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Abstract. The purpose of this paper is to examine the usability of
Bonferroni-type combinatorial inequalities to estimation of support of
itemsets as well as general Boolean expressions. Families of inequalities
for various types of Boolean expressions are presented and evaluated
experimentally.
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1 Introduction

In [MT96] a question has been raised of estimating supports of general
Boolean expressions based on supports of frequent itemsets discovered
by a datamining algorithm. The accuracy of this estimation (using the
inclusion-exclusion principle) is influenced by the supports of the frequent
items set; when, for various reasons, some of these supports are missing
this accuracy may be compromised. The problem has been addressed
in [LN90,KLS96] but the results presented there can be applied only
for the case when we know supports of all itemsets up to a given size.
This is usually not the case with datamining algorithms which compute
supports of only some of the itemsets of a given size.

A similar problem has been addressed in the area of statistical data
protection, where it is important to assure that inferences about indi-
vidual cases cannot be made from marginal totals (see [Dob01,BG99] for
an overview). Those methods concentrate on obtaining the most accu-
rate bounds possible (in order to rule out information disclosure), com-
putational efficiency being a secondary concern. Algorithms usually in-
volve repeated iterations over full contingency tables [BG99], branch and
bound search [Dob01] or numerous applications of linear programming.
The approach we take in this paper is based on a family of combinatorial
inequalities called Bonferroni inequalities [GS96]. In their original form
the inequalities require that we know supports of all itemsets up to a
given size. We address the problem by using the inequalities recursively
to estimate supports of missing itemsets. The advantage of Bonferroni
inequalities is that we can choose an arbitrary limit on the size of the
marginals involved, thus allowing for trading off accuracy for speed. Our
experiments revealed that it is possible to obtain good bounds even if
only marginals of small size are used.



A table is a triple 7 = (T, H, p), where T is the name of the table,
H = {A),...,A,} is the heading of the table and p = {t1,... ,tm}
is a finite set of functions of the form ¢; : H — J, 5 Dom(A) such
that ¢;(A) € Dom(A) for every a € A. Following the relational database
terminology we shall refer to these functions as H-tuples, or simply as
tuples. If Dom(A4;) = {0,1} for 1 <4 < n, then 7 is a binary table.

Let 7 = (T, A1--- Ay, p) be a binary table.

An gtemset of T is an expression of the form A;, --- A;, . A minterm of 7
is an expression of the form Afll ---A?,’:, where b; € {0,1} for 1 <i <k
and

oA h=1
A ifb=0.

The support of a minterm M = A;’ll - Alv’: of a table 7 = (T, H, p)

v

ol '

supp(M)

Note that the support of minterms is actually a probability measure on
the free Boolean algebra Q(H) generated by the attributes of the heading
H. We refer to such polynomials as queries. The atoms of this algebra
are the minterms and every boolean polynomial over the set H can be
uniquely written as a disjunction of minterms. The least and the largest
element of this Boolean algebra are denoted by @) and 2, respectively.
Consider a table whose heading is H = ABC and assume that the dis-
tribution of the values of the tuples in this table is given by:

A|B|C |Frequency
0[/0]|0|0
0|0(1]0
0/1|0(0.10
0(1]1(0.25
1(0]010.10
110({1]0.25
1(1]010.05
111({1]0.25

A run of the Apriori algorithm ([AMS196]) on a dataset conforming
to that distribution, with the minimum support of 0.35 will yield the
following itemsets:

Itemset |Support

A ]0.65
B ]0.65
c 10.75
AC ]0.50

BC |0.50




To estimate the unknown support of the itemset ABC we can use Bon-
ferroni inequalities of the form:

supp(ABC) > 1 — supp(A) — supp(B) — supp(C), (1)

supp(ABC) < 1 —supp(A) — supp(B) — supp(C) (2)
+supp(AB) + supp(AC) + supp(BC).

