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Abstract

We propose a measure for assessing the degree of influ-
ence of a set of edges of a Bayesian network on the over-
all fitness of the network, starting with probability distri-
butions extracted from a data set. Standard fitness mea-
sures such as the Cooper-Herskowitz score or the score
based on the minimum description length are computa-
tionally expensive and do not focus on local modifications
of networks. Our approach can be used for simplifying
the Bayesian network structures without significant loss
of fitness. Experimental work confirms the validity of our
approach.

Keywords:Bayesian belief network, Kullbach-Leibler di-
vergence, entropy, edge pruning

1 Introduction

The construction of a Bayesian Network Structure from
a data set that captures the probabilistic dependencies
among the attributes of the data set has been one of the
prominent problems among community of uncertainty re-
searchers since early 90s. The problem is particularly
challenging due to enormity of number of possible struc-
tures for a given collection of data.

Formally, a Bayesian Belief Networkis a pair
(Bs,Bp), whereBs is a DAG (directed acyclic graph)
which is commonly referred to as aBayesian Network
Structure(BNS), andBp is a collection of distributions
which quantifies the probabilistic dependencies present in
the structure, as we discuss in detail below.

Each node of the BNS corresponds to a random vari-
able; edges represent probabilistic dependencies among
these random variables. BNS captures the split of the joint
probability of a set of random variables, presented by its
nodes, into a product of probabilities of its nodes condi-
tioned upon a set of other nodes, namely the set of itspre-
decessorsor parents.

The set of values (or states) of a random variableZ
is referred to as thedomain ofZ, borrowing a term from
relational databases. This set is denoted byDom(Z).

If a random variableX is a node of Bs with
Dom(X) = {1, · · · , RX} and set of random variables
PaX = {Y1, Y2, · · · , Yk} as its set of parents, and if
we agree upon some enumeration of setDom(PaX) =
∏k

i=1 Dom(Yi), then we denote byθX
lj the conditional

probabilityP (X = l|Y1 = y1, Y2 = y2, · · · , Yk = yk),
wherel is some state ofX and(y1, · · · , yk) is thejth el-
ement of the enumeration. Also, we denote withθX

·j , the
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probability distribution ofX conditioned on its set of par-
ents taking on thejth assignment of its domain.Bp is
collection of distributionsθX

·j for all nodesX of Bs and
1 ≤ j ≤ |Dom(PaX)|.

Several scoring solutions have been proposed for eval-
uating the fitness of a BNS for representing probabilistic
dependencies among attributes of a data set. The are two
major approaches: scores based on maximization of the
posterior probability of the network structure conditioned
upon data, and scores based on MDL (Minimum Descrip-
tion Length) principle.

The first approach was initially introduced in Cooper
& Herskovits (1993), where the scoring formula was de-
rived based on a number of assumptions such as assuming
that the distribution of tuples(θX

1j , · · · , θX
RXj) is uniform

for all X and j, or is a Dirichlet distribution. In Heck-
erman et al. (1995) the Dirichlet distribution assumption
was replaced by thelikelihood equivalenceassumption
and it was shown that under this new assumption tuples
(θX

1j , · · · , θX
RXj) obey a Dirichlet distribution.

The second approach is based on the minimum de-
scription length principle, introduced in Rissanen (1978),
which stipulates that the best model for data is the one that
minimizes the combined description length of the model
and data. Later, in Lam & Bacchus (1994) this princi-
ple was applied to learning a BNS from data. The close
relationship between these two approaches was shown
in Suzuki (1999).

The application of these methods on learning the lo-
cal structure in the conditional probability distributions
with variable number of parameters that quantify these
networks as opposed to attempting to learn the global
structure at once was studied in Friedman & Goldszmidt
(1998).

Both approaches are expensive to compute and do not
focus on local modifications of networks. Our scoring
scheme is much cheaper to compute when local modifi-
cations are desired and allows the assessment of the im-
portance of individual edges on the global fitness of the
network.

