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Abstract probability distribution ofX conditioned on its set of par-

] __ents taking on thg'" assignment of its domainB,, is
We propose a measure for assessing the degree of inflity|ection of distributiong/* for all nodesX of B, and
ence of a set of edges of a Bayesian network on the OVerr _ .\ Dom(P J s
all fitness of the network, starting with probability distri | <J < |Dom(Pax)|.
butions extracted from a data set. Standard fitness mea-  S€Veral scoring solutions have been proposed for eval-
sures such as the Cooper-Herskowitz score or the scoléting the fitness of a BNS for representing probabilistic
based on the minimum description length are computadePendencies among attributes of a data set. The are two
tionally expensive and do not focus on local modificationsT&J0r @pproaches: scores based on maximization of the
of networks. Our approach can be used for simplifyinngSte”m probability of the network structure conditidne
the Bayesian network structures without significant losg/PON data, and scores based on MDL (Minimum Descrip-

, 4 : P tion Length) principle.
g];)gtr%féi Experimental work confirms the validity of our ™ 6l 2 bproach was initially introduced in Cooper

& Herskovits (1993), where the scoring formula was de-
Keywords:Bayesian belief network, Kullbach-Leibler di- rived based on a number of assumptions such as assuming

vergence, entropy, edge pruning that the distribution of tuplesefg-, e ,Hf.[ij) is uniform
for all X andj, or is a Dirichlet distribution. In Heck-
1 Introduction erman et al. (1995) the Dirichlet distribution assumption

was replaced by thékelihood equivalenceassumption

The construction of a Bayesian Network Structure fromar‘)‘gi it WasXshown that under this new assumption tuples
a data set that captures the probabilistic dependenciédi;, " ,0xr, ;) obey a Dirichlet distribution.
among the attributes of the data set has been one of the The second approach is based on the minimum de-
prominent problems among community of uncertainty re-scription length principle, introduced in Rissanen (1978)
searchers since early 90s. The problem is particularlyvhich stipulates that the best model for data is the one that
challenging due to enormity of number of possible struc-minimizes the combined description length of the model
tures for a given collection of data. and data. Later, in Lam & Bacchus (1994) this princi-
Formally, a Bayesian Belief Networkis a pair ple was applied to learning a BNS from data. The close
(Bs,B,), whereB, is a DAG (directed acyclic graph) relationship between these two approaches was shown
which is commonly referred to as Bayesian Network in Suzuki (1999).
Structure(BNS), andB,, is a collection of distributions The application of these methods on learning the lo-
which quantifies the probabilistic dependencies present igal structure in the conditional probability distribut®n
the structure, as we discuss in detail below. with variable number of parameters that quantify these
Each node of the BNS corresponds to a random varinetworks as opposed to attempting to learn the global
able; edges represent probabilistic dependencies amorgfructure at once was studied in Friedman & Goldszmidt
these random variables. BNS captures the split of the join(1998).
probability of a set of random variables, presented by its Both approaches are expensive to compute and do not
nodes, into a product of probabilities of its nodes condi-focus on local modifications of networks. Our scoring
tioned upon a set of other nodes, namely the set @fréis  scheme is much cheaper to compute when local modifi-
decessorsr parents cations are desired and allows the assessment of the im-
The set of values (or states) of a random variable portance of individual edges on the global fitness of the
is referred to as thdomain ofZ, borrowing a term from  network.
relational databases. This set is denotedbyn (7). We examined this problem from the perspective of
If a random variableX is a node of B, with conditional entropy Simovici & Baraty (2008) by seek-
Dom(X) = {1,---,Rx} and set of random variables ing a set of parents for a node that reduces the conditional
Pax = {Y1,Y,,---,Y;} as its set of parents, and if entropy of that node in presence of its parents as much as
we agree upon some enumeration of Bein(Pax) = possible. Our main interest in this paper is to evaluate the
k : X i “importance” of a set of edges of a BNS in the presence of
Iy D.O.m(Yz)’ then we denote bg;; the conditional data by measuring the fitness loss of the BNS due to prun-
probability P(X = [[Y1 = y1,Y> = y2,---, Y& = Uk),  ing the set of edges. The evaluation is obtained starting
wherel is some state ok and(yy,--- ,y) is thej™ el-  from the Kullbach-Leibler divergence between two prob-
ement of the enumeration. Also, we denote vﬂfﬁ, the  ability distributions.
Later, we examine the relationship of the fithess
Copyright ©2009, Australian Computer Society, Inc. This paper ap- |opss measure introduced in this article and the condi-
peared at the Eighth Australasian Data Mining ConferencesDM  tiona| entropy, in particular, with the measure introduced
|2?(09), '\t/.'e'bgurﬂe' IA“StEg'S‘,'DI%O'JTi%Cl‘ESP'” I':Sef(eamh d;rﬁee " in Simovici & Baraty (2008). Finally, we combine the two
nrormation fecnnolo , VOI. , Paul J. Kkenne eon . . . .
Ong and Peter Christgeym Ed. Reproduction for academic,manbfigt] measures to get a new formula a”‘?' Jus.tlfy ItS use to sim-
purposes permitted provided this text is included. plify a BNS that represents expert's prior knowledge of
the domain without considering the data.




