), (1.3)
uapρ(U ∪ V) = uapρ(U) ∪ uapρ(V), (1.4)
lapρ(U ∪ V) ⊇ lapρ(U) ∪ lapρ(V), (1.5)

uapρ(U ∩ V) ⊆ uapρ(U) ∩ uapρ(V), (1.6)

lapρ(U
c) =

(
uapρ(U)

)c
(1.7)

uapρ(U
c) =

(
lapρ(U)

)c
, (1.8)

lapρ(lapρ(U)) = uapρ(lapρ(U))
= lapρ(U) (1.9)

uapρ(uapρ(U)) = lapρ(uapρ(U))
= uapρ(U), (1.10)

for every U, V ∈ P(S).
Note that, in general, lapρ(U) ⊆ uapρ(U) for any set

U . Also, we have

uapρ(U) = {t ∈ S | (t, s) ∈ ρ for some s ∈ U},
lapρ(U) = {t ∈ U | (t, s) ∈ ρ implies s ∈ U}.

A subset U of S is ρ-rough if ∂ρ(U) 6= ∅ and is ρ-crisp
otherwise.

In defining and retrieving approximative descriptions
of sets the notion of border plays a fundamental role.

DEFINITION 1.2. The positive ρ-border of U is the set

∂+
ρ (U) = U − lapρ(U),

while the negative ρ-border of the same set is

∂−ρ (U) = U − lapρ(U),

The ρ-border of U is:

∂ρ(U) = ∂+
ρ (U) ∪ ∂−ρ (U) = uapρ(U)− lapρ(U).

Observe that

∂ρ(U) = {t ∈ S | (t, s) ∈ ρ and (t, z) ∈ ρ
for some s ∈ U and z 6∈ U}.

For every subset U of an approximation space (S, ρ)
we have the equalities:

∂+
ρ (U c) = ∂−ρ (U), (1.11)

∂−ρ (U c) = ∂+
ρ (U). (1.12)

Indeed, we can write

∂+
ρ (U c) = U c − lapρ(U

c)

= U c −
(
uapρ(U)

)c
(by Equality 1.7)

= U c ∩ uapρ(U)
= uapρ(U)− U
= ∂−ρ (U),

which is Equality 1.11. A similar argument works for
Equality 1.12.

Let (S, ρ) be an approximation space and let U and V
be two subsets of S. If U ⊆ V , then lapρ(U) ⊆ lapρ(V)
and uapρ(U) ⊆ uapρ(V).

Let ρ, σ be two equivalences on the set S. If ρ ⊆ σ,
then each σ-equivalence class is a ρ-saturated set. There-
fore, if U ⊆ S we have

lapσ(U) ⊆ lapρ(U) ⊆ U ⊆ uapρ(U) ⊆ lapσ(U).
(1.13)

These inclusions imply

∂ρ(U) ⊆ ∂σ(U). (1.14)

Therefore, we have

∂ρ1∧ρ2(U) ⊆ ∂ρ1(U) ∩ ∂ρ2(U). (1.15)

for every subset U of S.

2 Exact descriptions of Sets of Objects
Let H be a finite set, H = {A1, . . . , Am}. We refer to
the elements of H as attributes and we assume that for
each attribute Ai we have a set that contains at least two
elements referred to as the domain of Ai and denoted by
Dom(Ai).

A data set on the set of attributes H is a function
T : {1, . . . , n} × H −→

⋃m
j=1 Dom(Aj) such that

T (i, Aj) ∈ Dom(Aj) for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
The sequence tk = (T (k, 1), . . . , T (k,m)) is the kth

object of T for 1 ≤ k ≤ n. The numbers 1, . . . , n are the
object identifiers (abbreviated as oids). The set of objects
of T is the set OT = {t1, . . . , tn}.

If L = {Ai1 , . . . , Aip} be a subset of H . The
projection of the object tk = (T (k, 1), . . . , T (k,m)) on
L is the p-tuple (T (k, i1), . . . , T (k, ip)), denoted by tk[L].