We examined this problem from the perspective of
conditional entropy Simovici & Baraty (2008) by seek-
ing a set of parents for a node that reduces the conditional
entropy of that node in presence of its parents as much as
possible. Our main interest in this paper is to evaluate the
“importance” of a set of edges of a BNS in the presence of
data by measuring the fitness loss of the BNS due to prun-
ing the set of edges. The evaluation is obtained starting
from the Kullbach-Leibler divergence between two prob-
ability distributions.

Later, we examine the relationship of the fitness
loss measure introduced in this article and the condi-
tional entropy, in particular, with the measure introduced
in Simovici & Baraty (2008). Finally, we combine the two
measures to get a new formula and justify its use to sim-
plify a BNS that represents expert’s prior knowledge of
the domain without considering the data.



Let D be a data set and let us denote byAttr(D) its
set of attributes. ForK = {Ai1 , . . . , Aik

} ⊆ Attr(D) let
IK = {i1, . . . , ik} be its index set.

If A = (A1, A2, . . . , An) is a permutation of
Attr(D), let AIK

be the sequence of attributes of set
K ordered according toA. Denote byDom(AIK

) the
Cartesian product of the domains of the attributes in the
sequenceAIK

, that is,

Dom(AIK
) = Dom(Ai1) × · · · × Dom(Aik

).

For a = (a1, . . . , ak) ∈ Dom(AIK
) we denote byAIK

=
a, the event

Ai1 = a1, . . . , Aik
= ak.

A BNS for data setD is a structureBs with set of nodes
Vs = Attr(D) and set of edgesEs ⊆ Attr(D) ×
Attr(D). The attributes of the data set are treated as ran-
dom variables. The BNS represents probabilistic depen-
dencies among these attributes.

We denote byBNS(D) the set of all possible struc-
tures forD and byBNSA(D) the set of all structures of
BNS(D) which only contain edges(A,A′) such thatA
precedesA′ in the permutationA. If Bs ∈ BNSA(D),
then ParA

Bs
(i) is the index set of the set of parents of

Ai ∈ Attr(D) in Bs according toA. This notation is
extended to sets of nodes as follows. IfV ⊆ Vs andIV

is the corresponding index set ofV , thenParA
Bs

(IV ) is

∪i∈IV
ParA

Bs
(i). TheBs subscript andA superscript are

omitted when it is clear from context.
The BNS in BNSA(D) that contains the maximum

number of edges is calledthe complete BNSfor sequence
A, denoted byBA

cs, and is depicted in Figure 1.

Figure 1: The complete BNS for orderingA .

We make two basic assumptions:

1. The joint probability on the attributes ofD can accu-
rately be represented by a BNSBmax

s ∈ BNSA(D)
and such a structure maximizes the posterior proba-
bility of the structure conditioned upon the data set.

2. An uniform prior probability distribution exists on all
possible Bayesian network structures forD.

Under these assumptions,BA
cs has maximum posterior

probability in the presence of data.
For anyBs ∈ BNS(D) we have

P (Bs|D) · P (D) = P (D|Bs) · P (Bs)

by Bayes’ Theorem. SinceD is fixed, and we assume
P (Bs) is uniform,P (Bs|D) is proportional toP (D|Bs).
Thus, it suffices to show that

P (D|BA
cs)

P (D|Bmax
s )

= 1.

Now, if we assumeD = {t1, · · · , td}, by indepen-
dence assumption of tuples of data set we have,

P (D|BA
cs)

P (D|Bmax
s )

=

∏d

i=1 P (ti|B
A
cs)

∏d
i=1 P (ti|Bmax

s )
.

and by Bayesian network split of joint probability we
have,

∏d
i=1 P (ti|B

A
cs)

∏d

i=1 P (ti|Bmax
s )

=

∏d

i=1

∏n

j=1 P (Aj = ti[j]|APar
BA

cs
(j) = ti[ParBA

cs
(j)])

∏d

i=1

∏n

j=1 P (Aj = ti[j]|AParBmax
s

(j) = ti[ParBmax
s

(j)])

where ift is a tuple inD andL is a set of attributes, then
we denote the restriction of the tuplet to L be t[L]; we
refer tot[L] as theprojectionof t on L. Occasionally, we
uset[IL] instead oft[L], whereIL is the index set ofL.