Let D be a data set and let us denoteAzytrE@; its Now, if we assumeD = {t¢1,---,tq}, by indepen-

set of attributes. FoK = {A4;,,...,4;,} C Attr(D)let  dence assumption of tuples of data set we have,
I = {i1,..., i} beits index set.
If A = (A41,4,,...,4,) is a permutation of P(D|BA) H;i:l P(t;|BA,)
Attr(D), let A, be the sequence of attributes of set P{D[Bma) == -
K ordered according té&\. Denote byDom(A;, ) the s [Timy P(t:|BP™)
Cartesian product of the domains of the attributes in the i i . .
sequencd\;, , that is, and by Bayesian network split of joint probability we
have,
Dom(Aj, ) = Dom(A;,) x -+ x Dom(4;,).
’ 1 ) [1, P(t:|B2)
Fora= (a1,...,a;) € Dom(Ay, ) we denote byA;,. = d mmax)
a, the event * * [Ticy P(8:|BE)

T T P(A; = tililArar,,, () = tilParss, (7))
[T T PA; = ] Aparyp (5) = tilParmma(4)])

where if¢ is a tuple inD and L is a set of attributes, then
"We denote the restriction of the tupleto L be ¢[L]; we
Mfefer tot[L] as theprojectionof ¢ on L. Occasionally, we

: uset[l;] instead oft[L], wherel}, is the index set oL.
We denote byBNS(D) the set of all possible struc- “"A"Bavesjan network structure for a data set incorpo-

tures forD and byBNS, (D) the set of all structures of - 51e5 5 collection of conditional independence properties
BNS(D) which only contain edgesA, A') such thatd  3mong attributes of that data set. Thl?s is captu?edpby the
precedesd’ in the permutatioA. If B, € BNSA(D),  directed Markov propertyf Bayesian networks Cowell
then Par’%s(i) is the index set of the set of parents of (1998). This property stipulates that for any nollewe

A; € Attr(D) in B, according toA. This notation is have:
extended to sets of nodes as follows.VIfC V, and Iy

is the corresponding index set &f, then Par’%s (Iv) is

User, Par_(i). TheB, subscript andh superscript are  which is denoted withX Lnd(X) | Par(X), where
omitted when it is clear from context. nd(X) is the set of non-descendent nodesXofNote that

The BNS inBNSA(D) that contains the maximum Pargme:(j) C Parga (j) for 1 < j < n. Then, since we
number of edges is callele complete BN®r sequence  assumed”** accurately represents the distribution over
A, denoted byB,, and is depicted in Figure 1. Attr(D) and by directed Markov property we have,

Ail :al,...,Aik = k.

A BNS for data seD is a structureB, with set of nodes
Vs = Attr(D) and set of edgeg; C Attr(D) x
Attr(D). The attributes of the data set are treated as ra
dom variables. The BNS represents probabilistic depe
dencies among these attributes.

P(X|nd(X),Par(X)) = P(X|Par(X)), Q)

P(A; ti[j]lAPar,BéS () = ti[Parga (5)])
=P(A; = ti[jl|Aparpmax (j) = ti[Pargme<(j)], Ac = 1;[C])
=P(A; = ti[jl|Aparymax (j) = ti[Parsme<(j)])
(by Markov property)

for all i and;j whereC = Parga (j) — Pargmax(j). This
justifies our proposition.

Yet, the complexity of a complete structure for a given
sequence makes any computation prohibitively expensive.
This demands the introduction of a measure which allows
the simplification of the structure without incurring a sig-
nificant loss of fitness. Such a measure may also be used to
incrementally modify a BNS as new data becomes avail-
able.

