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Abstract. Data mining algorithms produce huge sets of rules, prac-
tically impossible to analyze manually. It is thus important to develop
methods for removing redundant rules from those sets. We present a solu-
tion to the problem using the Maximum Entropy approach. The problem
of efficiency of Maximum Entropy computations is addressed by using
closed form solutions for the most frequent cases. Analytical and exper-
imental evaluation of the proposed technique indicates that it efficiently
produces small sets of interesting association rules.
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1 Introduction

Many data mining algorithms produce huge sets of rules, practically im-
possible to analyze manually. Typically, those sets are highly redundant
and, so, it is important to develop methods for removing redundant rules
and for helping the user select from thousands of discovered rules those
which are the most interesting from his point of view.

Our goal is to identify a reasonably small, nonredundant set of interest-
ing association rules describing well (and as completely as possible) the
relationships within the data. The paper presents a solution to this prob-
lem using the maximum entropy approach. A subrule of an association
rule I — J is a rule K — J, such that K C I (see [AIS93] or further
sections for a detailed discussion of association rules). In [LHM99,AL99]
a rule is considered not interesting if its confidence is close to that of one
of its subrules. A similar approach (although in a slightly generalized
setting) is used in [PT00] to prune the discovered rules. Also, in [PT00]
a rule is considered interesting with respect to some set of beliefs if it
contradicts at least one of the rules in the beliefs under the so called
monotonicity assumption. A detailed statistical analysis of interesting-
ness of a rule with respect to a single subrule, and algorithms for finding
rules interesting in this setting can be found in [Suz97,SK98].

The current work on evaluation of interestingness considers the influence
of each subrule separately, while in our approach we take into account
the combined influence of all the subrules of a rule. Examples illustrating
the advantages (in our opinion) of our approach are given in Section 3.



In [LHM99], apart from pruning, the authors also find so called direction
setting rules which summarize the dataset. This procedure takes into
account many subrules of a rule and is thus similar to our approach.
However, our approach has the advantage of giving a more precise, prob-
abilistic quantification of the influence of subrules on the interestingness
of a rule.

Another approach to pruning discovered rules is based on selecting a min-
imal set of rules covering the dataset [TKR*95,BVWO00]. Again, those
methods do not take into consideration probabilistic interactions between
rules in the cover. Also, they may prune many interesting rules if they
cover instances already covered by other rules.

A general study of measures of rule interestingness can be found in
[BA99,JS01,HH99].

An overview of the interestingness of a rule with respect to a set of
constraints can be found in [GHK94]. In [GHK94] the authors propose
the method of random worlds and prove that in many important cases
it is equivalent to the principle of maximum entropy.

Maximum entropy principle and other probability models have been also
used in datamining in query selectivity estimation [PMS01]. There has
also been work in applying MaxENT in speech processing [Rat96]

Let us now introduce notation used throughout the paper. If A is an
attribute of a table we denote its domain by Dom(A). When Dom(A) =
{0,1} we say that A is a binary attribute. In this note we use tables
whose headings have the form H = {A, As,...,A,} and consist of
binary attributes. The heading H will be written, as usual as A --- Ap,.
Subsets of H, referred to as itemsets, will be denoted using uppercase Ro-
man letters I, J, K, L, . ... Single attributes will be denoted by uppercase
letters A, B,C,. ...

The domain of a set of attributes I C H, where I = A; A;, ... A
defined as

is

i

Dom(I) = Dom(A;; ) x Dom(A;,) X --- x Dom(4;,) = {0,1}".

Values from domains of attributes will be denoted by corresponding bold-
face lowercase letters, e.g. i € Dom(T).

For h € Dom(H) and I C H, we denote the projection of h on I by h;.
For a probability distribution P on Dom(H) let P; be the marginal prob-
ability distribution on Dom(I), where I C H, obtained by marginalizing
the distribution P. In other words, we have

Pi(i) = {P(h):h; =i}

for i € Dom(I). The joint distribution of H estimated from the data will
be denoted by P.

