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Abstract

We characterize measures on free Boolean algebras and
we examine the relationships that exists between measures
and binary tables in relational databases. It is shown that
these measures are completely defined by their values on
positive conjunctions and an algorithm that leads to the
construction of measures starting from its values on posi-
tive conjunction is also given, including a formula that al-
lows the evaluation of measures for arbitrary polynomials.
Finally, we study pairs of measures generated by ternary
tables, that is, by tables that contain missing or unknown
values.

1. Introduction

The focus of this paper is a study of measures on free
Boolean algebras with a finite number of generators (ab-
breviated as MFBAs) who take their values in the set

�
of

natural numbers. As we shall see, these measures play an
important role in query optimization in relational databases,
and also, in the study of frequent sets in data mining. We
show that these measures can help us to mine multi-valued
data, in particular, tables that contain null or undefined val-
ues.

Let �������	��
���
�������������� be a Boolean algebra, where
���
���� are two distinguished elements of � , � is a unary
operation, and ����� are two binary associative, commuta-
tive, and idempotent operation that satisfy the usual axioms
of Boolean algebras (see, for example [6, 2]). Here 
 and 

are the least and the largest element of the algebra, respec-
tively.

We define

��� �
� � if � �!
�� if � �"
��

for � ��� and �#�%$&
���
(' .
It is a well-known fact (see, for instance [6]) that a

Boolean algebra �)�*���	��
���
�������������� defines a Boolean
ring structure, +��,���	��
���
������.-/� , where � plays the role
of the multiplication, and - the role of addition, where

� -10���� � �2�03���4�.�� �506�
for � �70��!� . This ring is unitary, commutative, and has
characteristic 2 (since � - � �8
 for every � ). Also, 
9- � ��� .

Let :;�<$>=6?>��@�@�@A�B=DC�' be a set of E variables. The setFHG6I ��:�� of Boolean polynomials of the E variables in : is
defined inductively by:

1. 
 , 
 , and each =3J belong to FHG6I ��:�� for KMLONPLOE ;

2. if Q9�BR belong to FHG6I ��:�� , then �Q , � Q5�%RH� , and � Q5�%RH�
belong to FHG6I ��:�� .

If Q9�BR�� FHG6I ��:�� , then we denote by � Q�-ORH� the polyno-
mial �7� QS�O�RH���%���QS�TRH�7� .

Boolean polynomials of the form�VU�U�UW�7� QA?BX�Q�YW�ZX�Q�[W�ZX\U�U�UVX�Q�C3� are denoted by� QA?BX�Q�Y.X�U�U�UVX�Q�C6� , where X]�^$&�������.-_' . Also, we
denote by `&aHbV� Q�� the set of variables that occur in the
polynomial Q .

Let �c�d���	��
���
�������������� be a Boolean algebra and
let :e�f$>=6?>��@�@�@A�B=DC�' be a set of E attributes. The E -ary
function g�hji�� C8k�l � generated by a polynomial Q!�FHG6I ��:�� is defined as follows:



1. g�� � � ?&��@�@�@A� � C6� � 
 , g ?&� � ?&��@�@�@A� � C(� � 
 , andg����.� � ?&��@�@�@A� � C(��� � J for KMLONPLjE ;

2. g��h6� � ?&��@�@�@A� � C(��� g � � ?>��@�@�@�� � C6� ;
3. g	� h�

��� � � ?&��@�@�@A� � C(� � g�h6� � ?&��@�@�@�� � C6� �g��&� � ?&��@�@�@A� � C(� , and g	� h��
��� � � ?&��@�@�@A� � C(� �g�h6� � ?&��@�@�@A� � C(�A��g��&� � ?&��@�@�@�� � C6� ,

for � � ?&��@�@�@A� � C6��� � C . We write Q%� R for Q9�BR	� FHG6I ��:��
if g�h_�8g�� .

An : -minterm is a Boolean polynomial

Q ����� � � ��� ��� �"= ���? �%U�U�UW�T= ���C �
where �.J#� $&
���
(' for K5L�N/L E . The set of : -minterms
is denoted by ��� ������:�� . Any Boolean polynomial in FHG6I ��:��
can be uniquely written as a disjunction of some subset of: -minterms (up to the order of the disjuncts). This observa-
tion implies that the Boolean algebra FHG6I ��:�� is isomorphic
to the Boolean algebra of collections of subsets of the set: ; thus, FHG6I ��:�� has � Y � elements.

For : � $>=6?>��@�@�@A�B=DC�' and � � $WN7?>��@�@�@A�7N��_'! $ K ��@�@�@��7E ' we denote by =
" the conjunction =3J � � U�U�U ��=DJ # .
For the special case, when �S�%$ we write =
"��!
 .