Figure 1: The complete BNS for orderidg.

We make two basic assumptions:

1. The joint probability on the attributes @f can accu- 2 Entropy and Partitions

;antgl)slubc% raeg[(rajgt%treedn?gx?ml?zes :r)l(eepoBs'}leSr?o(rD |o)robaA partition of a sets' is non-empty collection of non-
o L empty subsets &, 7 = {B;|i € I}, suchthatJ,.; B; =
bility of the structure conditioned upon the data set. SandB, N B, — D foralli,j € I wherei # 7. The set

2. An uniform prior probability distribution exists on all  of partitions of a sef is denoted byPART(.9).
possible Bayesian network structures for A partial order relation oPART(.S) is defined byr <
i A ) . o for m,0 € PART(S) whereo = {C1,Cs, ....,Cy, }, if
Under these assumption$j;, has maximum posterior every blockB; of = is included in a blockC; of o. The

probability in the presence of data. partially ordered setPART(S), <) is actually a bounded
ForanyB, € BNS(D) we have lattice. The infimum of two partitions andr’ = {B;|j €
P(B,|D) - P(D) = P(D|B,) - P(B,) J} onS, denoted withr A’ is the partition{ B, B;|i €

I,5 € J,B;NB; # 0} onS . The least element of this
by Bayes’ Theorem. Sinc® is fixed, and we assume lattice is the partitiorvg = {{s} | s € S}; the largest is
P(B,) is uniform, P(B,|D) is proportional toP(D|B,).  the partitionwg = {S}.

Thus, it suffices to show that The notion of entropy for partitions of finite sets was
and axiomatized in Simovici & Jaroszewicz (2002).51f
P(D|B.)
P(D|By=x)



is a finite set andr = {By, ...,
the entropy ofr is the number

u By
Zl \S|

Clearly, this is the Shannon entropy of a probability distri
bution (py, . . ., pm), Wherep; = 'B ‘ for1 <i < m. The

B,,} is a partition ofS,

main advantage of using partltlons rather than probabilPpy

ity distributions is the possibility of using the partiader
defined onPART(S). The following statement, proven
in Simovici & Jaroszewicz (2002) is used in the sequel.

Theorem 2.1 The entropyd{ : PART(S) — Rx¢ is
anti-monotonic; in other words, if < 7/, thenH(x) >
H(n'") for everym, ' € PART(S).

The trace of a partitionw on a subsef” of S is the
partitionmr = {TNB; | i € TandT N B; # 0} of
T. Letw,0 € PART(S) be two partitions, where =
{Bi1,...,B,}ando = {C1,...,C,}. The entropy ofr
conditioned orv is the number:

1C;
H(w|o) = Z |S|

It is immediate that¥{s(r|ws) Hp(m) and that
H(m|as) = 0. Also, in Simovici & Jaroszewicz (2006)
it is shown thatH (7r|a) Ha(mr No) —Hga(o), aprop-

erty that extends the similar property of Shannon entropyW!

The next theorem proven in Simovici & Jaroszewicz
(2002), Simovici (2007) states that conditional entropy is
anti-monotonic with respect to its first argument and is
monotonic with respect to its second argument.

Theorem 2.2 Letr, 0,0’ € PART(S), whereS is a finite
set. Ifo < o/, thenH(o|r) > H(o'|r) andH(rw|o) <
H(r|o").

Finally, we mention the following corollary, also
proven in Simovici & Jaroszewicz (2002).

Corollary 2.3 Let S be a finite set.
PART(S) we haveH(r|o) < H(n).

For everyt,o €

Definition 2.4 The equivalence relation”” defined by
the sequence of attributds on D, consists of those pairs
(t,t') € D% such that[A;] = t'[A[].

The corresponding partition®’ € PART(D) is the
partition generated by;. il

Itis clear that ifl’ C I thenn®r < 71,

3 A Distribution Distortion Measure
Let us denote b)pPar(IV (a)
distribution,

(P(Ar, = bi|Apa(r,)y =a),. ..,
P(Ar, = bulApa(r,) =a) ),
where Dom(Ar, )

{by,...,b
Dom(Apar(IV)).

To avoid unnecessary complications we assume
Par(Iy) = () in what follows, although the results that we
have hold without this condition.