Let P; and P; be two probability distributions over an itemset I. The
Kullback-Leibler divergence and the chi-squared divergence [KK92] be-
tween P; and P; are defined respectively as

P1(i)
P(i)’

DKL(PI : PII) = Z P](i) log
i€Dom([I)



De(Pr:P)= 3 w_
ieDom(I) I

Intuitively, the divergence represents how much distribution P; differs
from Pj. Since the choice of divergence is immaterial for the rest of the
paper we will simply denote the divergence by D meaning that either
Kullback-Leibler or chi-squared divergence can be used.

A constraint C on the set of attributes H is a pair C = (I,p) where I C H,
p € [0,1]. A probability distribution P satisfies a constraint C = (I,p)
if Pr(1;) = p, where 1; = (1,1,...,1) € Dom(I). Usually the attribute
set will be clear from context, so we will just write 1.

To remove redundancies in the rule set we need to define how interesting
a rule is with respect to a set of constraints introduced by other rules.

Definition 1. A set of constraints C is counsistent if there ezists a joint
probability distribution over H which satisfies all the constraints in C.
Otherwise, C is inconsistent.

In this paper we will only be concerned with consistent sets of constraints.
Dealing with inconsistent sets of constraints is an interesting topic of
future research.

While determining interestingness of rules with respect to a consistent
set of constraints C we will associate with C some joint probability dis-
tribution P¢ over H.

Note that a set of constraints does not have to determine the joint proba-
bility distribution uniquely, and we have to choose one of the conforming
distributions. The three main approaches to this problem are the maxi-
mum entropy principle (MaxENT), the minimum interdependence prin-
ciple, and the maximum likelihood (see [KK92,Adw97]). We use Max-
ENT, but it can be shown [KK92,Adw97], that in most cases all three
approaches are equivalent. Philosophical justifications of the principles
can be found in [KK92,GHK94].

Definition 2. Let C be a consistent set of constraints. A probability
distribution P¢ over H is induced by C if it satisfies the following con-
ditions:
1. PC satisfies all the constraints in C.
2. Of all probability distributions over H satisfying C, P¢ has the largest
entropy.

Tt can be shown [Adw97] that P is unique.

2 Interestingness of A Rule with Respect to A
Set of Constraints

We are now ready to define the interestingness of an association rule with
respect to some set of constraints C. For the definition of association rules
see [AIS93].

The support of an itemset I is supp(l) = 151(1). Rules with empty an-
tecedents are allowed and the support and confidence of such rules are
defined to be equal to the support of their consequents.



The set of constraints generated by an association rule I — J is defined
as

C(I = J) = {(I,supp(])), (I U J,supp(I U J))}.

We introduce two interestingness measures for association rules: the ac-
tive and passive interestingness. The active interestingness reflects the
impact of adding to the current set of constraints the set of constraints
generated by the rule itself. The passive interestingness is determined by
the difference between the confidence estimated from the data and the
confidence estimated starting from the probability distribution induced
by the constraints.

Definition 3. Let C be a consistent set of constraints, I — J be a rule
and D some measure of distribution divergence. Denote by Q* the prob-
ability distribution over I U J induced by the set of constraints K.

The active interestingness of I — J with respect to C is defined as:

|act(c,1— N J) _ D(QCUC(I—rJ),QC).

The passive interestingness of I — J with respect to C is defined as:

P*5(C, I — J) = | conf(I — J) — 82—8; ,

where conf(I — J) denotes the confidence of rule I — J.

Whenever we state facts that hold for either of these measures we simply
talk about rule interestingness I.

3 Pruning redundant association rules

Definition 4. Let R be a set of association rules. Consider an associ-
ation rule I — J, where I,J C H. The rule I — J is l-nonredundant
with respect to R, if I =0 or (C"7(R),I — J) is significantly greater
than 0, where C1'(R) = {C(K - J): K - J€R,K C I}.

Note that we do not specify precisely what ‘significantly greater’ means.
This may mean ‘greater than some threshold’ or ‘statistically significant
at some confidence level’ or some combination of both.