A measure on a Boolean algebra �������	��
���
����/���������
is a non-negative, real-valued function &!i9� k�l(' such
that &�� � ��06� �)&�� � �+*,&�� 06� for every � �70%�4� such that� �50��8
 .

2 A Representation Result for MFBAs

Let : � $>=6?>��@�@�@A�B=DC�' be a set of variables. In this
context, we find convenient to use the relational database
terminology and we refer to the the members of : as at-
tributes. We attach a set - G � ��=3JZ� to each attribute =3J such
that . - G � ��=DJZ�/.
01� . The set - G �S��=DJ � is the domain of =3J .

A table is a triple 2 � �43 �B:_�653� , where 3 is the name
of the table, : �,$>=6?>��@�@�@A�B=DC�' is the heading of the table
and 5 �!$�7B?>��@�@�@A�67��_' is a finite set of functions of the form
7VJ i�: k�l98 ��:<; - G �S��=3� such that 7VJB��=3�	�=- G � ��=3� for
every =	��: . Following the relational database terminology
we shall refer to these functions as : -tuples, or simpler, as
tuples. If - G �S��=DJZ� � $&
���
(' for K4L,N�L,E , then 2 is a
binary table.

Let 2 � �43 �B:_�653� be a binary table. A query on the
table 2 is a Boolean polynomial in FHG6I ��:�� . This definition
of queries is a formalization of the usual notion of query in
databases.

Example 2.1 To retrieve in SQL all tuples 7 of 2 such that
at least two of 7 ��=6? �.�67 ��=DY>� and 7 ��=D[>� equal 
 we write the
query as

select * from 3 where ( =(? � 
 and =DY#� 
 ) or
( =DY � 
 and =D[#� 
 ) or
( =6? � 
 and =D[#� 
 );

The condition specified in this select corresponds to the
polynomial ��=(?��T=DYW�A�4��=DYP�T=D[W���%��=6?��T=D[W� .

A query Q defines a table >P� Q9�62(�_� �43�h6�B:_�65Hh � , where
5Hh is defined inductively as follows:

1. 5	���%$ and 56? �?5 ;
2. if QT�"=DJ , then 5Hh_�!$�7P�@5A. 7 ��=DJ �P�!
(' ;
3. if QT� �R , then 5Hh_�?5 k 5
� ;
4. if QT����R>?��TR�YW� , then 5Hh_�15Hh �CB 5Hh/D and,

5. if QT����R>?��TR�YW� , then 5Hh_�15Hh �CE 5Hh/D .
It is easy to see that for a conjunction

QT� = ���J � �%U�U�UW�T= � #J # �
where �.J � $&
���
(' for K%L N�LGF , the set 5Hh consists of
those tuples 7 such that 7 ��=3J H ���8��I for K/L,J�LKF .

Theorem 2.2 A function &1i FHG6I ��:�� k�l �
is a measure if

and only if there exists a binary table 2 � �43 �B:_�653� such
that &�� Q����L. 5Hh�. for all Q\� FHG6I ��:�� .
Proof. Suppose that 2"� �43 �B:_�653� is a table. Define the
mapping &NM5i FHG6I ��:�� k�lO' by &�� Q�� �P. 5Hh�. for every Q �FHG6I ��:�� . Let Q9�BR be two polynomials such that � QS�TRH���8
 .
Then, &NM6� QS�TRH���L. 5Hh�

��. �L. 5Hh B 5
�<. . Since Q �TRM�"
 we
have 5Hh E 5
� �%$ , so &NM6� Q�� RH���?&NM(� Q���*Q&NM(��RH� . Thus, &NM
is a measure on FHG6I ��:�� .

Conversely, let & be a measure on FHG6I ��:�� , where :e�$>=6?W��@�@�@��B=DC�' . If R�_�;� ��?>��@�@�@A���.C6�M� $&
���
(' C , QAS� �)= ���? �U�U�UZ��= ���C is a minterm and &�� QNS� �P�UT consider a set V3h�WX of T
tuples 7 ?S� ��@�@�@A�676YS� , where 7�Z S� ��=DJZ�P���.J for every N��\[ , K_L][	L
T , and K L N L E . Define the table 2�^5� �43 �B:_�65_^3� , where
5 � 8 $�VDh�WX�. QAS� �`��� ������:���' .

We claim that &�� Q�� �a. 5Hh�. for every polynomial Q �FHG6I ��:�� . Suppose that Q can be expressed as a disjunction of
minterms QT�1QAS��� ��U�U�U.�/QAS�\b , where R��?>��@�@�@A� R� Y �%$&
���
(' C .

