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Abstract

We propose an algorithm that computes an approxima-
tion of the set of frequent item sets by using the bit se-
quence representation of the associations between items
and transactions. The algorithm is obtained by modi-
fying a hierarchical agglomerative clustering algorithm
and takes advantage of the speed that bit operations af-
ford. The algorithm offers a very significant speed ad-
vantage over standard implementations of the Apriori
technique and, under certain conditions, recovers the
preponderant part of the frequent item sets.

Introduction
The identification of frequent item sets and of association
rules is a major research direction in data mining that has
been examined in a large number of publications.

In (Afrati, Gionis, & Mannila 2004) it is shown that most
variants of concise approximations of collections of frequent
item sets are computationally hard. The same reference pro-
vides approximative feasible solutions. In the same direc-
tion, we present an approximative algorithm for finding fre-
quent item sets that makes use of hierarchical clusterings
of items through their representations as bit sequences. We
show that the identification of similar attributes allows a
rapid identification of sets of attributes that have high lev-
els of support.

The representation of attributes using bit sequences was
introduced in (Yen & Chen 2001). We use this representa-
tion technique to develop a fast retrieval algorithm of a high
proportion of frequent item sets, particularly in data with
low density or high density. Since representing a data set as
bit sequences is very space-efficient large amounts of data
can be accommodated.

The other major idea of the paper is to use a modification
of an agglomerative clustering technique to gradually gener-
ate frequent item sets. In some cases, this approach can save
computational effort by grouping and dropping similar item
sets. Clustering frequent item sets aiming at compressing
the size of the results of the mining process was addressed
in (Xin et al. 2005). Our purpose is different in that it is
directed towards providing, under certain conditions, good
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approximations of frequent item sets that are expressed con-
cisely as relatively small sets of clusters of items and can
be obtained at significantly lower computational cost. In a
different direction, mining approximate frequent item sets in
the presence of noise has been explored in (Liu et al. 2006).

All sets are assumed to be finite unless we specify oth-
erwise. A transaction data sequence is a finite sequence
T = (t1, . . . , tn) of subsets of a set I = {i1, . . . , im}. The
elements of I are referred to as items, and the members of
T are referred to as transactions. A set of items K occurs
in a transaction tp if K ⊆ tp. The support sequence of an
item set K ∈ P(I) is the subsequence sseqT (K) of the se-
quence of transactions that consists of those transactions ti
such that K ⊆ ti. The support count of the set of items
K in the transaction data set T is the length of the support
sequence

suppcountT (K) = |sseqT (K)|.
The support of K in T is the number:

suppT (K) =
suppcountT (K)

|T | .

If suppT (K) ≥ σ we say that K is a σ-frequent item set in
T .

After a discussion of the metric space of bit sequences we
examine the properties of the clusters of item sets. In the
final part of the paper we describe the actual algorithm and
present experimental results.

The metric space of bit sequences
To use bit sequences we start from the observation that trans-
actions data set have a natural tabular representation. Con-
sider a 0/1-table τ whose columns correspond to the items
i1, . . . , im; the rows of τ correspond to the transactions of
T . If τpq is the entry of τ located in row p and column q,
then

τpq =
{

1 if iq ∈ tp,

0 otherwise.

The column of τ that corresponds to an item i is a bit se-
quence bi. Clearly, we have bi ∈ {0, 1}n. The notion
of bit-sequence has been frequently used in the literature
for discovery of association rules (see (Yen & Chen 2001;



Shenoy et al. 2000; Burdick, Calimlim, & Gehrke 2001)).
Bit sequences are used in our clustering approach.

The notion of bit sequence of an item can be extended to
bit sequences for item sets. Namely, if L = {i`1 , . . . , i`r}
is an item set, then the characteristic bit sequence of the set
sseqT (L) is be bit sequence bL given by:

bL = bi`1 ∧ · · · ∧ bi`r . (1)

We have bL
p = 1 if and only if L ⊆ tp.