A Bayesian network structure for a data set incorpo-
rates a collection of conditional independence properties
among attributes of that data set. This is captured by the
directed Markov propertyof Bayesian networks Cowell
(1998). This property stipulates that for any nodeX we
have:

P (X|nd(X), Par(X)) = P (X|Par(X)), (1)

which is denoted withX⊥nd(X) | Par(X), where
nd(X) is the set of non-descendent nodes ofX. Note that
ParBmax

s
(j) ⊆ ParBA

cs
(j) for 1 ≤ j ≤ n. Then, since we

assumedBmax
s accurately represents the distribution over

Attr(D) and by directed Markov property we have,

P (Aj = ti[j]|APar
BA

cs
(j) = ti[ParBA

cs
(j)])

=P (Aj = ti[j]|AParBmax
s

(j) = ti[ParBmax
s

(j)], AC = ti[C])

=P (Aj = ti[j]|AParBmax
s

(j) = ti[ParBmax
s

(j)])

(by Markov property)

for all i andj whereC = ParBA
cs

(j) − ParBmax
s

(j). This
justifies our proposition.

Yet, the complexity of a complete structure for a given
sequence makes any computation prohibitively expensive.
This demands the introduction of a measure which allows
the simplification of the structure without incurring a sig-
nificant loss of fitness. Such a measure may also be used to
incrementally modify a BNS as new data becomes avail-
able.

2 Entropy and Partitions

A partition of a setS is non-empty collection of non-
empty subsets ofS, π = {Bi|i ∈ I}, such that

⋃

i∈I Bi =
S andBi ∩ Bj = ∅ for all i, j ∈ I wherei 6= j. The set
of partitions of a setS is denoted byPART(S).

A partial order relation onPART(S) is defined byπ ≤
σ for π, σ ∈ PART(S) whereσ = {C1, C2, ...., Cn}, if
every blockBi of π is included in a blockCj of σ. The
partially ordered set(PART(S),≤) is actually a bounded
lattice. The infimum of two partitionsπ andπ′ = {Bj |j ∈
J} onS, denoted withπ∧π′, is the partition{Bi∩Bj |i ∈
I, j ∈ J,Bi ∩ Bj 6= ∅} on S . The least element of this
lattice is the partitionαS = {{s} | s ∈ S}; the largest is
the partitionωS = {S}.

The notion of entropy for partitions of finite sets was
and axiomatized in Simovici & Jaroszewicz (2002). IfS



is a finite set andπ = {B1, . . . , Bm} is a partition ofS,
the entropy ofπ is the number

H(π) = −
m

∑

i=1

|Bi|

|S|
log2

|Bi|

|S|
.

Clearly, this is the Shannon entropy of a probability distri-
bution(p1, . . . , pm), wherepi = |Bi|

|S| for 1 ≤ i ≤ m. The
main advantage of using partitions rather than probabil-
ity distributions is the possibility of using the partial order
defined onPART(S). The following statement, proven
in Simovici & Jaroszewicz (2002) is used in the sequel.

Theorem 2.1 The entropyH : PART(S) −→ R≥0 is
anti-monotonic; in other words, ifπ ≤ π′, thenH(π) ≥
H(π′) for everyπ, π′ ∈ PART(S).

The trace of a partitionπ on a subsetT of S is the
partition πT = {T ∩ Bi | i ∈ I andT ∩ Bi 6= ∅} of
T . Let π, σ ∈ PART(S) be two partitions, whereπ =
{B1, . . . , Bm} andσ = {C1, . . . , Cn}. The entropy ofπ
conditioned onσ is the number:

H(π|σ) =

n
∑

j=1

|Cj |

|S|
H(πCj

).