DEFINITION 2.1. Let T be a data set and let L be a set of
attributes of T . The equivalence ρL on OT defined by

ρL = {(t, t′) ∈ O2
T | t[L] = t′[L]}.

It is easy to see that if L and K are two attribute sets
then ρKL = ρK ∩ ρL, where KL is an alternative notation
for the union K ∪ L of the two attribute sets. Therefore, if
L ⊆ K, then ρK ⊆ ρL, so by the inclusion (1.14) we have:

∂ρL
(U) ⊆ ∂ρK

(U). (2.16)

In other words, the border of a set of objects relative to an
attribute set is anti-monotonic with respect to the attribute
set. To simplify notations we denote the set ∂ρK

(U) by
∂K(U).

DEFINITION 2.2. A set of objects D is described by a set
of attributesK if ∂K(D) = ∅ and we refer toK as an exact
description of D.

The notion of template is defined as a formula τ =
(Ai1 = ai1) ∧ (Ai2 = ai2) ∧ · · · ∧ (Aip = aip), where
h 6= k implies Aih 6= Aik for 1 ≤ h, k ≤ p (see, for
example [5]). The length of the template is p and the
support of the template τ in the data set T is

suppT (τ) = |{t ∈ OT | t[Ai1 · · ·Aip] = (ai1 , . . . , aip)}|.

Note that each template τ = (Ai1 = ai1) ∧ (Ai2 =
ai2) ∧ · · · ∧ (Aip = aip) that has a non-zero support
corresponds to an equivalence class of ρK , where K =
{Ai1 · · ·Aip}.

It is shown in [5], starting from the problem of the
balanced complete bipartite subgraph [2], that for a bipar-
tite graph G = (V1 ∪ V2, E) and two positive integers

Table 1. Data Set T and the set of objects
D = {t5, t6, t7, t8, t9}

T
t1 a1 b2 c1 d1

t2 a2 b2 c1 d2

t3 a3 b1 c2 d1

t4 a4 b1 c2 d3

t5 a1 b1 c1 d2

t6 a3 b1 c1 d2

t7 a5 b3 c3 d4

t8 a1 b3 c3 d2

t9 a2 b3 c2 d3

t10 a3 b3 c2 d3

t11 a4 b2 c2 d1

t12 a1 b3 c4 d4

k1 ≤ |V1| and k2 ≤ |V2|, it is an NP -complete problem
to determine the existence of two subsets U1 and U2 of V1

and V2, respectively such that |U1| = k1, |U2| ≥ k2 and
{u1, u2} ∈ E for any u1 ∈ U1 and u2 ∈ U2. This variant
of the problem is known as the Complete Bipartite Sub-
graph (CBS) problem. Then, given a table and two positive
integers k and `, the existence of a template τ containing
` conjunctions and having support at least k is polynomi-
ally equivalent to the CBS problem and therefore, is NP-
complete.

We focus in this paper on approximate descriptions of
sets of objects which can be stated as follows: given a data
set T , a set of objects D ⊆ OT , we seek to determine
whether there exists an attribute set K containing no more
than k attributes such that the size of border ∂K(D) is less
than p. Thus, a search for a template of minimum support
is replaced by the search for a set of attributes of limited
size that describes the set D with a certain precision.

EXAMPLE 2.3. Let T be a data set having the set of
attributes H = ABCD. Our search space is the
set of subsets of H . Suppose that we seek to iden-
tify a description of the set D = {t5, t6, t7, t8, t9},
where T is shown in Table 1. Observe that
the equivalence classes of the equivalence ρBC are
{t1, t2}, {t3, t4}, {t5, t6}, {t7, t8}, {t9, t10}, {t11}, and
{t12}. Two of these classes, {t5, t6}, {t7, t8} are included
in D and therefore, they constitute the lower approximation
of D. The class {t9, t10} intersects both D and its comple-
ment and therefore, ∂BC(D) = {t9, t10}. Also, it is clear
that ∂+

BC(D) = {t9} and ∂−BC(D) = {t10}.