Note that since the support of AB is below the minimum support its

value is not returned by the Apriori algorithm and this creates a problem

for this estimation. All the itemset supports, except for supp(AB), in

the previous expression can be determined from known itemset supports
using inclusion-exclusion principle. For example, we have

supp(AC) = 1 — supp(A) — supp(C) + supp(AC) = 0.1.

Since all needed probabilities are known exactly, the lower bound (1) is
easy to compute giving

supp(ABC) >1—0.35 —0.35 — 0.25 = 0.05.

To compute the upper bound we proceed as follows.
Since supp(AB) is not known, we apply Bonferroni inequalities recur-
sively to get an upper bound for it. We have

supp(AB) = 1 — supp(A) — supp(B) + supp(AB),

and, since AB is not frequent, we know that its support is less than the
0.35 minimum support, giving

supp(AB) < 1 — supp(A) — supp(B) + minsupp = 0.05.
Substituting into (3) we get

supp(ABC) < 1 — supp(A) — supp(B) — supp(C)
+0.05 + supp(AC) + supp(BC)
=1-035-035-0.25+0.05+0.140.1=0.3.

Note that both bounds are not trivial since the lower bound is greater
than 0, and the upper bound is less than the minimum support.

In the next section we present a systematic method for obtaining bounds
for support of an itemset using supports of its subsets.

To obtain certain Bonferroni-type inequalities we use a technique known
as the method of indicators [GS96]. For an event @ in the probability
space define the random variable Ig called the indicator of Q as

{1 if @ occurs
Ig =

0 otherwise

Then, for the expected value of Ip we have E(Ig) = P(Q). For our
specific probability space we have E(Ig) = supp(Q) for every query Q.
Let Q1,...,Qm be m queries. Define the random variable Ji as

Ty =Y {Ig, ---Ig; |1<i1 <--- <y <m}.



Clearly, J, takes as a value the number of k-conjunctions Q;; A --- A
Q;, that are satisfied. If v, is the number of queries that are satisfied

among the m queries Q1,...,Qm, then we clearly have J, = (V,:’),

which implies

E (”g) =E(Ji) =Y {supp(Qi, A+ AQi,)[1<ir <o < i <mb.

See [GS96] for further details.
Using the indicator method we proved in [JSR02] the following general
result:

Theorem 1. Let Q =11 ® I @ ... D I, be a boolean query, where &
denotes the exclusive or operation, and I, I, ... I, are itemsets. The
following inequalities hold for any natural number t:

2t

2:(—2)"“_1 Z supp(li; A ... A1)

k=1 11 <... <ip
<supp(l1i ®...®In) <
241
Z(—Z)k_l Z supp(Li; A ... A I).
k=1 11 <...<ip

Note that since every query can be represented as an exclusive or of
positive conjunctions, the above theorem allows us to obtain bounds
for any boolean query expressed in terms of supports of positive con-
junctions. However, these bounds are not always tight, and in fact, we
showed in [JSRO2] that for certain queries it is not possible to obtain
tight bounds at all.

2 A Recursive Procedure for Computing
Bonferroni Bounds from Frequent Itemsets

Since the Apriori algorithm only discovers supports of itemsets (as op-
posed to other types of queries), we need to express all inequalities in
terms of supports of itemsets.

Theorem 2. Let Q1,...,Qn be m queries in Q(H). The following in-
equalities hold for any t € N:

2t41
(-0 > supp(Qi...QrQi .. Qi)
k=0 r<ip<...<ip<m

<supp(Q1...@rQrt1...Qm) <
S=nF > supp(Qi... QrQiy .- Qi)

k=0 r<i1<...<ip<m



Proof. By Rényi’s Theorem [Rénb58] it suffices to prove the claim for Q; €
{£2,0} for all 1 < 7 < m, where £2 denotes the space of elementary events.
When @Q; = @ for some 1 < ¢ < r, then both sides of the inequalities
reduce to 0 and the result is immediate. For the case @Q; = 2 for all 1 <
i < r we have supp(Q1...Q+Qrt1...Qm) = supp(Qr+1...Qm), and for
all k and for all r < 43 < ... < ip < m, supp(Q1...QrQi; ... Qy,) =
supp(Qs; - - - Qi )- The result now follows from Bonferroni inequalities.
O