It is immediate thatHβ(π|ωS) = Hβ(π) and that
H(π|αS) = 0. Also, in Simovici & Jaroszewicz (2006)
it is shown thatHβ(π|σ) = Hβ(π ∧ σ)−Hβ(σ), a prop-
erty that extends the similar property of Shannon entropy.

The next theorem proven in Simovici & Jaroszewicz
(2002), Simovici (2007) states that conditional entropy is
anti-monotonic with respect to its first argument and is
monotonic with respect to its second argument.

Theorem 2.2 Letπ, σ, σ′ ∈ PART(S), whereS is a finite
set. Ifσ ≤ σ′, thenH(σ|π) ≥ H(σ′|π) andH(π|σ) ≤
H(π|σ′).

Finally, we mention the following corollary, also
proven in Simovici & Jaroszewicz (2002).

Corollary 2.3 Let S be a finite set. For everyπ, σ ∈
PART(S) we haveH(π|σ) ≤ H(π).

Definition 2.4 The equivalence relation “∼AI ” defined by
the sequence of attributesAI onD, consists of those pairs
(t, t′) ∈ D2 such thatt[AI ] = t′[AI ].

The corresponding partitionπAI ∈ PART(D) is the
partition generated byAI .

It is clear that ifI ′ ⊆ I thenπAI ≤ πAI′ .

3 A Distribution Distortion Measure

Let us denote bypPar(IV )
IV

(a) the conditional probability
distribution,

( P (AIV
= b1|APar(IV ) = a), . . . ,

P (AIV
= bm|APar(IV ) = a) ) ,

where Dom(AIV
) = {b1, . . . , bm} and a ∈

Dom(APar(IV )).
To avoid unnecessary complications we assumeIV ∩

Par(IV ) = ∅ in what follows, although the results that we
have hold without this condition.

Let E = {(As1
, Ad1

), . . . , (Asr
, Adr

)} be a subset of
the setE of the edges ofBs and letSE = {s1, . . . , sr}
be the set of source nodes of edges ofE and DE =
{d1, . . . , dr} be the set of destination nodes forE. We

assume thatPar(DE) ∩ DE = ∅. Note also thatSE ⊆
Par(DE).

Clearly, if we remove the set of edgesE from Bs,
the effect of this pruning on the joint probability distri-
bution of the data set represented byBs will only be
through conditional distributions attached to nodes ofDE .
Thus, to assess the effect of pruning the edges ofE from
Bs on the joint probability distribution of attributes of
data set, consider the conditional probability distribution
p(Par(DE)−SE)

DE
(a′),

( P (ADE
= b1|A(Par(DE)−SE) = a′), . . . ,

P (ADE
= bm|A(Par(DE)−SE) = a′) ) ,

where Dom(ADE
) = {b1, . . . , bm} and a′ ∈

Dom(A(Par(DE)−SE)).

Note thatp(Par(DE)−SE)
DE

(a′) is the probability distri-
bution of tupleADE

conditioned on its set of parents after
the removal of the set of edgesE instantiated witha′. To
see how much the distribution is distorted as we prune the
set of edgesE from Bs, we compare the probability dis-
tributions ofADE

conditioned on its set of parents inBs

before and after removal of the set of edges for all possible
instantiations of the sequence of parents.

For each instantiationa′ ∈ Dom(A(Par(DE)−SE)) of
the sequence of parents ofADE

after pruning, there are
several instantiations of the sequence of parents ofADE

before pruning,a1, . . . az, whereai ∈ Dom(APar(DE))
such thatai[Par(DE) − SE ] = a′ for 1 ≤ i ≤ z. Thus,
we need to compare the probability distributions

pPar(DE)
DE

(a) andp(Par(DE)−SE)
DE

(a′),

for a ∈ Dom(APar(DE)) anda′ ∈ Dom(A(Par(DE)−SE))
such thata′ = a[Par(DE) − SE ]. Then, we can linearly
combine the divergence between the pairs, weighted by
the probability of occurrence ofa derived from data set
D.