Then, &�� Q�� �dc YZ�e ? &�� QAS�gf � , because QAS�\h �OQAS�\i � 

when jlk�nm . On the other hand, . 5 h�. �O. 8 YZ�e ? 5Hh�WX f . �
c YZ�e ? . 5Hh�WX f . , so &�� Q��P�o. 5Hhp. .

We shall refer to &qM as the measure induced by the table
2 on FHG6I ��:�� .



3 An Exclusion-Inclusion Property for MF-
BAs

Let Q be a polynomial in FHG6I ��:�� . It is known that Q can
be uniquely written as

QT�
��

� J ��� � � ��� J #C��� � J ��� � � ��� J #C� �5=DJ � � U�U�UB=DJ #/�
where the summation

��
involves the “exclusive or” op-

eration - and is extended to all subsets $WNB?W��@�@�@A�7N��_' of$ K ��@�@�@��7E ' . The coefficients
�
� J ��� � � ��� J #C� belong to the set$&
���
(' . Thus, for a measure & on FHG6I ��:�� it is interesting

to evaluate &�� QA? -4Q�Y -�U�U�U -4Qp�/� , where QA?>��@�@�@A��Qp� are
polynomials in FHG6I ��:�� .
Theorem 3.1 Let &!i FHG6I ��:�� k�l �

be a measure on the
free Boolean algebra FHG6I ��:�� , where :)� $>=(?>��@�@�@A�B=DC�' . IfQA?>��@�@�@A��Qp� belong to FHG6I ��:�� , then

&�� QA?�- U�U�U>-\Qp�/�
� ��

J e ?
&�� Q�JZ� k ��U �J ��� J D &�� Q�J � � Q�J DW�N* U�U�U

*S� k K>� I���? U�� I���? U �
J ���	� � � � J H &�� Q�J � � U�U�U>�_Q�J H �q* U�U�U

*S� k K>� �
��? U�� �
��? U &�� QA?��%U�U�UW� Qp�/�.@
Proof. The statement is clarly true for F � K . We give an
argument by induction on F for F 0?� . For F �%� we can
write:

&�� QA?�-\Q�YW� � &��7�A�QA?�� Q�YW���4� QA? � �Q�YW�7�� &����QA?�� Q�YW�q*]&�� QA? � �Q�YW�.�
since ���QA? �TQ�YW�P� � QA? �f�Q�YW�5� 
 . Note that ���QA? �TQ�YW�P�� QA?���Q�YW�%�eQ�Y , so &����QA?��\Q�YW� * &�� QA?��\Q�YW�%�n&�� Q�YW� ,
which implies &����Q�?���Q�YW���?&�� Q�YW� k &�� QA?��#Q�YW� . Similarly,
&�� QA? � �Q�YW�P�1&�� QA? � k &�� QA?�� Q�YW� , which yields

&�� QA?�-\Q�YW���?&�� QA? �q*]&�� Q�YW� k ��U &�� QA?�� Q�YW�.�
which is the desired equality for F �%� .

Suppose that the equality holds for F polynomials and
let QA?>��@�@�@ Qp� ��Qp��� ? be F *5K polynomials. By the inductive
hypothesis we can write

&�� QA?�- U�U�U>-\Qp�j-\Qp��� ? ���
&�� QA?�- U�U�U>-"� Qp�j-\Qp��� ? �7�P�
&�� QA? �q* U�U�U�*]&�� Qp�
��? �q*]&�� Qp� -\Qp��� ? �k �#U c J ��� J D � � &�� Q�J � � Q�J DW�k �#U c J ��� � &�� Q�J � �%� Qp� -\Qp��� ? �7�q* U�U�U
*S� k K>� I���? U�� I���? U�c J ���	� � � � J H � � &�� Q�J � � U�U�U>�_Q�J H �
*S� k K>� I���? U�� I���? U c J ���	� � � � J H�
 � � � &�� Q�J � �%U�U�UW� Q�J H�
 �� � Qp� -\Qp��� ? �7�q* U�U�U
*S� k K>� �
��? U�� �
��? U/&�� QA? �%U�U�UW�4� Qp� -\Qp��� ? �7�.@

Observe now that

&�� Q�J � �%U�U�UW� Q�J H�
 � �4� Qp�j-\Qp��� ? �7�� &��7� Q�J � �%U�U�UW� Q�J H�
 � � Qp�/�-S� Q�J � �%U�U�UW� Q�J H�
 � � Qp��� ? �7�� &�� Q�J � �%U�U�UW� Q�J H�
 � �_Qp�/�
* &�� Q�J � �%U�U�UW� Q�J H�
 � � Qp��� ? �k ��U &�� Q�J � �%U�U�UW� Q�J H�
 � � Qp�O� Qp��� ? �.@