Corollary 1. Let AjAs... AvAri1Arta... Am be a minterm. The fol-
lowing inequalities hold for any natural number t:

2t4+1

> (-n* > supp(Ai ... Az Ay ... Ay
k=0 r<i1<...<ip<m
< S'llpp(A1 A ATAT+1 . Am) <
2t
> (-1)F > supp(Ai... A, Ay ... Agy)
k=0 r<i1<...<ip<m
Proof. This statement follows immediately from Theorem 2. O

Below we present results which form the basis of our algorithm for ap-
proximative computations of supports of itemsets. The binomial symbol

(Z) will allow negative values of n, in which case its value is defined by

the usual formula

@ _ n(n—1)--l-€!(n—k+1)_

Lemma 1. For m,k,h,s € N we have:

s () (=070,

Proof. We begin by showing that for every a,b,c,d € N we have

. ok fa—k ¢\ _, qyatb fc—b—

S (N () e (2T ©
k=0

The proof is by induction on c¢. The basis step, ¢ = 0, follows after

elementary algebraic transformations. Suppose that the equality holds
for numbers less than ¢. We have:

S0 (3962
S £ ()65

_ o qyatb fc—b—2 _qyatb [ c—b—2
= (1) (a—b—d)+( b (a—b—d—l
by the inductive hypothesis
y y

— (2



By using the complimentary combinations and Lemma 1 we can write:

S () Q=R () 6) -

(3 (25 0) () = o ()
‘ (),
)

Note that if h = m, the previous lemma implies

8
s—k (m—FKk—1\ fm\ _
zeo (W) ()=
k=0
Our method of obtaining bounds is based on the following theorem
Theorem 3. The following inequalities hold for any natural number t:

2
gk fm—k—1
supp(A14s... Ay) < ;(—1) ( otk )sk (4)
pass m—k—1
_1\kH1 — K=
supp(A1ds ... Ay) > kz_o( 1) (2t+ 1_ k) Sk (5)
where
Sk = Z supp(Ai; --. Aip),
1<i1<...<ip<m
and So = 1.
Proof. We use the method of indicators previously discussed.
Let v, be a random variable equal to the number of events Ai,... , An

that actually occur. By Lemma 1 we have:

Lo () ()= )

if v, =m

1
_Jo fv, <mandv, >m-—s
(um—m+s) if vy, <m—s.
s

By taking expectations of the above equation we get

S0 (M E ) s = suppin = m

k=0
+ Z { (Vm(w) —m+ s) supp(w) : w € 2,vp(w) < m— s} ,

s
where 2 denotes the space of elementary events. Note that when v, <

—m+ s

m — s the sign of (Vm ) is identical to that of (—1)°. Replacing

s by 2t or 2t + 1 yields the result. O



3 The Estimation Algorithm

The main problem in using Bonferroni-type inequalities on collections of
frequent itemsets is that some of the probabilities in the Si sums are not
known. We solved this problem by estimating the missing probabilities
using Theorem 3. Given below is an algorithm that computes bounds
on support of an itemset based on a collection of itemsets with known
supports.

Algorithm 1.

Input: Itemset I, natural number r, collection F of itemsets, and their
supports

Output: Bounds L(I),U(I) on the support of I

The algorithm is implemented by functions L and U given below

Function L(I,F,r).