A feature of our definition of redundancy is that it is not influenced by
rules involving attributes not in I U J. For example, suppose that the
joint distribution of attributes ABC is fully explained by rules A — B
and B — C. The rule A — C may still be considered l-nonredundant,
even though it does not introduce any new information.

We believe this is the correct behavior. In general, if we have a long chain
ofruless A B - C — ... > Y — Z, the rule A — Z might not be
easy to see and thus be interesting. Furthermore, the discovered rules
do not necessarily correspond to true causality relations, and it might
be better, at least until the user develops a better understanding of the
dataset, to present him/her also rules indirectly implied by some other
rules.



Another important advantage of our method is that single rules usu-
ally involve very few attributes, and thus local interestingness can be
efficiently determined, even by direct application of the Generalized It-
erative Scaling algorithm, see later in this section.

An algorithm for producing a set of I-nonredundant rules with a single
attribute in the consequent is given below:

Input: A set S of association rules.
Output: Set R of I-nonredundant association rules of S.
1. For each A; € H
R; = {0 — Ai}
k=1
For each rule I — A; € S, |I| = k do
If I — A; is I-nonredundant with respect to R; then
Let R, =R; U {I — Ai}
k=k+1
Goto 4
- R= UAieH Ri

©OND oW

Examples below show how our method compares with other work in cer-
tain situations. Passive interestingness measure IP**® is used, but it is
easy to see that the statements remain valid also for the active interest-
ingness measure 2. See discussion later in this section for details on
how the maximum entropy distributions can be computed.

Ezample 1. Let A, B,C be binary attributes, Pa(1) = Pg(1) = 0.5. The
attribute C depends on A, B according to the following association rules:

assoc. rule|confidence

0—C 0.5
A—=C 0.3
B—C 0.7

AB — C 0.3

Using the approach from [PT00,LHM99,AL99,SLRS99] rules § — C,
A — C and B — C are interesting but AB — C is not, since it is
explained by the rule A — C. We claim however that the rule AB — C
is interesting, since it tells us that when both A and B are ‘present’ it is
A that influences C stronger.

Consider rules § — C, A — C, and B — C. The set of constraints corre-
sponding to them is C = {(4, 0.5), (B, 0.5), (C,0.5), (AC,0.15), (BC,0.35)}.
The MaxENT distribution in this case is

PC— 000 001 010 011 100 101 110 111
~ \0.105 0.105 0.045 0.245 0.245 0.045 0.105 0.105 /)’

and P§pc(1)/P55(1) = 0.5, different from conf(AB — C) = 0.3, mak-
ing the rule AB — C interesting.

Ezample 2. Assume now that the confidences of the rules in the example
above are



assoc. rule|confidence
0—C 0.5
A—-C 0.3
B—C 0.7

AB — C 0.5

Using methods given in [LHM99,AL99] the rule AB — C is interesting,
since its confidence differs from conf(A — C) and conf(B — C).
However, as seen above the maximum entropy distribution induced by
rules § -+ C, A — C and B — C gives P$pc(1)/P55(1) = 0.5, and
the rule AB — C is considered uninteresting. In other words, knowing
the joint influence of AB on C does not give us any more information
over what we have already know from other rules, since A and B are
conditionally independent given C. The above result is intuitive since
when both A and B influence C we would expect their joint influence to
be an ‘average’ between the influences of A and B alone.

Ezample 3. Suppose that attribute A is independent of B, C, and jointly
of BC. Then, P$5c(1)/PS5(1) = P5c(1)/PS(1) = conf(B — C), and
the rule AB — C is considered not interesting using our approach, but
also using methods from [PT00,LHM99,SLRS99,AL99] which explains
their good behavior in practice. However as the examples above show,
those methods can filter out certain interesting rules, and include some
uninteresting ones.

To compute the maximum entropy distribution we can use the General-
ized Iterative Scaling (GIS) Algorithm [Adw97,Bad95,DR72,Csi89].