Let E = {(As,,Aq,), .-, (As, ,Ag.)} be a subset of
the seté of the edges o8, and letSg = {s1,...,s:}
be the set of source nodes of edgesmfand Dy =
{di,...,d,} be the set of destination nodes fbr We

the conditional probability

m} and a €

assume thalPar(Dg) N D = (. Note also thatSy C
Par(Dg).

Clearly, if we remove the set of edgds from B,
the effect of this pruning on the joint probability distri-
bution of the data set represented By will only be
through conditional distributions attached to node®egf.
Thus, to assess the effect of pruning the edgek &bm
B, on the joint probability distribution of attributes of
data set, consider the conditional probability distribati

(Par(DE) SE)(a),

(P(Ap, =bi|Apa(py)-s5) = &), .-
P(Apy = bm|Apar(pg)-sz) = &) ),

{by,....b

)

S

where Dom(Ap,)
Dom(A par(D)—55))-

Note thatp(Par(DE) S2)(@) is the probability distri-
bution of tupIeADE conditioned on its set of parents after
the removal of the set of edgésinstantiated withte’. To
see how much the distribution is distorted as we prune the
set of edgedr from B, we compare the probability dis-
tributions of Ap,, conditioned on its set of parents By
before and after removal of the set of edges for all possible
instantiations of the sequence of parents.

For each instantiatioa’ € Dom(A (par(p)—s,)) Of
the sequence of parents Afp,, after pruning, there are
several instantiations of the sequence of parenta ;9f
before pruningay,...a., wherea; € Dom(Apg(p,))
such that;[Par(Dg) — Sg] = & for 1 < i < z. Thus,
e need to compare the probability distributions

my and &

Par(Dg)

pD (Par(DE) SE)(

(a) andpp,,, a),

fora e Dom(Apar(DE)) anda’ ¢ Dom(A(par(DE),SE))
such tha®’ = a[Par(Dg) — Sg]. Then, we can linearly
combine the divergence between the pairs, weighted by
the probability of occurrence @ derived from data set
D.

To compare two finite probability distributions

7pn> andq = <Q17q27 e 7qn)

we use th&ullbach-Leiblerdivergence measure given by

n
pi
= pi-log, —.
i1 q;

KL has well-known properties:

p=(p1,p2, -

1. KL(p,q) > 0 for all finite probability distributiong
andg.

2. KL(p,q) = 0if and only if p = g element-wise.

HoweverKL(p, ) has no upper bound which makes com-
parisons for realizing the level of differences among a
set of distributions difficult. We overcome this problem
by dividing our linearly weighted measure of differences
among the conditional probability distributions beforelan
after edge pruning by the same weighted measure, but this
time among the conditional probability distributions be-
fore the edge removal and the non-informative uniform
probability distributionu,,, € [0, 1]™:

( 1 1 1 )

Up = | —, —, LI )

m m m

wherem = |Dom(Ap,)|. If p;ar )(a) = u,, for all

a € Dom(Par(Ap,,)), then knowing the assignment of
values t0Apar(a, ) Is completely non-informative in pre-

dicting the value oA\ .. Also, assumingD| is a multiple



of m, the m-block partition oD which corresponds to the
finite probability distributionu,,,, 7™ = {Bi,--- B;,}
where|By| =+ = |Bn| = % is referred to asn-block
uniform partition ofD and it has the maximum entropy ,
H(m'm) = log,(m), over all possible partitions @ with

m blocks.

Definition 3.1 The distribution distortioncaused by re-

moving the set of edgek from the BNSB; denoted by
DD3, (E) whereDg N Par(Dg) = 0, is defined as

S P(Apar(ny) = @) - KL(PT P2 (@), p2E (@[Q£)))
Y P L(p%r %) (@), u,,)

Pp,
where D and Sg are defined as before an@g

(APar(DE) = )

Par(Dg) — Sg. Also the sums are over ah E
Dom(Apar(DE)). 0
Theorem 3.2 We have:
DDy (E) — fH(ﬂ'ADE |7TAQE) — 9{(7TAD£ |7TAPaf<DE)) 7
s g{(ﬂum) _ j—C(T‘-ADE |ﬂ- Par(DE))
wherem = | Dom(Ap,)|.
Proof. See Appendix A. |

Corollary 3.3 We have) < DD _(E) < 1.