Consequently, we can write:

� k K>� I���? � I���? c J ���	� � � � J H � � &�� Q�J � �%U�U�UW� Q�J H.�
*S� k K>� I���? � I���? c J ���	� � � � J H�
 � � � &�� Q�J � �%U�U�UW� Q�J H�
 �� � Qp� -\Qp��� ? �7���� k K>� I���? � I���? c J ���	� � � � J H &�� Q�J � �%U�U�UW� Q�J H.�k � k K>� I � I &�� Q�J � �%U�U�UW� Q�J H�
 � � Qp�O� Qp��� ? �.@

The last term of the last sum will be attributed to the next
term of the necessary sum for &�� Q�? -!U�U�U - Qp�8- Qp��� ? � .
This completes the argument for the above equality.

Corollary 3.2 Let &��6&	�ji FHG6I ��:�� k�l �
be two mea-

sures on the free Boolean algebra FHG6I ��:�� , where : �$>=6?W��@�@�@��B=DC�' . If &�� Q�� �P&�� � Q�� for every conjunction Q of
the form Q5�"=DJ � �%U�U�U>�5=DJ # , then & �?& � .
Proof. The result follows immediately from Theorem 3.1.

Example 3.3 Consider the “majority polynomial” Q ���=6?���=DYW�_� ��=DY5��=D[W�_� ��=6?���=D[W� . For g�h we haveg�h6� � ?&� � YH� � [>�	� K if and only if at least two of its argu-
ments are equal to K . Note that

QT����=6?��T=DYW��-"��=DYP�T=D[W�9-"��=6?��T=D[W�.@
Theorem 3.1 allows us to write

&�� Q�� � &���=6? �T=DYW�q*]&���=DYP�T=D[W�q*]&���=6?��5=D[W�k � &��7��=6? �T=DYW�A�4��=DYP�T=D[W�7�k � &��7��=6? �T=DYW�A�4��=6?��T=D[W�7�k � &��7��=DY��T=DYW�A�4��=6?��T=D[W�7�
*
�<&��7��=6? �T=DYW�A�4��=DYP�T=D[W���4��=6? �T=DYW�7�� &���=6? �T=DYW�q*]&���=DYP�T=D[W�
* &���=6? �T=D[W� k � &���=6? �T=DY��T=D[W�.@

Corollary 3.2 shows that the values of a measure onFHG6I ��:�� is completely determined by its values on positive
conjunctions of the form =
" for �  "$ K ��@�@�@A�7E ' .

Let 2%� �43 ���\�653� be a table. Note that the contribution
of a tuple � ��?>��@�@�@A���.C6� �,5 to the value of &qM(�g�D� equals K
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Figure 1. Lattice of Positive Conjunctions

for every set � such that �, <$WN �!$ K ��@�@�@ E '=._� J��f
(' .
Thus, it is possible to formulate an algorithm that constructs
a table 2 starting from the values of &���=
">� such that & �?&NM .

Let 	 G�
��AG ��
���:�� be the set of all positive conjunctions
of attributes of : , that is, the set $>=
"). �  *$ K ��@�@�@A�7E ' ' .
Consider the Hasse diagram of the poset ��	 G�
��AG ��
���:��.��L#� ,
where =_"����f=�� if �  � and label every vertex =
" by
&���=_">� . The algorithm includes the following steps:

1. Initialize the variable J to � and 5 to an empty table
having the heading : .

2. If there exists a conjunction =�� containing E k J con-
juncts such that &���=��M����� , then select one such con-
junction such that &���=��_� has the largest value and go
to step 3; if no such conjunction exists, then increment
J by K ; if J��jE , exit.

3. Add to 5 a number of &���=��_� tuples whose components
equal 
 for all attributes of � and 
 , otherwise.

4. Subtract &���=��M� from all labels of conjunctions of the
form =�� such that �  �� . Go to step 2.

Example 3.4 Let :)� $>=(?W�B=DYH�B=D[&' , and let & i FHG6I ��:�� l�
be a measure on FHG6I ��:�� . Fig. 1 shows the lattice of posi-

tive conjunctions of attributes of : labeled with values of &
for each of them (in brackets). Let us now use the algorithm
given above to construct a database table 2,� �43 �B:_�653�
such that &NM � & . To begin, set the content of the table
5j� $ and consider the conjunction =(? �4=DY��4=D[ . Since
&���=6? �4=DY �4=D[W� � � , we add two �VK ��K ��K>� rows to 5 and
modify the labels of all conjunctions. The result is shown
in Figure 2.
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Figure 2. Intermediate Step of the Algorithm

Then, we consider all two-attribute conjunctions, adding
rows �VK ��K ��� �.�W�VK ���6��K>�.�W� �6��K ��K>�.�W� �6��K ��K>� and modify labels
of conjunctions =(?>�B=DYH�B=D[ and 
 accordingly (cf. Fig. 3).