Let ¢ = {C1,Cs,...,Cy} be a set of constraints, where Cx, = (Ix, pr)-
GIS proceeds by assigning some initial values to each probability in P¢,
and iteratively updating them until all the constraints are satisfied. Let
PC®) denote the distribution after 4 iterations. Updating in each iteration
is performed according to the formula

1

PEO () = POO (h) H[ 'pk ]
h1k=1 PICk(l)(hIk)

for every h € Dom(H), assuming that % = 0. The algorithm is guaran-
teed to converge if Y ;_, fx(h) = c is a constant independent of h. In
practice, this condition can always be satisfied by adding an additional
constraint. See [Adw97,DR72,Csi89] for details and proof of convergence.
The version of the algorithm presented in [Csi89] has the advantage of
being able to cope with distributions with zero probabilities, and this is
the one we use in our implementation.

The disadvantage of the GIS algorithm is its high computational cost
caused by the necessity of computing the marginal probabilities, and in
some cases by the large number of iterations required.

One of the main techniques for speeding up MaxENT computations is
decomposition [Bad95,And74,DLS80]. However, in our case, we will only
use maximum entropy distributions in few variables, and our experiments
showed that decomposition does not give real improvement in efficiency.



We noticed however that the number of rules considered interesting is
small and thus constraints are usually simple. Closed form solutions are
used for a few common cases; in every other situation we use the GIS
algorithm.

Below we describe closed form solutions used in this paper. For attribute
set I denote Ny = |{x € Dom(H) : x; = 1}|.

Theorem 1. LetC = {(J, P;(1)), (K, Px (1)), (KUJ, Pxus(1))}, J, K C
H,KNJ =0 be a set of constraints. The MazENT distribution induced
by C 1is

Pﬁ;—ﬁ(:) ,ifxg=1Axg =1
P et ifx=1Axk#1
W Jifxs#1Axk =1

AROR, 0 # 1 A1

for x € Dom(H).

Proof. For every R C {K, J} denote Xg the set of all x € Dom(H) such
that xy = 1 if I € R and x; # 1 otherwise, for all I € {J, K}. Note
that | X(x, 53| = Nrus, | X(s3| = Ny —Nkus, | X(xy| = Nk —Nkuy, and
|Xy| = |Dom(H)|—Ng —Nj+Nkuys. Also denote P = ExeXR P(x) for
all R C {K J} Note that P{K Jy = PKUJ(I), P{J} = PJ(].) —PKUJ(].)

P{K}—PK(].) PKUJ( ), and P@ —].—PK(l) PJ(].)-l-PKUJ(].).
For a probability distribution P on H that satisfies the the set of con-
straints C we have:

Z Z P(x)log P(x)

RC{K,J}xeXg

- > PRZ P* P) _ > Prlog Py

RC{K,J}  xEXpg Pr RC{K,J}
It suffices to maximize the first term. Notice that for every R C {K, J},
D e X Pp(f) = 1 and thus P/Pf is a probability distribution over Xg,
P9 log £&) is maximized when P(x) =1/|Xr|

and its entropy — >, cx, px 108
R

for every x € Xg. This gives P(x) = Pp/|XRg| for every x € Xr and

completes the proof since every x € Dom(H) belongs to exactly one of

the Xg’s. O
Notice that when J = K, the above result reduces to
Pr1) ifx, =1

Pé(x) = { T ¢y
Pom -y X0 # 1,

for x € Dom(H).