1. IfIeF

2. return supp(I)

3. else b1

m—k —

4. TEIUTN MaX_1<241<r Zzt:bl St ((—1)"“""1 (2t r1o k‘) kI, .7-')
Function U(I, F,r).

1. IfIeF

2. return supp(I)

. else

3
4 U mingcaicr Yy SV <(_1)k (mQZE ; 1) ’I’k’]:>
5 U < min{U, minsupp, min;c1 U(J)}

6 return U

The functions ST and SY are defined below

Function ST (real coefficient c, itemset I = A1As ... Apm, F, integer k)
1. If k =0 return ¢
2. Ifc>0
3. return ¢y,
4. else
5. return ¢y

L(Ai Ay ... Asy  Fr ki —1)

11<...<ip<m

i1<...<ip<m U(Ai  Aiy - .. Ay, Fo bk — 1)

Function SY (real coefficient ¢, itemset I = A1As ... Am, F, integer k)
1. If k =0 return ¢
2. Ifc>0
3. return c -y
4. else
5. return ¢y,

U(AilAi2...Aik,f,k— 1)

11<...<ip<m

<<y <m L(AjAgy .. Ay, F k= 1)

Of course upper and lower bounds for itemsets are cached during com-
putations to avoid repeated evaluations for the same itemset. The pa-
rameter r controls the maximum size of marginals (itemsets) used in the
estimation.



The use of minsupp in step 5 of function U requires some comment.
Including the value of minsupp in the minimum is possible only if we
can determine that the estimated itemset I is not frequent. This can be
done for example if F contains all frequent itemsets, or when F contains
all frequent itemsets up to a given size k, and |I| < k. If we don’t know
whether I is frequent or not, we have to drop minsupp from the minimum.

4 Experimental results

In this section we present experimental evaluation of the bounds. Our
algorithm works best on dense datasets, which are more difficult to mine
for frequent itemsets than sparse ones. However, the algorithm was tested
on both dense and sparse data (artificial market basket data was used).
The rest of the paper is focused on experiments performed on dense
databases.

As dense databases we used the mushroom database from the UCI Ma-
chine Learning Archive [BM98], and a census data of elderly people from
the University of Massachusetts at Boston Gerontology Center available
at http://www.cs.umb.edu/ ~sj /datasets /census.arff.gz. Since
both datasets involve multivalued attributes, we replaced each attribute
(including binary ones) with a number of Boolean attributes, one for
each possible value of the original attribute.

Before we present a detailed experimental study of the quality of bounds,
we present the results of applying the bounds to a practical task. Suppose
that we did not have enough time or computational resources to run the
Apriori (or similar) algorithm completely, and we decided to stop the
algorithm after finding frequent itemsets of size less than or equal to 2.
We then use lower bounds to find frequent itemsets of size greater than 2.
The experimental results for mushroom and census databases are shown
in Figures 1 and 2 respectively.

The figures show, for various values of minimum support, the true num-
ber of frequent itemsets of sizes 3 and 4, the number of itemsets that we
discovered to be frequent by using our bounds, and the ratio of the two
numbers.

For large values of minimum support we are more likely to classify an
itemset correctly than for smaller ones. The data shows that for item-
sets with largest support the chances of actually being determined to be
frequent without consulting the data can be as high as 80%.

We now present an experimental analysis of the bounds obtained. In
what follows, by trivial bounds for the support of an itemset I we mean 0
for the lower bound, and for the upper bound: the minimum of the upper
bounds of the supports of all proper subsets of I and of the minimum
support. As in the example above here too we mine frequent itemsets
with at most two items, and compute bounds for larger ones.

Table 1 (a) contains the results for the census dataset with minimum
support of 1.8%.

The parameter r in Algorithm 1 was chosen for each itemset I to be
[I] — 1 for maximum accuracy. This causes an increase in estimation
time for larger itemsets. Later in the section we present results showing