For a bit sequence b ∈ {0, 1}n denote by ‖ b ‖ the num-

ber
√

b · btr =
√∑n

p=1 bp. The row that is obtained by

transposing the column b is denoted by btr. The norm of
b, ‖ b ‖, equals the Euclidean norm of b considered as a
sequence in Rn because b2 = b for every b ∈ {0, 1}.

The operations ∧,∨ and ′ are defined on the set {0, 1} by:

a ∧ b = min{a, b}, a ∨ b = max{a, b}, a′ = 1− a,

for a, b ∈ {0, 1}. These operations are extended com-
ponentwise to bit sequences and the set of bit sequences
Bn = {0, 1}n equipped with the operations ∨,∧ and ′ is
a Boolean algebra having 0tr = (0, . . . , 0) as its least ele-
ment, and 1tr = (1, . . . , 1) as its greatest element.

It is also useful to consider the symmetric difference de-
fined on {0, 1} by:

a⊕ b =
{

1 if a 6= b,

0 otherwise,

for a, b ∈ {0, 1}. This operation can be extended compo-
nentwise to bit sequences. As a result we have a Boolean
ring structure (Bn,⊕,∧,0).

For sequences in {0, 1}n the usual metric in Rn defined
by d(b,b′) =‖ b − b′ ‖ can also be expressed using the
operation “⊕” by:

d(b,b′) =‖ b⊕ b′ ‖ .

The following equalities are immediate consequences of the
definition of bL:

|sseqT (L)| = suppcountT (L) =‖ bL ‖2
bL ∧ bK = bKL,

bL ⊕ bK = bK⊕L.

Here KL denotes the union of the item sets K and L.
The Jacquard-Tanimoto metric δ defined on P(S), the set

of subsets of a set S, by δ(U, V ) = |U⊕V |
|U∪V | for U, V ∈ P(S)

can be transferred to the set of bit sequences by defining

δ(bK ,bL) =
|bK ⊕ bL|
|bK ∨ bL| .

It is easy to see that

δ(bK ,bL) = 1− ‖ bK ∧ bL ‖2
‖ bK ∨ bL ‖2 .

Clustering Item Sets
The core of our algorithm is a modified version of hierarchi-
cal clustering that seeks to identify item sets that are close
in the sense of the Jacquard-Tanimoto metric. The diameter
of an item set K is defined as the largest distance between
two members of the set. We give a lower bound on the prob-
ability that a transaction contains an item set K; this lower
bound depends on the diameter of the item set and on the
level of support of the items of K.

Theorem 1 Let T be a transaction data set over the set
of attributes I and let K be an attribute cluster of di-
ameter diamδ(K). The probability that a transaction
t contains the item set K is at least (|K| − 1)(1 −
diamδ(K))mini∈K supp(i)− (|K| − 2).

Proof. Let K = i1 · · · ir be an item set. The probability
that K is contained by a transaction t is P ({t[i1] = · · · =
t[ir] = 1}). Let Qii′ be the event that occurs when t[i] =
t[i′] = 1 for two attributes i, i′. Since {t[i1] = · · · = t[ir] =
1}) = Qi1i2∩· · ·∩Qir−1ir

it follows, by Boole’s inequality,
that

P ({t[i1] = · · · = t[ir] = 1}) ≥
r−1∑

j=1

P (Qijij+1)− (r − 2)

Suppose that the data set T contains N transactions. To eval-
uate P (Qii′) = P (t[i] = t[i′] = 1) observe that

|{t | t[i] = t[i′] = 1}| = |sseqT (i) ∩ sseqT (i′)|,
so

P ({t | t[i] = t[i′] = 1}) =
|sseqT (i) ∩ sseqT (i′)|

N
.