The last step (not shown) is adding the row �VK ���6��� � to 5 ,
all the labels become � , and the algorithm is complete. The
table 2 is given below

� � ��D ���
1 1 1
1 1 1
1 1 0
1 0 1
0 1 1
0 1 1
1 0 0

Let ! i $&
���
(' k�l $"�6��KH' be the bijection defined by
! � 
������ and ! �V
3��� K , where �6��K/� ' . Note that

! ��=/��� � �#! ��=3�q*$! � � � k ! ��=3�%! � � �.� (1)

! ��=/��� � �#! ��=3�%! � � �.� (2)

! �V�=3� � K k ! ��=3�.� (3)

for every =����#�%$&
���
(' .
For a Boolean function g�iP$&
���
(' C k�l $&
���
(' define

the real-valued function &(' i3$"�6��KH' C	k�l $"�6��KH' by

&)'��+*>?>��@�@�@���*�C6�P��! � g �+! ��? �+*>?��.��@�@�@A��! ��? �+*�C(�7�7�
for every *>?&��@�@�@A��*�CT�%$"�6��KH' .
Example 3.5 It is easy to verify that if Q is the majority
polynomial considered in Example 3.3, then for the numer-
ical function &)'-, we can write:

&)'-,(�+*>?&��*�YH��*�[>����*>?�*�Y *$*�Y.*�[ *$*>?/*�[ k �0*>?/*�Y.*�[
for every *>?&��*�YH��*�[5� $"�6��KH' . Note that the coefficients are
the same as the ones in Example 3.3.
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Figure 3. One Further Intermediate Step of the
Algorithm

The remark contained in the above Example is not a co-
incidence. Next, we prove that for every polynomial Q , the
numerical function &('-, can be expressed as a sum of mono-
mials multiplied by the coefficients that occur in the expan-
sion of &�� Q�� given in Theorem 3.1.

Theorem 3.6 Let :���$>=(?>��@�@�@A�B=DC�' and Q\� FHG6I ��:�� . Sup-
pose that

&�� Q���� �
"/:�� �

"/&���=_">�.�
where

�
is a family of subsets of $ K ��@�@�@��7E ' . Then, we have:

&)'-,6�+*>?&��@�@�@���*�C6�P� �
"/:�� �

".*/" �
where */" is the monomial *�"�� *�J � U�U�U�*�J # .

Proof. Let Q9�BRD���S� FHG6I ��:�� such that �_� � Q/�SRH� . We have:

&)'��D�+*>?&��@�@�@A��*�C6�� ! � g�� �+! ��? �+*>?&��@�@�@���*�C6�7�7�� ! � g�h6�+! ��? �+*>?&��@�@�@ ��*�C(�7����g��&�+! ��? �+*>?>��@�@�@���*�C6�7�� ! � g�h6�+! ��? �+*>?&��@�@�@ ��*�C(�7�q*Og��&�+! ��? �+*>?&��@�@�@ ��*�C(�7� k
! � g�h6�+! ��? �+*>?&��@�@�@ ��*�C(�7�7� U.! � g��&�+! ��? �+*>?&��@�@�@ ��*�C(�7�7�.�

for � � ?&��@�@�@�� � C6���4$&
���
(' C , by equation 1. Thus,

&)'��D�+*>?&��@�@�@A��*�C6� � &)'-,(�+*>?&��@�@�@A��*�C(�q* &)'�	 �+*>?&��@�@�@A��*�C6�k &)'-,(�+*>?&��@�@�@A��*�C6��&)'�	 �+*>?&��@�@�@A��*�C6�

for �+*>?&��@�@�@���*�C6�j�f$"�6��KH' C . Since &)'-,�
�	 �+*>?&��@�@�@A��*�C(�1�
&)'-,(�+*>?&��@�@�@A��*�C6��&)'�	 �+*>?&��@�@�@A��*�C6� , it follows that if Q���RM�8
 ,
then