3 An Algorithm for Mining for Approximate
Descriptions

In practice, approximative descriptions are sufficient and
we give an algorithm that identifies such descriptions. This
algorithm is, in a certain sense, a dual of the well-known
Apriori-algorithm for finding frequent item sets.

DEFINITION 3.1. Let ε be a number such that 0 ≤ ε ≤ 1.
A set of objects D is ε-described by a set of attributes K if

|∂K(D)|
|D|

≤ ε.

The “dual” of the Rymon tree used in the study of
frequent item sets is introduced next.

DEFINITION 3.2. Let H = {A1, . . . , An} be a set of
attributes. The dual Rymon tree ofH is a rooted tree having
P(H) as its set of nodes, H as its root, and whose set of
edges consist of pairs of the form (U, V) ∈ P(H) such that
V is obtained by dropping from U an attribute that follows
the attributes of H − U in the list (A1, . . . , An).

EXAMPLE 3.3. The dual Rymon tree of the set of at-
tributes H = {A,B,C,D} is shown in Figure 1.

ABCD

�
�
�

e
e
e

!!!!!!!!

BCD ACD ABD ABC

�
�
�

e
e
e

e
e
e

CD BD BCAD AC AB

D D B A

∅

A B C D

B C D DC D

C D D D

D

Figure 1. Rymon tree of the set of attributes
H = {A,B,C,D}

Our algorithm makes use of the dual Rymon tree of the
sets of attributes of the data set and is based on the anti-
monotonicity of the size of the border of a set given by the
inclusion (2.16). The goal of the algorithm is to compute

the smallest sets of attributes that yield a description of a
set of objects whose error is below a presecribed threshold.

For identifying approximative descriptions of D we
search the Rymon tree of the set of attributes in a top-down
manner. During the search we apply a pruning technique
that reduces substantially the size of the search space.

Starting at the root node of the tree, computation of
negative and positive borders take place in breadth first
search fashion. In a database having no duplicates the error
of the root node is zero. The error of the children of the
root are computed next. If the error of a node K is greater
than the error threshold there is no need for computing the
negative and positive borders for its descendants because
of the anti-monotonicity property of the size of the border
contained by Inequality 2.16. Thus, we can prune all
descendants of K.

We introduce first a technique for computing the bor-
der set of a set of objects D = {ti1 , . . . , tip} of a data set
T determined by a set of attributes K. Let D̄ = OT −D =
{tj1 , . . . , tjq} be the set of objects of T that do not belong
to D.

The projection of each object tik in D on the set of
attributes K is compared to the same projection of each
object tjh in D̄ as shown in the Figure 2.

Pruning is implemented as shown in Figure 3
Failed set of attributes are stored according to their car-

dinality. As mentioned earlier, each failed set of attributes
is represented by a bit vector. Before adding any set of at-
tributes into the working queue for computing the negative
and positive borders, we check the failed set of attributes.
A set of attributes L is not added to the queue if it has a
superset that failed.

4 Experimental Results
Our algorithm is applicable to data sets that have attributes
with finite domains of arbitrary cardinality. However, we
focus on data sets with binary domains in order to take
advantage of the efficient use of memory that bit vectors
allow and of the speed of bit operation. If a an attribute
A has a non-binary domain, Dom(A) = {a1, . . . , ak}, we
replaceA by k attributesA1, . . . , Ak and we replace theA-
component of an object t by k components t[A1], . . . , t[Ak]
defined by

t[Aj] =

{
1 if t[A] = aj ,

0 otherwise

for 1 ≤ j ≤ k. Thus, an object of a binary data set is a
sequence t ∈ {0, 1}n.

If we define the characteristic n-tuple rK =
(r1, . . . , rn) ∈ {0, 1}n of a set of attributes K as

ri =

{
1 if Ai ∈ K,
0 otherwise.