Since

δ(i, i′) =
|sseqT (i)⊕ sseqT (i′)|
|sseqT (i) ∪ sseqT (i′)|

= 1− |sseqT (i) ∩ sseqT (i′)|
|sseqT (i) ∪ sseqT (i′)| ,

we have

|sseqT (i) ∩ sseqT (i′)|
= (1− δ(i, i′))|sseqT (i) ∪ sseqT (i′)|,

so

P ({t | t[i] = t[i′] = 1})
=

(1− δ(i, i′))|sseqT (i) ∪ sseqT (i′)|
N

≥ (1− δ(i, i′))min{supp(i), supp(i′)}.
Thus, we have:

P (t[i1] = · · · = t[ir] = 1)

≥
r−1∑

j=1

P (Qijij+1)− (r − 2)

≥ (r − 1)(1− diamδ(K))min
i∈K

supp(i)− (r − 2)



which is the needed inequality.
Theorem 1 shows that the tighter the cluster (that is, the

smaller its diameter), the more likely it is that two tuples
will have equal components for all attributes of the cluster.
Therefore, if the attributes K = i1 · · · ir form a cluster there
is a substantial probability that the support of the item set K
will be large.

The Approximative Frequent Item Set
Algorithm

Let T be a transaction data set having the attributes i1 · · · im
and containing n tuples. The algorithm proposed in this pa-
per is a modification of the standard agglomerative cluster-
ing algorithm applied to the collection of sets of items. The
distance between sets of items are defined by the transaction
data set, as indicated earlier.

The standard approach in agglomerative clustering is to
start from a distance defined on the finite set C of objects
to be clustered. Then, the algorithm proceeds to construct
a sequence of partitions of C: π1, π2, . . ., such that π1 =
{{c}|c ∈ C} and each partitions πi+1 is obtained from the
previous partition πi by fusing two of its blocks chosen using
a criterion specific to the variant of algorithm. For example,
in the single link variant one defines for every two blocks
B, B′ ∈ πi the number:

δ(B, B′) = min{d(x, y)|x ∈ B, y ∈ B′}.
One of the pairs (B, B′) that has the minimal value for
δ(B, B′) is selected to be fused.

Let T be a transaction data set on a set of items I and δ
be a metric on P(I), the set of subsets of I . Define MT,σ as
the family of pairs of subsets of I given by

MT,σ = {(X, Y )|X,Y ∈ P(I), suppT (X) ≥ σ,

suppT (Y ) ≥ σ and suppT (XY ) < σ}.
A pair of item sets (U, V ) is said to be (δ, σ)-maximal in a
collection of clusters C on I if the following conditions are
satisfied:

1. (U, V ) ∈ MT,σ , and

2. δ(U, V ) = min{δ(X, Y ) | (X, Y ) ∈ MT,σ}.

The clustering process works with two collections of item
sets: the collection of current item sets denoted by CIS, and
the final collection of clusters denoted by FIS. An item set K
is represented by its characteristic sequence bK and all oper-
ations on item sets are actually performed on bit sequences.

At each step the algorithm seeks to identify a pair of item
sets in CIS that are located at minimal distance such that
the support of each of the item sets is at least equal to a
minimum support σ.

If CIS = {L1, . . . , Ln}, then, as in any agglomerative
clustering algorithm we examine a new potential cluster L =
Li ∪Lj starting from the two closest clusters Li and Lj ; the
fusion of Li and Lj takes place only if the support of the
cluster L is above the threshold σ, that is, only if the pair
(Li, Lj) is not (δ, σ)-maximal. In this case, L replaces Li

and Lj in the current collection of clusters.

Input: a transaction data set T and
a minimum support σ;

Output: an approximation of the collection of
σ-frequent item sets;

Method: initialize FIS = ∅;
initialize CIS to contain

all one-attribute clusters {i};
such that suppT ({i}) ≥ σ;

repeat
find in CIS the closest two clusters Li, Lj ;
compute the bit sequence of the candidate

cluster L = Li ∪ Lj as
bL = bLi ∧ bLj ;

if suppT (L) ≥ σ
then

merge Li and Lj into L;
add L to CIS;

else /* this means that (Li, Lj)
is (δ, σ)-maximal */
begin

cross-expand Li and Lj ;
add Li and Lj to FIS;

end;
remove Li, Lj from CIS;

until CIS contains at most one cluster;
if one cluster L remains in CIS

then add L to FIS;
output

⋃{P1(K)|K ∈ FIS}.