Proof. SinceQp C Par(Dg), we haver Pare) <

7A2e . By the monotonicity property of conditional en-
tropy with respect to its second argument we have:

ﬂ-C(WADE \WAP“(DE)) < g‘((ﬂ'ADE |7TAQE ).
Also,
H(rAre|rhes) < H(x 0= [{D}) = H(rAre).
But we know,
H(rhPe) < H(n'm).
The result follows immediately. |

Theorem 3.4 We haveDDy_(E) = 0 if and only if

P(Ap, =b; | Apar(py) = @) =

P (Apy =bi | Apar(pp)-si) = alPar(Dg) — Sg])
forall i, 1 <i < m, anda € Dom(Apg(1))-

Proof. Note that we implicitly assume th&t(Apar(p,,) =
a) # 0 because, otherwis&(Ap, = b; | Apar(py) =

a) is undefined. The statement follows from the secon

property of theKL measure. |

and its set of parent nodes along with the set of parent-
child edges. That is, we can sBtg to be a set of sin-
gle node, and consider different subsets of its set of par-
ents asSg. Then, we seek a subset such that [y,

is close to zero. Since if we prune a g8tof incom-

ing edges atX such thatSE C Par(X) andDDg_(E)

is close to zero, thep?"X)(a) ~ p%” (a[Qx]) for all
a € Dom(Par(X)) by Theorem 3.4. This, in turn implies

But, the directed Markov property implies
P(X|Apar(x), And(x)) = P(X|Apar(x))-
Then, we have

P(X|Aqk)
~P(X|Apar(x), And(x))
:P(X|AQEaASEaAnd(X))

Thus, we have
L(Asg, Andcx)) | Agp-

Finally, by symmetry and decomposition properties of
conditional independence Pearl (1988) we have

X1 Angx) | Ags-

Thus, the conditional independence property of a node of a
structure is preserved if we prune a set of incoming edges
of the node with distribution distortion measure close to
Zero.

In fact the parent-child fithess measure,

j—f(ﬂ—X |7TAPar(X))

0 =gy <1 2)
introduced in Simovici & Baraty (2008) has some similar-
ity with DD _.

We have shown that if this measure is close to zero,
thenPar(X) is a suitable parent set for nodé. Find-
ing parent-child relationships among the attributesPof
such that the measure (2) is close to zero, increases the
posterior probability ofD conditioned upon the inducing
BNS B,. As stated before, an increase in this probabil-
ity leads to an increase in the posterior probability of the
structure conditioned on data (assuming a uniform prior
on possible Bayesian network structures for a data set,
as in Cooper & Herskovits (1993)). This happens be-
cause if we choose a set of parerar(X) for a nodeX
such thatH (7 ¥ |rr=x)) is close to zero, then for those
a € Dom(Apga(x)) such thatP(Apg(x) = @) is non-
trivial, the probabilityP(X = = | Apar(x) = @) is close
to 1 for somez € Dom(X) and close td for all other

dT € Dom(X)\{z}.

Theorem 3.5 Let E and E’ be two sets of edges of BNS Thus, for a BNSB, that we obtain in this way we have

B,. Then, ifPar(Dg) N Dg =0, D = Dgs and Sk C
Sgr,we han:)D'BS(E) < DDBS (E/)

Proof. SinceSg C Sg/, we haveQg C Qg. Then,

by the monotonicity property of conditional entropy with

respect to second argument we have,
H(x re|rher) < H(x e |ries ).

The result follows immediately. |

The global search for a set of edges to be pruned

to simplify a BNSB, can be very expensive. Alterna-

tively, we can examine local structures defined by a node

If P(Apar(x) = @) islarge andP(X = = | Aparx) =
a) ~ 1, this implies thatP(Apa(x) = 8, X = z) is large.
P(D | Bs)
|D|

=11 1I

=1 Xe€Attr(D)

Py (X = tZ[X] | APar(X) = ti[Par(X)])
XeAttr(D) zeDom(X)

aeDom(APar(X))

N ..
(P‘Bs (X = | APar(X) = a)) (X‘APar(x))( a)7



whereN(x au,x,) (%, 8) is the number of tuples in D
with ¢t[X] = = and¢[Par(X)] = a. Having a BNSB,
such thatPg, (X = = | Apa(x) = a) is close to one for
those pairgz, a) with largeN(x a,,, «,)(z, @) justifies the
increase in posterior probability 3.

4 Constructing a BNS for a Data Set

Recall that ifE is a set of edges, thely = Par(Dg) —
Sk is the set of nodes that remain parents of the nodes i
Dp after the edges iy are removed.