&)'�� �+*>?&��@�@�@A��*�C(��� &)'-,(�+*>?>��@�@�@���*�C6�q* &)'�	 �+*>?&��@�@�@A��*�C(�
for every �+*>?&��@�@�@���*�C6���4$"�6��KH' C . This show that for a every
*�� �+*>?&��@�@�@A��*�C(� , the mapping &"i FHG6I ��:�� k�la' defined
by &�
 � Q��P� &)'-,6�+* � is a measure on FHG6I ��:�� , so Theorem 3.1
is applicable and we can write:

&)'-,(�+*>?>��@�@�@���*�C6�P� �
"/:�� �

".*/" �
for every �+*>?&��@�@�@���*�C6���4$"�6��KH' C .
4 Applications in Data Mining and Database

Query Optimization

In database query optimization and in data mining, it is
often necessary to estimate the number of rows in a data-
base table satisfying a given query. Unfortunately in most
cases the exact number of rows satisfying a query cannot be
computed exactly and has to be estimated (usually using the
assumption of statistical independence between attributes).

Let 2T�)�43 �B:_�653� be a binary table and let � be a set of
attributes, �  8: . The support of the set � relative to the
table 2 is defined as the number:

������� M � �4���!$�7�� 5%. 7 ��=3��� 
 for all =	� �1' @
Thus, ������� M � �4�j� &NM(��= Y � �8@�@�@�� = Y # � , where � �$>= Y � ��@�@�@��B= Y ##' . In other words, the support of an attribute
set � in the table 2 can we viewed as the value of the mea-
sure induced by the table on the Boolean polynomial that
describes the attribute set. By extension, we can regard the
number &NM(��RH� as the support of the query R and we denote
this number by ������� ��RH� . There is a considerable research
effort in data mining for designing algorithms for discover-
ing all sets of attributes with high support. An idea has re-
cently been raised by H. Manilla in a seminal paper ([4, 5])
is to use supports of attribute sets discovered with a data
mining algorithm to obtain the size of a database query. IfR�� FHG6I ��:�� is a query involving a table 2\�*�43 �B:_�653� such
that R can be written as

RM�
�
-

��
"/:��

=_" �
where

�
� $&
���
(' and

�
is a collection of subsets of$ K ��@�@�@.�7E ' , then ������� ��RH� can be obtained from Theo-

rem 3.1 using the numbers ������� M ��=_">� . Methods that obtain
approximative estimations of query sizes been proposed [4],
including the use of Maximum Entropy Principle. An open



problem is whether we can give any guarantee on the qual-
ity of such an approximation.

The computation of the size of the query using Theo-
rem 3.1 can be often simplified if there is a known maximal
number of 
 components in the tuples of the table. For ex-
ample, in a store that sells 1000 items (corresponding to
1000 attributes in a table that contains the records of pur-
chases) it is often the case that we can use an empirical limit
of, say, 8 items per tuple. In this case, conjunctions that
contain more than 8 conjuncts can be discarded and the es-
timation is considerably simplified. Even, if such an upper
bound cannot be imposed apriori, it is often the case that we
can discard large conjunctions (which have low support).
However, there are some risks when approximations of this
nature are performed due to the the large values of coeffi-
cients that multiply the supports for large conjunctions.

Indeed, consider the tables 2 C����� � �43 � �B:_�65 ����� � ,
2 C����� C ���43 � �B:_�65 ����� C(� , where

5 ����� � $�7�� - G � ��:�� iHE ?H�477� is odd ' �
5 ����� C � $�7�� - G � ��:�� iHE ?H�477� is even ' �

where E ?&�477� denotes the number of attributes equal to 
 in
tuple 7 and . : . � E .

Note that for proper subset � of : , we have
������� M	��
�
 � �4�P� ������� M	
��	
 � � �4� , while

������� M ���
�
 ��:��P�
� K if E is odd

� otherwise,

and

������� M �
��	
 � ��:��P�
� K if E is even

� otherwise.

Thus, from the point of view of the supports of any proper
subset of the attribute set the tables 2 C����� and 2 C����� C are in-
discernible. However, the support of certain queries can
be vastly different on these tables. For example, con-
sider the polynomial Q!�f=(?#-�=DY/-�@�@�@6-8=DC . We have
&NM ���
�
 � Q�� � . 5 ����� . � � C ��? and &NM �
��	
 � � Q�� � . 5 ����� C . � � .
So, ignoring the term that corresponds to the support for
a single attribute set (note that this is also the attribute set
with the smallest possible support) has a huge impact on
&�� Q�� . Note that the result is consistent with Theorem (3.1)
which gives the set of attributes : a coefficient � C ��? . We
stress however that the negative result above does not rule
out practical applicability of approximating the values of & M
since the parity function query used above is by no means a
typical database query.