Figure 1: Approximative Frequent Item Set Algorithm
AFISA

If (Li, Lj) is a (δ, σ)-maximal pair, then we apply a
special post-processing technique to the two clusters that
we refer to as cross-expansion. This entails expanding Li

by adding to it each maximal subset Hj of Lj such that
supp(Li ∪ Hj) ≥ σ and expanding Lj in a similar man-
ner using maximal subsets of Li.

The approximative frequent item set algorithm (AFISA)
is given in Figure 1. P1(K) denotes the set of all non-empty
subsets of the set K.

Each cluster produced by the above algorithm is a σ-
frequent item set, and each of its subsets is also σ-frequent.

It is interesting to examine the probability that bit se-
quences bK and bL of two item sets K, L that have the
combined support suppT (KL) are situated at a distance that
exceeds a threshold d. Suppose that the data set T consists
of n tuples, T = {t1, . . . , tn}. To simplify the argument we
assume that the data set is random. Our evaluation process
is a variant of the one undertaken in (Agrawal et al. 1996).
Further, suppose that each transaction contains an average
of c items; thus, the probability that a transaction contains
an item i is p = c

m , where m is the number of items.

For each transaction th consider the random variable Xh

defined by Xh = 1 if exactly one of the sets K and L is
included in th and 0 otherwise for 1 ≤ h ≤ n. Under the



assumptions made above we have:

Xh :
(

1 0
φk,l(p) 1− φk,l(p)

)
,

where k = |K| and l = |L| and φk,l(p) = pk(1 − pl) +
pl(1− pk). Assuming the independence of the random vari-
ables X1, . . . , Xn the random variable X = X1 + · · ·+Xn,
which gives the number of transactions that contain exactly
one of the sets K and L, has a binomial distribution with the
parameters n and φk,l(p). Thus, the expected value of X is
nφk,l(p) and that the value of φk,l(p) is close to 0 when p is
close to 0 or to 1. Note that

δ(bK ,bL) =
X

X + supp(KL)
,

so, we have δ(bK ,bL) > d if X >
suppT (KL)

1
d−1

. By Cher-
noff’s inequality (see (Alon & Spencer 2000)) we have:

P (X > nφk,l(p) + a) < e−
2a2

n .

If we choose a = suppT (KL)
1
d−1

− nφk,l(p) we obtain:

P

(
X >

suppT (KL)
1
d − 1

)
< e

− 2
n (

suppT (KL)
1
d
−1

−nφk,l(p))2

Thus, the probability that δ(bK ,bL) > d (which is the
probability that AFISA will fail to join the sets K and L) is
small for values of p that are close to 0 or close to 1 because
φk,l(p) is small in this case. This suggests that our algorithm
should work quite well for low densities or for high densities
and our experiments show that this is effectively the case.

Experimental Results
We used for experiments a 32-bit, Pentium 4 3.0 GHz
processor with 2GB of physical memory; only 1.5GB of that
memory was assigned to AFISA or ARTool when testing.

Performance gains on bit sequence operations are re-
flected in our test results as much faster execution times (up
to 146,000 times faster in some cases).