Definition 4.1 Let A; € Attr(D) for 1 < i < n. Then,
the total measure of fithess ldsg pruning the set of con-
verging edged’ at nodeA; in BNS B, is the number,

enlen
fH(WAi 7I'AQE) — fH(WAi 7rAPa’<Ai>)
log, | Dom(A;)| — H(mdi |rheatan) Figure 2: Neapolitan Cancer Bayesian structure was in-
A A . A | Aparca, troduced in Cooper (1984). This structure has five nodes:
+(1-a)- Hx i |m"2s) if(ﬂ Lk ’)), Metastatic Cancer (MC), Serum Calcium (SC), Brain Tu-
H(mA) mor (BT), Coma (CM) and Severe Headaches (SH). Meta-
node E corresponds to this structure.
denoted byL, (A;, B, F), where0 < o < 1. 0
Clearly, this measure is always in the rarjgel]. Note . .
that the left component of the sum is the r<1jistr]ibution dis- Table 1: Neapolitan Cancer Scores
tortion measure of pruning the set of incoming edgeés, Structure] Tog(C-H Score)] MDL Score
The right component measures the decrease in reduction A -7505 24948
of entropy of noded; in presence of its parents after prun- B -7586 25214
ing of the setF. Thus, ifFL, (4;, B, F) is close to zero, C -7938 26384
then both components will be close to zero. The left com- D -7509 24958
ponent ensures that the conditional independence is pre- E -8120 26986
served after the pruning df, while the right component F -7505 24947
preserves the posterior probability Dfconditioned upon G -7697 25581
the structure. We can choose= 1 if we have no pref- H -7713 25632
erence over any of the two measures. Note thaf] if | -8341 27719

a set of converging edges at node and E/ C F then,

FL.(A4;, B, E') < FL,(A4;,Bs, E). This enables us to ) ) L

use the heuristic method explained in Simovici & Baraty source isSerum Calciunand destination i®rain Tumor

(2008) to find a structure that fits the given data from a(SC to BT) is important since its removal causes a signif-

complete network structure. This complete structure caricant degradation of both the C-H and MDL scores. On

be induced from a total order of attributes that representée other hand, TFL assess the edge from Brain Tumor to

the expert’'s knowledge of the domain. Severe Headaches (SH) as not important. Again CH and
MDL scores confirm this assessment.

5 Experimental Results
Table 2: Neapolitan Cancer Pruning Measures with:

As our first experiment, we started with a Bayesian net-%_

work Structure for Neapolitan Cancer data set vétht-

tributes andl0000 rows, pruned different subsets of con- EAnge 0[())?26 Erat.olégss OTOF7L23

verging edges at a single node and computed the total mea- ‘FTGSF W’ 17'

sure of fithess loss for each pruning. Figure 2 visualizes QD 0 '00648 0'003; 0%%554

these pruned structures and their relation with each other AE 0‘5777 0.2976 0 ‘4377

as a graph which we refer to as meta-graph to avoid confu- AF 0073 0001 0012

sion with the Bayesian graphs for the data set. Also, we re- : ; :

fer to the edges and nodes of the meta-graph as meta-edges AG | 0.12155] 0.2126 [ 0.167

and meta-nodes, respectively. Each meta-node represents AH [ 0.1328 | 0.2322 | 0.1825

a BNS for Neapolitan data set and each edge, a pruning Al [ 0.786 | 0.405 | 0.5957
transformation. That is, the destination meta-node of a BH | 0.0846 | 0.1402 | 0.1124

meta-edge is obtained by removing a subset of converging GH | 0.0128 | 0.0196 | 0.0162

edges at a single node from the source meta-node of that DI | 0.7848 | 0.4016 | 0.593

meta-edge. Each meta-node is labeled with a letter from El 0.4938 | 0.1074 | 0.301

Atol.