5 Measures Generated by Multi-Valued Ta-
bles

Tables that contain incomplete information have been in-
tensively studied in databases. In this section we investigate
measures that can be attached to such tables.

Suppose now that 2 � �43 �B:_�653� , where : �$>=6?W��@�@�@��B=DC�' and all attributes have the same domain
- G � ��=DJZ�1� �

for K�L N2L E , where
� � $&
����P��
(' .

The symbol � represents null values, that is, values that are
missing or undefined. We refer to such tables as ternary ta-
bles. A total order is defined on

�
by 
 ���$��
 . The set of

functions
� ; � $&gC. g1i�: k�l � ' is ordered by the order

defined on
�

and it can be organized as a Post algebra:
� ; � � � ; �67��3�67��A�67 � �����6�����A��� � ���������.�

where 7 Y is the constant function in
� ; which has value T

for T�� �
, ���(�����A��� � are three unary operations such that

if 7 � ��� Y �477� , then

7 � ��=3�P�
� 
 if 7 ��=3���%T
 otherwise @

If �	? is the unary operation given by �5?&�477�M��� �D��� �D�477�7�
and �����	?&�477� , then

� ��=3�P�
� 
 if 7 ��=3���%$��P��
('
 otherwise @

If 25���43 �B:_�653� is a ternary table, then 2 �M���43!� �B:_�65"�&�
is the binary table defined by 5#�%� $�7�� . 7	�U5(' , where
7��M�$�	?&�477� . Similarly, 2&%_�)�43!% �B:_�65"%&� is the binary table
given by 5"% �*$�7�%U. 7�� 5(' , where 7�%��'� ?H�477� . Thus, for
a polynomial Q � FHG6I ��:�� we have an optimistic evaluation,
& M)( � Q�� �n. 5 �h . , when all missing components � are inter-
preted as 
 s, and a pessimistic evaluation, & M)* � Q��S� . 5"%h . ,
when all � s are interpreted as 
 . In other words, a ternary
table 25� �43 �B:_�653� generates two measures & M)( and & M * on
the set FHG6I ��:�� .

Note that . 5A.D�G. 5"�
.D�G. 5"%
. since the tables that concern
us here admit multiple tuples with the same content.

Lemma 5.1 Let 2>? �,�439?>�B:_�656?�� and 2�Y �;�43AYH�B:_�65DYW� be
two binary tables. There is a ternary table 2 � �43 �B:_�653�
such that 56?/�)5"% and 5DY � 5"� if and only if there exists a
bijection +ji
56? k�l 5DY such that 7 �9�,+P�477� implies 7 ��=3�#L
7 � ��=3� for every =	�\: .

Proof. Suppose that 5(?%� 5"%2� $�7B?W��@�@�@��67VC�' and 5DY �
5"���<$�7 � ? ��@�@�@A�67 �C ' , where 54�<$-�&?>��@�@�@����WC�' and 7 Z ��=3�SL� Z ��=3�ML 7 �Z ��=3� for =%�2: and K	LU[ L!E . In this case, we
can define the function + i+5(? k�l 5DY by +P�47 Z ��� 7 �Z forK/L][�LjE . It is clear that + has the desired properties.



Conversely, suppose that such a bijection exists. For ev-
ery 7��@56? define the tuple � given by:

���.��=3�P�
�
� if 7 ��=3� � +P�477� ��=3�= if 7 ��=3�P� +P�477� ��=3�

for =	�\: . The relation 5 is given by

5 ��$-��� . 7�� 56?>' @
It is immediate that 5(? �?5"% and 5DY#�?5"� .
Lemma 5.2 Let 2T� �43 �B:_�653� and 2 � �)�43 � �B:_�65 � � be two
tables such that there is a bijection +"ip5 k�l 5 � such that
7 ��=3��L�+P�477� ��=3� for every =	��: . Then, for each conjunction
of the form QT� =DJ � � U�U�U>�5=DJ H we have &NM(� Q���LK&NM��V� Q�� .
Proof. Without loss of generality we can assume that 5 �$�7B?W��@�@�@��67VC�' and 5 �P�;$�7 � ? ��@�@�@A�67 �C ' , where +P�47VJZ�M� 7 �J forK/LjN�LjE . Thus, if 5Hh_�!$�7 Z � ��@�@�@A�67 Z b ' , where T��?&NM6� Q�� ,
we have 7VJ ,6��=3�T� 
 for every =8� $>=DJ � ��@�@�@A�B=DJ H�' . This,
in turn, implies 7 �J , ��=3� � 
 for every =j� $>=DJ � ��@�@�@��B=DJ H�' ,
which yields T5LK&qM��V� Q�� .