To compare two finite probability distributions

p = (p1, p2, · · · , pn) andq = (q1, q2, · · · , qn)

we use theKullbach-Leiblerdivergence measure given by

KL(p, q) =

n
∑

i=1

pi · log2

pi

qi

.

KL has well-known properties:

1. KL(p, q) ≥ 0 for all finite probability distributionsp
andq.

2. KL(p, q) = 0 if and only if p = q element-wise.

However,KL(p, q) has no upper bound which makes com-
parisons for realizing the level of differences among a
set of distributions difficult. We overcome this problem
by dividing our linearly weighted measure of differences
among the conditional probability distributions before and
after edge pruning by the same weighted measure, but this
time among the conditional probability distributions be-
fore the edge removal and the non-informative uniform
probability distributionum ∈ [0, 1]m:

um =

(

1

m
,

1

m
, · · · ,

1

m

)

,

wherem = |Dom(ADE
)|. If pPar(DE)

DE
(a) = um for all

a ∈ Dom(Par(ADE
)), then knowing the assignment of

values toAPar(ADE
) is completely non-informative in pre-

dicting the value ofADE
. Also, assuming|D| is a multiple



of m, the m-block partition onD which corresponds to the
finite probability distributionum, πum = {B1, · · ·Bm}

where|B1| = · · · = |Bm| = |D|
m

is referred to asm-block
uniform partition ofD and it has the maximum entropy ,
H(πum) = log2(m), over all possible partitions ofD with
m blocks.

Definition 3.1 The distribution distortioncaused by re-
moving the set of edgesE from the BNSBs denoted by
DDBs

(E) whereDE ∩ Par(DE) = ∅, is defined as

∑

a P (APar(DE) = a) · KL(pPar(DE)
DE

(a), pQE

DE
(a[QE ]))

∑

a P (APar(DE) = a) · KL(pPar(DE)
DE

(a), um)
,

where DE and SE are defined as before andQE =
Par(DE) − SE . Also the sums are over alla ∈
Dom(APar(DE)).

Theorem 3.2 We have:

DDBs
(E) =

H(πADE |πAQE ) − H(πADE |πAPar(DE))

H(πum) − H(πADE |πAPar(DE))
,

wherem = |Dom(ADE
)|.

Proof. See Appendix A.

Corollary 3.3 We have0 ≤ DDBs
(E) ≤ 1.

Proof. Since QE ⊆ Par(DE), we haveπAPar(DE) ≤
πAQE . By the monotonicity property of conditional en-
tropy with respect to its second argument we have:

H(πADE |πAPar(DE)) ≤ H(πADE |πAQE ).

Also,

H(πADE |πAQE ) ≤ H(πADE |{D}) = H(πADE ).

But we know,

H(πADE ) ≤ H(πum).

The result follows immediately.

Theorem 3.4 We haveDDBs
(E) = 0 if and only if

P (ADE
= bi | APar(DE) = a) =

P
(

ADE
= bi | A(Par(DE)−SE) = a[Par(DE) − SE ]

)

for all i, 1 ≤ i ≤ m, anda ∈ Dom(APar(T )).

Proof. Note that we implicitly assume thatP (APar(DE) =
a) 6= 0 because, otherwise,P (ADE

= bi | APar(DE) =
a) is undefined. The statement follows from the second
property of theKL measure.

Theorem 3.5 Let E andE′ be two sets of edges of BNS
Bs. Then, ifPar(DE) ∩ DE = ∅, DE = DE′ andSE ⊆
SE′ , we haveDDBs

(E) ≤ DDBs
(E′).

Proof. SinceSE ⊆ SE′ , we haveQE′ ⊆ QE . Then,
by the monotonicity property of conditional entropy with
respect to second argument we have,

H(πADE |πAQE ) ≤ H(πADE |πAQ
E′ ).