Table 1 represents the scores for each meta-node in fig- \we also applied our approach on a Bayesian network

ure 2 based on two schemes MDL and C-H score. structure for the ALARM data set, originally described

Table 2 shows tr11e total fitness loss of each meta_l—edgg] Beinlich et al. (1988) as a network for monitoring pa-
for parameterr = 5 and its two components, distribu- tients in intensive care. Table 3 contains scores for this
tion distortion and entropy loss for each pruning of setstructure which is labeled as A. Structures B to H are gen-
of edges. The fithess loss measure is strongly correlateerated from A by pruning different subsets of parents for
with both scoring schemes (C-H and MDL), which showsthree nodes selected at random. Table 4 shows the exact
the usefulness of this measure for simplifying a Bayesiarparent pruning specification applied to obtain B to H from
network structure. Also, our measure can be used to asA. The child column represents the node we have chosen
sess the importance of various edges. For example, the tée prune its incoming edges. The original parent column
tal fithess loss measure suggests that the edge that whoskows the set of parents in the original structure, namely



A. New parent column represents the set of parents of the The distribution distortion could be used as measure
child after pruning. The other columns are the same as iof importance and interestingness of the edges of the
previous example. Note that again, there is a close correBayesian network structure and we intend to further pur-
lation between fitness loss measure and different scoresue this issue. Another open technical problem is to ex-
Since the structures are much larger than in previous explore whether by pruning a complete Bayesian network
periment, pruning an edge or two has a milder effect orstructure in the presence of a data set can lead to a net-

the magnitude of the scores of the global structure than invork structure that best fits the data.

the Neapolitan case for about the same total fitness loss
which is a local measure. A

Table 3: Alarm Scores

Structure| Tog(C-H Score)] MDL Score
A -159636 530806
B -164287 546157
C -162785 541189
D -161372 536491
E -161731 537644
F -161684 537514 -
G -159767 531136
H -159638 530802

Table 4: ALARM pruning measures with parameter=

1. The nodes of the ALARM network are traditionally _

numbered froml though37 in the literature. The corre-

spondence between the node numbers mentioned in the ta-

ble and the real attributes are as follows (8, HREKG), (9,
HRSat), (27, Catecholamine), (29, Heart Rate) and (30,
Error Cauter).

Struct. [ Child | O. Par| N. Par DD Ent. Loss| TFL _
B 8 30,29 | none | 0.4388 0.778 0.6083
C 8 30,29 30 0.297 0.5266 | 0.4118 -
D 8 30,29 29 0.1655 0.293 0.2294
E 9 30,29 | none | 0.2847 0.319 0.3018
F 9 30,29 30 0.2767 0.31 0.2933
G 9 30,29 29 0.0212| 0.0237 | 0.0225
H 29 27 none | 0.0006 0.001 0.0008 =

Finally, Table 5 shows the correlations between TFL
and changes in logarithm of CH score and also between
TFL and changes in MDL score for Neapolitan Cancer and™
ALARM structures as a result of edge removals explained
in Tables 2 and 4. Interestingly, although TFL is a local
measure, it has very close correlations with MDL and CH
scores which are global measures.

Also note that while the correlations between TFL and
MDL are positive, the correlations between TFL and CH
score are negative, since as TFL increases, the probability
of the structure conditioned upon the data set decreases
and as a result the CH score decreases.

Table 5: Correlations
Data Set | TFL/ Tog(CH) [ TFL/MDL

Neapolitan| -0.97324 | 0.9733857
ALARM -0.9983168 | 0.9980918

Proof of Theorem 3.2

\6/1¥8rsubstitute the Kullbach-Leibler measure in the numer-

P(Apar(Dp) = >, |PApg =bilApar(pp) =2
i=1

|

aeDom (Apgr(p )

P(AD g = bilApar(D ) =
P(App =bilAQy =2aQED

- logo

> [P(ADy = b Apar(ppy) =
aeDom (Apgy(p ) =1
“logy P(AD ;. = b;|Apar(p ) = @
> [PADg =i Apar(ny) =

1

aeDom(APar(DE)) i
“logy P(Ap, = bilAg, = alQp))]
A
— 3« "D | Pa(Dp))
Ui _ 7 o
x Z[P(ADE*bi’AQE*a’ASE*a )
a’eDom(AQE) i=1
a”eDom(AsE)
“logy P(Ap,, = bilAg,, = a’)]
A
_ 35¢(x"DE |- Pa(Dp)
UK /
> > [1og2 P(Ap,, = bilAg, =)
a’EDom(AQE)’L=1
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’
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In the same way we can show,

P(par(p ) =@ - KLOp P (@), um)

aeDom(APar(DE) )

- [Peapy = bis Apar(D ) =
acDom(Apgr(p )
i€[l..m]
“logy P(AD = b;lApar(p ) = )] + losg m

—3¢(xim) — 9¢(«"DE |« Pa(Dp) ).
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