The inverse of Lemma 5.2 is given next.

Lemma 5.3 Let &��6&�� be two measures on FHG6I ��:�� , where:8�!$>=6?W��@�@�@��B=DC�' such that &���=_">��LK&�� ��=_"&� for every =_"M�
	 G�
��AG ��
B��:�� such that �?k� $ and &���=��>�S�P&�� ��=��>� . Then,
there exist two tables 2"� �43 �B:_�653� and 2 ��� �43
���B:_�65 � �
such that:

1. & �1&NM and &����?&NM�� ;
2. there exists a bijection +"ip5 k�l 5 � such that 7 ��=3�ML

+P�477� ��=3� for every =	��: .

Proof. Note that it suffices to prove that there exists an
injection + with the property mentioned above, for if, such
an injection exists and . 5A. �?&���=��>�P�?&�� ��=��&���L. 5 �\. , then +
is a bijection.

We shall prove that, under the conditions of the lemma,
for each Q � 	 G�
��AG ��
B��:�� there is an injection +6h5i 5Hh k�l
5 �h such that:

1. 7 ��=3��L�+3h6�477� ��=3� for every 7��@5Hh and =	�\: ;

2. If QA?>��Q�Y/� 	 G�
��AG ��
���:�� have the same number of con-
juncts and QA?>��Q�YSLjQ , then +3h � �477� � +3h/D �477� for every
7�� 5Hh �+E 5Hh/D .

The argument is by induction on the number F of at-
tributes missing as conjuncts in Q .

For the basis step, F � � , we have Q � =(?P�1U�U�UH� =DC ,
+3h is defined by +6h6�477���?7 for every 7 �@5Hh , and the second
part of the statement is vacuously true.

Suppose that the statement holds for conjuncts that miss
F attributes and let Q �)=3J � �1U�U�U&� =DJ b be a conjunct that

misses F?* K attributes, $>=	� � ��@�@�@��B=���#�
 � ' . Define the con-
junctions

R>? �1Q �T=�� � ��@�@�@��BR/��� ? �1Q �T=���#�
 �
Each of these conjunctions misses F attributes and we have
the injections +�?>��@�@�@��	+p��� ? such that +�JB�477� coincides with
+ Z �477� on all tuples 7 in 5 �\� E 5
� f , and 7 ��=3�SL +�JB�477� ��=3� for
every 7�� 5
�\� for KMLONPLKF * K . Observe that

5Hh_�?5Hh�� �� i � � � � � � �� i #�
 � E 5
� �CE U�U�U E 5
�\#�
 � @
Define the injection +6h as follows. For 7�� 5 �\� let +3h(�477� �
+ �\� �477� . Note that +3h is well-defined because of the condi-
tions imposed on the injections +A�\� . The number of tuples
in 5 �h that are not in the images of the mappings +N�\� is :

. 5 �h . k ��� ?�
J e ?

+�JB�45
�\�7�
� & � � Q�� k ��� ?�

J e ?
&�J7��R�JZ�

0 &�� Q�� k ��� ?�
J e ?

&�J7��R�JZ�
� . 5Hh�� �� i � � � � � � �� i #�
 � . @

Thus, the values of the injection +6h on tuples in
5Hh�� �� i � � � � � � �� i #�
 � can be assigned arbitrarily in the set 5 �h k
8 ��� ?J e ? +�JB�45
�\�7� . Since the tuples in 5 h�� �� i � � � � � � �� i #�
 � are the
least among the tuples in 5 h , we also have 7 ��=3� L +6h(�477� ��=3� ,
which means that the injection +6h is definable.

Theorem 5.4 Let &��6&	� be two measures on FHG6I ��:�� . There
exists a ternary table 2��*�43 �B:_�653� such that & �%& M)* and
&��_� & M)( if and only if &���=_"&� L &�� ��=_"&� for every =_"j�
	 G�
��AG ��
���:�� such that �@k�U$ and &���=��>�P�1&��Z��=��>� .
Proof. This statement follows immediately from Lem-
mas 5.1, 5.2 and 5.3.

6 Conclusions and Open Problems

We studied properties of measures defined on free
Boolean algebras with finite sets of generators. Such mea-
sures arise naturally in the evaluation of sizes of queries ap-
plied to binary tables in relational databases, a type of ta-
bles that has received a large amount of attention in a data
mining, particularly related to the identification of frequent
set of items and to association rules (see [1, 3]). The mea-
sures associated with tables seem to be particularly useful
for ternary tables that incorporate the idea of missing in-
formation and open a direction of investigation on mining
information from incompletely specified databases.
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