The result follows immediately.
The global search for a set of edges to be pruned

to simplify a BNSBs can be very expensive. Alterna-
tively, we can examine local structures defined by a node

and its set of parent nodes along with the set of parent-
child edges. That is, we can setDE to be a set of sin-
gle node, and consider different subsets of its set of par-
ents asSE . Then, we seek a subset such that theDDBs

is close to zero. Since if we prune a setE of incom-
ing edges atX such thatSE ⊆ Par(X) andDDBs

(E)

is close to zero, thenpPar(X)
X (a) ≈ pQE

X (a[QE ]) for all
a ∈ Dom(Par(X)) by Theorem 3.4. This, in turn implies
P (X|APar(X)) ≈ P (X|AQE

).
But, the directed Markov property implies

P (X|APar(X), And(X)) = P (X|APar(X)).

Then, we have

P (X|AQE
)

≈P (X|APar(X), And(X))

=P (X|AQE
, ASE

, And(X))

Thus, we have

X⊥(ASE
, And(X)) | AQE

.

Finally, by symmetry and decomposition properties of
conditional independence Pearl (1988) we have

X⊥And(X) | AQE
.

Thus, the conditional independence property of a node of a
structure is preserved if we prune a set of incoming edges
of the node with distribution distortion measure close to
zero.

In fact the parent-child fitness measure,

0 ≤
H(πX |πAPar(X))

H(πX)
≤ 1 (2)

introduced in Simovici & Baraty (2008) has some similar-
ity with DDBs

.
We have shown that if this measure is close to zero,

then Par(X) is a suitable parent set for nodeX. Find-
ing parent-child relationships among the attributes ofD

such that the measure (2) is close to zero, increases the
posterior probability ofD conditioned upon the inducing
BNS Bs. As stated before, an increase in this probabil-
ity leads to an increase in the posterior probability of the
structure conditioned on data (assuming a uniform prior
on possible Bayesian network structures for a data set,
as in Cooper & Herskovits (1993)). This happens be-
cause if we choose a set of parents,Par(X) for a nodeX
such thatH(πX |πAPar(X)) is close to zero, then for those
a ∈ Dom(APar(X)) such thatP (APar(X) = a) is non-
trivial, the probabilityP (X = x | APar(X) = a) is close
to 1 for somex ∈ Dom(X) and close to0 for all other
x′ ∈ Dom(X)\{x}.

If P (APar(X) = a) is large andP (X = x | APar(X) =
a) ≈ 1, this implies thatP (APar(X) = a,X = x) is large.
Thus, for a BNSBs that we obtain in this way we have

P (D | Bs)

=

|D|
∏

i=1

∏

X∈Attr(D)

PBs
(X = ti[X] | APar(X) = ti[Par(X)])

=
∏

X∈Attr(D)

∏

x∈Dom(X)
a∈Dom(APar(X))

(

PBs
(X = x | APar(X) = a)

)N(X,APar(X))
(x,a)

,



whereN(X,APar(X))(x, a) is the number of tuplest in D

with t[X] = x and t[Par(X)] = a. Having a BNSBs

such thatPBs
(X = x | APar(X) = a) is close to one for

those pairs(x, a) with largeN(X,APar(X))(x, a) justifies the
increase in posterior probability ofD.

4 Constructing a BNS for a Data Set

Recall that ifE is a set of edges, thenQE = Par(DE) −
SE is the set of nodes that remain parents of the nodes in
DE after the edges inE are removed.

Definition 4.1 Let Ai ∈ Attr(D) for 1 ≤ i ≤ n. Then,
the total measure of fitness lossby pruning the set of con-
verging edgesE at nodeAi in BNSBs, is the number,

α ·
H(πAi |πAQE ) − H(πAi |πAPar(Ai))

log2 |Dom(Ai)| − H(πAi |πAPar(Ai))

+(1 − α) ·
H(πAi |πAQE ) − H(πAi |πAPar(Ai))

H(πAi)
,

denoted byFLα(Ai,Bs, E), where0 ≤ α ≤ 1.