Frequently the only subrules of a rule I — J are § — J, and K — J,
where K C I. In this case the MaxENT distribution induced by the
subrules can be found by application of Theorem 1. If the only subrule
is @ — J, then we can use Equality (1). Our experiments revealed that
using the above theorem reduces pruning time up to a factor of 10.
See [Bad95,PMS01] for a more detailed discussion of methods of speeding
up MaxENT computations.



antecedent— lenses|conf. [supp.
[%] | [%]
JT—soft | 20.8 | 20.8

¢ —hard |16.6 | 16.6

0 —none |62.5 | 62.5

tears=reduced— none | 100 | 50
astigmatism=no,tears=normal—soft |83.3 | 20
astigmatism=yes,tears=normal—hard |66.6 | 16.
8

8

8

age=pre-presbyopic,prescription=hypermetrope,astigmatism=yes—none | 100
age=presbyopic,prescription=myope,astigmatism=no—snone | 100
age=presbyopic,prescription=hypermetrope,astigmatism=yes—none | 100

Table 1. Rules manually selected from the lenses database

4 Experimental Evaluation of the Pruning
Algorithm

In this section we present an experimental evaluation of our pruning
algorithm. We used passive interestingness IP***| and considered a rule
IP**_nonredundant if its passive interestingness was greater than some
threshold. Our experiments have shown that the passive measure of inter-
estingness performed better than the active one 1***, which often pruned
interesting rules with small support. The reason for that is that rules with
small support usually have many attributes in the antecedent, and thus
adding them as constraints affects only very few values in the joint prob-
ability distribution, while active interestingness depends on the whole
distribution. Also, we did not use any minimum confidence threshold,
because pruning provided a sufficient reduction in the number of rules,
and setting a minimum confidence threshold occasionally pruned some
of the interesting rules.

We first present the result of running the algorithm on the lenses
database from the UCI machine learning archive [BM98]. The database
has the advantage of being very small thus allowing manual selection of
rules. Table 1 shows the rules having the lenses attribute as consequent,
selected manually by the authors, providing a complete description of the
dataset. Table 2 shows rules involving lenses attribute as consequent
generated by the Apriori algorithm with minimum support 1 (1 record),
no minimum confidence, post-processed with our pruning algorithm us-
ing passive interestingness with interestingness threshold 0.3. Negative
values of interestingness mean that the presence of the antecedent de-
creases the probability of presence of the consequent.

Rules have been sorted based on the product of support and interest-
ingness, with an extra condition, that a rule cannot be printed until
all its subrules have been printed. Also, note that the lenses dataset
contains multivalued attributes. Since our method only handles boolean
attributes we encode each original attribute with a number of boolean
attributes, one for each possible value of the original attribute.

The Apriori algorithm produced 113 rules having lenses attribute as
the consequent. After pruning, 16 nonredundant rules were left with a
nonempty antecedent. This is a significant reduction.

When rules with all possible consequents are considered, our method
outputs 40 rules out of 890 produced by Apriori. Also, note that all
rules selected manually are also considered interesting by our pruning



antecedent— lenses

T —soft 0 [20.8]20.8

0—hard | 0 [16.6]| 16.6

P—none | 0 |[62.5|62.5

tears=reduced—none |37.5| 100 | 50

astigmatism=no,tears=normal—soft |62.5 |83.3 | 20.8
astigmatism=yes,tears=normal—hard | 50 [66.6| 16.6

tears=normal—none |-37.5| 25 | 12.5

prescription=myope,astigmatism=yes—hard |33.3 | 50
prescription=myope,tears=normal—hard |33.3 | 50
prescription=hypermetrope,astigmatism=yes,tears=normal—none |41.4 |66.6
age=pre-presbyopic,prescription=hypermetrope,astigmatism=yes—none |37.5 | 100
age=presbyopic,prescription=myope,astigmatism=no—none |37.5 | 100
age=presbyopic,prescription=hypermetrope,astigmatism=yes—none |37.5 | 100
age=young,astigmatism=yes—hard |[33.3 | 50
age=young,tears=normal—hard |33.3 | 50

age=presbyopic,astigmatism=no,tears=normal—»soft [-32.9| 50
age=presbyopic,prescription=hypermetrope,astigmatism=no,tears=normal—soft | 49.3 | 100
prescription=hypermetrope,astigmatism=yes,tears=normal—hard |-32.9|33.3

YN NN R e
R R R0 0 W00 W G g

age=young,prescription=hypermetrope,astigmatism=yes,tears=normal—hard |39.3 | 100