Ttemset |Min. support| 18% | 25% | 30% | 37% | 43% | 49% | 55% | 61% | 73%
size
Frequent 1761 893 498 308 152 70 45 23 13
3 |Est. Freq. 345 244 179 127 86 54 34 19 10
ratio (%) 19.59% |27.32% |35.94%[41.23% |56.58% | 77.14% | 75.56% |82.61% |76.92%
Frequent 4379 | 1769 795 368 147 48 29 16 6
4  |Est. Freq. 208 202 131 85 53 31 18 10 2
ratio (%) 6.81% [11.42%|16.48%|23.10%|36.05% |64.58% [62.07% |62.50% |33.33%
Ratio of discovered frequent itemsets
to total frequent itemsets for the
90% T mushroom dataset
» for itemset size = 3 *
80%T A for itemset size = 4
* *
*
70% 1
A
A A
60% T
*
50% T
40% T *
* A
A
30%
*
A
20% T+ *
A
10%+ A
N

10% 20% 30% 40% 50% 60% 70% 80% 90% support

Fig. 1. Discovered vs. total frequent itemsets for the mushroom dataset

Ttemset size|Min. support]| 1% % 3% 5% 10% | 15% | 30% | 50%
Frequent 1701 | 1877 | 1145 | 879 503 312 112 10
3 Est. Freq. 154 | 149 146 137 108 90 a7 21
ratio (%) 9.05%|10.82%|12.75% | 15.50% |21.47% | 28.85% |41.96% |52.50%
Frequent 5050 | 3560 | 2728 | 1901 | 8562 185 1056 20
4 Est. Freq. 103 98 94 85 64 48 18 3
ratio (%) 2.04%| 2.75% | 3.45% | 4.47% | 7.51% | 9.90% |17.14%|15.00%

Fig. 2. Ratios of discovered to total frequent itemsets for the census data



itemset size 3 4 5 6
average interval width 0.0482797 | 0.0313103 | 0.0228579 | 0.0196316
average upper bound 0.0568679 | 0.0319395 | 0.0228771 | 0.0196316
average lower bound 0.00858817(0.000629199( 1.925e-05 0
itemsets with nontrivial bounds 7.04% 0.59% 0.04% 0.00%
itemsets with nontrivial lower 4.06% 0.39% 0.02% -
average lower improvement 0.211321 0.161151 0.0962518 -
itemsets with nontrivial upper 6.43% 0.47% 0.03% -
average upper improvement 0.0225656 | 0.00983444 (0.00262454 -
time [ms/itemset] 0.2 0.3 1 7

(a) 1.8% minimum support, all itemsets

itemset size 3 4 5 6
average interval width 0.102848 0.105024 0.106997 0.110767
average upper bound 0.127438 0.109572 0.107491 0.110767
average lower bound 0.0245896 | 0.00454846 |0.00049354 0
itemsets with nontrivial bounds 20.17% 4.25% 0.58% 0.02%
itemsets with nontrivial lower 11.64% 2.82% 0.46% -
average lower improvement 0.211321 0.161151 0.106164 -
itemsets with nontrivial upper 18.41% 3.43% 0.40% 0.02%
average upper improvement 0.0225656 | 0.00983444 |0.00333985)0.00338427
(b) 1.8% minimum support, frequent itemsets only

itemset size 3 4 5 6
average interval width 0.171608 0.205194 0.222602 0.231362
average upper bound 0.235004 0.223174 0.225491 0.231362
average lower bound 0.0633963 | 0.0179804 |0.00288882 0
itemsets with nontrivial bounds| 48.55% 16.79% 3.40% 0.14%
itemsets with nontrivial lower 30.00% 11.16% 2.72% -
average lower improvement 0.211321 0.161151 0.106164 -
itemsets with nontrivial upper 44.00% 13.56% 2.33% 0.14%
average upper improvement 0.0238776 | 0.00983444 |0.00333985|0.00338427

(c) 9% minimum support, frequent itemsets only

Table 1. Results for the census dataset

that limiting the value of r can give very fast estimates with a very
small impact on the quality of the bounds. All experiments were run on
a 100MHz Pentium machine with 64MB of memory.