On a synthetic data set containing 491,403 transactions
having 100 items and an average of 10 items/transaction we
applied the Apriori algorithm and the FPGrowth (using AR-
Tool, the implementation provided by (Cristofor 2002)), and
our own algorithm (AFISA). The number of item sets re-
turned in each case is shown below:

support number of FIS
AFISA Apriori FPGrowth

0.02 118 1000 1000
0.05 77 188 188

0.1 40 47 47
0.2 10 10 10
0.3 4 4 4
0.4 0 0 0
0.5 0 0 0

The corresponding running time is shown next:

support Running Time (ms)
AFISA Apriori FPGrowth

0.02 2141 421406 149375
0.05 2110 244578 139359

0.1 2063 218625 132969
0.2 2047 140406 126797
0.3 2031 141282 127640
0.4 2032 71047 64597
0.5 2032 69594 66515

A series of experiments were performed on data sets con-
taining 1000 transactions and 20 items, by varying the den-
sity of the items, that is, the number of items per transac-
tion. Below we give the results recorded for several such
densities.

As anticipated by the theoretical evaluation the superior-
ity of AFISA is overwhelming at low or high densities. For
example, for 18.2 items/transaction we recorded the follow-
ing results:

supp. number of FIS Running Time (ms)
AFISA Apriori AFISA Apriori

0.02 1048575 1048575 15 2195000
0.05 1048575 1048575 32 2473641

0.1 1048575 1048575 15 2342484
0.2 1048575 1048575 16 2309437
0.3 1048575 1048575 31 2526141
0.4 1048575 1048575 32 2522750
0.5 393216 1001989 15 2216375

For a density of 1.8 items per transaction the results are sim-
ilar: at reasonable high levels of support all frequent item
sets are recovered, and the time is still much lower than the
Apriori time, even though the advantage of AFISA is less
dramatic.

supp. number of FIS Running Time (ms)
AFISA Apriori AFISA Apriori

0.02 22 30 15 125
0.05 16 16 15 94

0.1 6 6 15 94
0.2 1 1 15 47
0.3 0 0 15 47
0.4 0 0 15 47
0.5 0 0 15 47

In the mid range of densities (at 10.2 items/transaction) the
time of AFISA is still superior; however, the recovery of
frequent item sets is a lot less impressive until a rather high
level of support is reached. The results of this experiment
are enclosed below.

supp. number of FIS Running Time (ms)
AFISA Apriori AFISA Apriori

0.02 28677 149529 15 102593
0.05 2580 38460 15 8328

0.1 784 9080 15 2500
0.2 206 1315 16 1203
0.3 89 371 16 922
0.4 49 112 15 734
0.5 23 45 16 578

We also conducted experiments on several UCI data
sets (Blake & Merz 1998); we include typical results ob-
tained on the ZOO data set.



Figure 2: Frequent item sets and execution time for a syn-
thetic data set having 1K rows and 20 items

supp. number of FIS Running Time (ms)
AFISA Apriori AFISA Apriori

0.04 1016 1741 10 203
0.05 768 1472 10 187

0.1 290 855 10 125
0.2 267 329 10 109
0.3 31 126 10 78
0.4 16 27 9 47
0.5 13 13 9 31

We used the synthetic data generator that is available from
IBM Almaden Research Center through the “IBM Quest
Data Mining Project”. The tests were performed for several
values of the number of items per transaction (i/t). These
results are shown in Figure 2.

It is clear that for every value of the number of items
per transaction (i/t), execution time of AFISA is superior.
For values of i/t close to the extremes (below 10% or above
90%) AFISA either produced the same amount of frequent
item sets as Apriori or the difference was negligible. This
is especially useful for analyzing sparse data which can be
produced, for example, by customer transactions in super-
markets.

Conclusions
Clustering bit sequences representing item sets is an efficient
technique for the approximate detection of frequent item sets

in data sets that have high or low densities. The technique
recovers item set in the mid-range of densities at a lower
rate; however, the speed of the algorithm makes the algo-
rithm useful, when a complete recovery of the frequent item
set is not necessary.

We intend to expand our experimental studies to data sets
that cannot fit into memory. We believe that AFISA will still
be much faster than Apriori because using bit sequences is
both time and space efficient; also, operations on bit sets are
done very fast by the current modern processors.
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