Clearly, this measure is always in the range[0, 1]. Note
that the left component of the sum is the distribution dis-
tortion measure of pruning the set of incoming edges,E.
The right component measures the decrease in reduction
of entropy of nodeAi in presence of its parents after prun-
ing of the setE. Thus, ifFLα(Ai,Bs, E) is close to zero,
then both components will be close to zero. The left com-
ponent ensures that the conditional independence is pre-
served after the pruning ofE, while the right component
preserves the posterior probability ofD conditioned upon
the structure. We can chooseα = 1

2 if we have no pref-
erence over any of the two measures. Note that, ifE is
a set of converging edges at nodeAi andE′ ⊆ E then,
FLα(Ai,Bs, E

′) ≤ FLα(Ai,Bs, E). This enables us to
use the heuristic method explained in Simovici & Baraty
(2008) to find a structure that fits the given data from a
complete network structure. This complete structure can
be induced from a total order of attributes that represents
the expert’s knowledge of the domain.

5 Experimental Results

As our first experiment, we started with a Bayesian net-
work Structure for Neapolitan Cancer data set with5 at-
tributes and10000 rows, pruned different subsets of con-
verging edges at a single node and computed the total mea-
sure of fitness loss for each pruning. Figure 2 visualizes
these pruned structures and their relation with each other
as a graph which we refer to as meta-graph to avoid confu-
sion with the Bayesian graphs for the data set. Also, we re-
fer to the edges and nodes of the meta-graph as meta-edges
and meta-nodes, respectively. Each meta-node represents
a BNS for Neapolitan data set and each edge, a pruning
transformation. That is, the destination meta-node of a
meta-edge is obtained by removing a subset of converging
edges at a single node from the source meta-node of that
meta-edge. Each meta-node is labeled with a letter from
A to I.

Table 1 represents the scores for each meta-node in fig-
ure 2 based on two schemes MDL and C-H score.

Table 2 shows the total fitness loss of each meta-edge
for parameterα = 1

2 and its two components, distribu-
tion distortion and entropy loss for each pruning of set
of edges. The fitness loss measure is strongly correlated
with both scoring schemes (C-H and MDL), which shows
the usefulness of this measure for simplifying a Bayesian
network structure. Also, our measure can be used to as-
sess the importance of various edges. For example, the to-
tal fitness loss measure suggests that the edge that whose

Figure 2: Neapolitan Cancer Bayesian structure was in-
troduced in Cooper (1984). This structure has five nodes:
Metastatic Cancer (MC), Serum Calcium (SC), Brain Tu-
mor (BT), Coma (CM) and Severe Headaches (SH). Meta-
node E corresponds to this structure.

Table 1: Neapolitan Cancer Scores
Structure log(C-H Score) MDL Score

A -7505 24948
B -7586 25214
C -7938 26384
D -7509 24958
E -8120 26986
F -7505 24947
G -7697 25581
H -7713 25632
I -8341 27719

source isSerum Calciumand destination isBrain Tumor
(SC to BT) is important since its removal causes a signif-
icant degradation of both the C-H and MDL scores. On
the other hand, TFL assess the edge from Brain Tumor to
Severe Headaches (SH) as not important. Again CH and
MDL scores confirm this assessment.

Table 2: Neapolitan Cancer Pruning Measures withα =
1
2 .

Edge DD Ent. Loss TFL
AB 0.0526 0.092 0.0723
AC 0.684 0.2067 0.4454
AD 0.0068 0.0035 0.005
AE 0.5777 0.2976 0.4377
AF 0.023 0.001 0.012
AG 0.12155 0.2126 0.167
AH 0.1328 0.2322 0.1825
AI 0.786 0.405 0.5957
BH 0.0846 0.1402 0.1124
GH 0.0128 0.0196 0.0162
DI 0.7848 0.4016 0.593
EI 0.4938 0.1074 0.301

We also applied our approach on a Bayesian network
structure for the ALARM data set, originally described
in Beinlich et al. (1988) as a network for monitoring pa-
tients in intensive care. Table 3 contains scores for this
structure which is labeled as A. Structures B to H are gen-
erated from A by pruning different subsets of parents for
three nodes selected at random. Table 4 shows the exact
parent pruning specification applied to obtain B to H from
A. The child column represents the node we have chosen
to prune its incoming edges. The original parent column
shows the set of parents in the original structure, namely



A. New parent column represents the set of parents of the
child after pruning. The other columns are the same as in
previous example. Note that again, there is a close corre-
lation between fitness loss measure and different scores.
Since the structures are much larger than in previous ex-
periment, pruning an edge or two has a milder effect on
the magnitude of the scores of the global structure than in
the Neapolitan case for about the same total fitness loss
which is a local measure.