The bounds obtained are fairly accurate. The width of the interval be-
tween the lower and upper bounds varied from 0.048 to 0.019 for itemsets
of size 3. Note that the estimates become more and more accurate for
larger itemsets. The reason is that the bulk of large itemsets will have
subsets whose support is very small, thus giving better average trivial
bounds. Nontrivial upper bounds occur slightly more frequently than
nontrivial lower bounds; however, lower bounds give on average much
better improvement over the trivial bounds (this is due to the fact that
our trivial upper bounds are quite sophisticated, while the trivial lower
bound is just assumed to be 0).

The percentage of itemsets having nontrivial bounds is quite small. How-
ever those itemsets who have high support (and thus are the most inter-
esting) are more likely to get interesting nontrivial bounds. This can be
seen in Tables 1(b) and 1(c), where up to 48% of itemsets have nontrivial
bounds proving the usefulness of Theorem 3. Note that in this case the
interval width increases with the size of the itemsets. This is due to the
fact that for high supports we don’t have large number of itemsets with
low supports that would create trivial upper bounds.

The conclusions were analogous for the mushroom database.

Table 2 shows how the choice of the argument 7 in Algorithm 1 influences
the computation speed and the quality of the bounds. The results when
7 is set to the highest possible value (size of the estimated itemset minus
one) is given in Table 1(a).

The results show that limiting the value of 7 to 2 or 3 gives a large
speedup at a negligible decrease in accuracy. This is the approach we



recommend. Also note that the proportion of itemsets with nontrivial
bounds is higher for lower values of r. The same experiments repeated
for frequent itemsets only yielded analogous results, so we omitted the
data here.

Census Data with 1.8% Minimum Support

r=2
Ttemset size 3 7 5 6
average interval width 0.0482797 | 0.0315442 | 0.022993 |0.0196671
average upper bound 0.0568679 | 0.0321734 |0.0230122(0.0196671
average lower bound 0.00858817 |0.000629199 | 1.925e-05 0
itemsets with nontrivial bounds % 1% 0.10% 0%
time [ms/itemset] 0.18 0.24 0.34 0.46
T =3

Ttemset size 3 1 5 6
average interval width 0.0482797 | 0.0313103 |0.0228666|0.0196328
average upper bound 0.0568679 | 0.0319395 |0.0228859(0.0196328
average lower bound 0.00858817|0.000629199 | 1.925¢-05 0
itemsets with nontrivial bounds % 0.50% 0% 0%
time [ms/itemset] 0.18 0.3 0.53 0.92

Table 2. Influence of the order of inequalities on the bounds

Our last experimental result concerns estimating support of conjunctions
allowing negated items using Corollary 1. Table 3 shows the results for
the census ataset, with supports of all frequent 1- and 2-itemsets known
(1.8% minimum support). In each of the itemsets exactly two of the items
were negated. Again the inequalities gave fairly tight bounds.

Census Data with 1.8% Minimum Support

itemset size 3 4 5 6 7
avg interval width  |0.040498| 0.081989 | 0.0668155 | 0.0392651 |0.0180174
average upper bound|0.171319| 0.120666 | 0.0685168 | 0.0392925 |0.0180174
average lower bound [0.130821|0.0386768(0.00170127|2.73405e-05 0
time [ms/itemset] 0.24 0.46 0.96 2.54 5.12

Table 3. Estimates for itemsets with negations

5 Conclusions and Open Problems

We presented a method of obtaining bounds for support of database
queries based on supports of frequent itemsets discovered by a datamin-
ing algorithm by generalizing the Bonferroni inequalities. Specialized
bounds for estimating support of itemsets, itemsets with negated items,
as well as bounds for arbitrary queries have been presented. An experi-
mental evaluation of the bounds is given as well showing that the bounds
are capable of providing useful approximations.

Various other specialized Bonferroni inequalities for other types of queries
could be considered. General inequalities in Theorem 1 can be used for
this but the bounds they give are not always tight. It has also been
shown in [JSR02] that for certain queries it is not possible to obtain
tight bounds at all. Nevertheless, we believe that it is possible to obtain
useful bounds for a large family of practically useful queries.
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