Thus, the condition t[K] = t′[K] can be expressed as
(t ∧ rK) ⊕ (t′ ∧ rK) = 0, where 0 = (0, . . . , 0). If
t[K] equals t′[K], then t is added to the positive border
∂+
K(D) and t′ is added to the negative border ∂−K(D). After

computing the positive and the negative borders, we obtain
the border ∂K(D) = ∂+

K(D) ∪ ∂−K(D).
To evaluate the effectiveness of our algorithm we con-

ducted a set of preliminary experiments on synthetically
generated binary databases using a Pentium 3.0GHz com-
puter having 4GB of main memory running on Linux. We
implemented our algorithm in Java which offers support for
bit vectors and bit vector operations and we use the advan-
tage of the speed of bit operations.

Figure ?? shows the running time results on various
size databases. The number of unique descriptors for each
error level is shown in Figure ??.

Experiments show that for even big size database run
times for reasonable error rates are practical. This is due to
our pruning technique and use of bit vectors.

References

[1] I. Düntsch and G. Gediga. Rough Sets Analysis - A Road
to Non-invasive Knowledge Discovery. Methoδos, Bangor,
UK, 2000.

[2] M. R. Garey and D. S. Johnson. Computers and Intractabil-
ity – A Guide to the Theory of NP-Completeness. W.H.
Freeman, New York, 1979.

[3] J. Komorowski, Z. Pawlak, L. Polkowski, and A. Skowron.
Rough sets: A tutorial. In S. K. Pal and A. Skowron,
editors, Rough Sets Hybridization: A New Trend in Decision
Making, pages 3–98. Springer-Verlag Telos, 1999.

[4] T. Y. Lin and N. Cercone, editors. Rough Sets and Data
Mining. Kluwer Academic Publishers, Boston, 1997.

[5] S. H. Nguyen, A. Skowron, and P. Synak. Dicovery of data
patterns with applications to decomposition and classifica-
tion problems. In Rough Sets in Knowledge Discovery, vol-
ume 2, pages 55–97. Physica-Verlag, Heidelberg, 1998.

[6] Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning
About Data. Kluwer Academic Publishing, Dordrecht,
1991.

[7] D. Simovici and C. Djeraba. Mathematical Tools for Data
Mining. Springer-Verlag, London, UK, 2008.

Input: T : data set, D: set of objects, K: set of
attributes

Output: Positive and Negative Border of D

Pos := {} ;1

Neg := {} ;2

D̄ := OT −D ;3

foreach t ∈ D do4

foreach t′ ∈ D̄ do5

// project on K
if t[K] == t′[K] then6

add t to Pos;7

add t′ to Neg;8

output Pos
⋃
Neg ;9

Figure 2. Computation of Border,
FindBorder(T,D,K)

Input: L: list of failed descriptors, R: set of
attributes

Output: all the qualified |R| − 1 size children of R
enumerate all unique |R| − 1 size children of R into1

P ;
foreach p ∈ P do2

if L contains a superset of p then3

remove p from P ;4

output P ;5

Figure 3. Prunning of Attribute Sets,
Prunnig(L,R)

Input: T : data set, H: set of attributes, D: set of
objects, err: error threshold

Output: all the descriptors of D

initialize a queue Q;1

initialize a list L;2

add H to Q ;3

while Q is not empty do4

R := remove first element from Q;5

if FindBorder(T ,D,R) ≤ err then6

output R;7

children := Prunning(L,R);8

add children to Q;9

else10

add R to L;11

Figure 4. Find Descriptors of D,
FindAll(T,H,D, err)

Figure 5. Running Time and Size of Descrip-
tor Sets for 10,000 rows

Figure 6. Running Time and Size of Descrip-
tor Sets for 10,000 rows

Figure 7. Running Time and Size of Descrip-
tor Sets for 20,000 rows

Figure 8. Running Time and Size of Descrip-
tor Sets for 20,000 rows

Figure 9. Running Time and Size of Descrip-
tor Sets

Figure 10. Running Time and Size of Descrip-
tor Sets

Figure 11. Running Time and Size of Descrip-
tor Sets

Figure 12. Running Time and Size of Descrip-
tor Sets

	Introduction
	Exact descriptions of Sets of Objects
	An Algorithm for Mining for Approximate Descriptions
	Experimental Results