Table 3: Alarm Scores
Structure log(C-H Score) MDL Score

A -159636 530806
B -164287 546157
C -162785 541189
D -161372 536491
E -161731 537644
F -161684 537514
G -159767 531136
H -159638 530802

Table 4: ALARM pruning measures with parameterα =
1
2 . The nodes of the ALARM network are traditionally
numbered from1 though37 in the literature. The corre-
spondence between the node numbers mentioned in the ta-
ble and the real attributes are as follows (8, HREKG), (9,
HRSat), (27, Catecholamine), (29, Heart Rate) and (30,
Error Cauter).

Struct. Child O. Par N. Par DD Ent. Loss TFL
B 8 30,29 none 0.4388 0.778 0.6083
C 8 30,29 30 0.297 0.5266 0.4118
D 8 30,29 29 0.1655 0.293 0.2294
E 9 30,29 none 0.2847 0.319 0.3018
F 9 30,29 30 0.2767 0.31 0.2933
G 9 30,29 29 0.0212 0.0237 0.0225
H 29 27 none 0.0006 0.001 0.0008

Finally, Table 5 shows the correlations between TFL
and changes in logarithm of CH score and also between
TFL and changes in MDL score for Neapolitan Cancer and
ALARM structures as a result of edge removals explained
in Tables 2 and 4. Interestingly, although TFL is a local
measure, it has very close correlations with MDL and CH
scores which are global measures.

Also note that while the correlations between TFL and
MDL are positive, the correlations between TFL and CH
score are negative, since as TFL increases, the probability
of the structure conditioned upon the data set decreases
and as a result the CH score decreases.

Table 5: Correlations
Data Set TFL/ log(CH) TFL/MDL

Neapolitan -0.97324 0.9733857
ALARM -0.9983168 0.9980918

6 Conclusions and Future Work

We proposed a method for assessing the degree of influ-
ence of a set of edges of a Bayesian network structure on
local conditional probability distributions. In particular,
for the purpose of constructing a BNS from data, we con-
centrate on pruning a set of converging edges at a single
node. This local pruning has a direct effect on the global
fitness of the Bayesian network structure, measured by
scoring schemes such as MDL or CH, which appear to be
strongly correlated to the distribution distortion proposed
by us. Thus, pruning is useful for adjusting a Bayesian
network structure obtained from an expert’s prior knowl-
edge of the domain to a data set.

The distribution distortion could be used as measure
of importance and interestingness of the edges of the
Bayesian network structure and we intend to further pur-
sue this issue. Another open technical problem is to ex-
plore whether by pruning a complete Bayesian network
structure in the presence of a data set can lead to a net-
work structure that best fits the data.

A Proof of Theorem 3.2

We substitute the Kullbach-Leibler measure in the numer-
ator,

∑

a∈Dom(APar(DE))

P (APar(DE) = a) ·

m
∑

i=1

[

P (ADE
= bi|APar(DE) = a)

· log2

P (ADE
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P (ADE
= bi|AQE

= a[QE ])

]

=
∑
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m
∑
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[

P (ADE
= bi, APar(DE) = a)

· log2 P (ADE
= bi|APar(DE) = a)

]

−
∑
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]
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−
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)
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)
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· log2 P (ADE
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]
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ADE |π
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−
∑
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)
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·
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In the same way we can show,

∑

a∈Dom(APar(DE))

P (APar(DE) = a) · KL(p
Par(DE)
DE

(a), um)

=
∑
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[
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]
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=H(π
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