Table 2. Rules selected from the lenses database

14
[%] | [%] | [%]
@ —urban=no 0 [22.4]22.4

@ —urban=yes| 0 77.5

immigr=no,region=south—urban=yes|-11.8| 65.7

race=white— urban=yes|-10.6( 66.8
region=west—urban=yes| 12.8 | 90.3 | 16.9

9

8

2

9

antecedent— lenses

race=hisp—urban=yes| 12.4 | 89.
region=south,race=black— urban=yes|-10.6| 66.
immigr=no,region=south—»urban=no | 11.8 | 34.
alone=yes,region=south—urban=yes|-10.5| 66. 5

immigr=before75—urban=yes| 15.9 [93.4 | 9.7
region=neast,race=black—urban=yes| 19.7 | 97.2 | 6.7
region=midw,race=black—urban=yes| 18.9 [ 96.5 | 6.9

age=below75,region=neast —urban=yes| 10.5 | 88 3
race=white—urban=no | 10.6 | 33.1 1

Table 3. Top 12 rules involving urban attribute generated from the elderly people
census data

algorithm, and the top three rules are indeed identical in both cases,
which suggests that really interesting rules are indeed retained by our
algorithm.

We also applied our method to a dataset of census data of elderly people
obtained from The University of Massachusetts at Boston Gerontology
Center. The dataset contains about 330 thousand records, 11 attributes
with up to five values, and is available at http://wwuw.cs.umb.edu/ ~sj
/datasets /census.arff.gz. We used 1% minimum support and no
minimum confidence. The Apriori algorithm produced 247476 rules prac-
tically impossible to analyze by hand. After pruning with 10% interest-
ingness threshold only 2056 were considered nonredundant, and after
further restricting this set to rules with a given consequent attribute
we were able to obtain easily manageable sets of interesting association
rules. Some of them, concerning the urban (whether a person lives in a
city or not) attribute are given in Table 3. Although the pruning time
was quite long (over 4 hours on a 100MHz Pentium machine), it was still
much easier to use our method than to handle hundreds of thousands of
rules manually. See Table 4 for further details.

Table 4 shows the number of rules generated by Apriori compared with
the number of rules considered interesting by our algorithm, as well



min. |interestingness| number of rules  |pruning
dataset support threshold  |Apriori|after pruning|time [s]
Tenses 1(a%) 0.3 890 40 1.3
mushroom* 500(16%) 0.2 164125 5141 418
breast-cancer 30(10%) 0.15 2128 74 2.8
primary-tumor* 30(9%) 0.3 43561 67 21.8
primary-tumor* 30(9%) 0.2 43561 432 24
car 10(0.5%) 0.3 20669 203 11.1
car 10(0.5%) 0.15 20669 580 30.2
splice* 300(9%) 0.5 4847 24 3.0
splice* 300(9%) 0.3 4847 95 5.6
splice* 300(9%) 0.15 4847 290 7.2
splice* 200(6%) 0.3 35705 463 33.8
census(elderly people)|3000(1%) 0.3 247476 194 4801
census(elderly people)|3000(1%) 0.2 247476 621 5683
census(elderly people)|3000(1%) 0.1 247476 2056 15480

* jtemsets of up to 4 attributes

Table 4. Numbers of rules and computation times for various datasets

as pruning time, for various datasets from the UCI Machine Learning
Archive [BM98]. All datasets have been mined with 0 minimum confi-
dence. The interestingness thresholds and minimum supports have been
chosen manually by trial and error such that the unpruned rules provide
a lot of interesting information while keeping their number reasonably
small. For some datasets values for a few different thresholds are given for
comparison. All experiments have been performed on a 100MHz Pentium
machine with 64MB of memory.

5 Conclusions and further research

A method for pruning redundant association rules using the Maximum
Entropy approach has been presented along with methods of speeding up
MaxENT computations by using closed form formulas. The method has
been experimentally shown to produce relatively small sets of interesting
rules in a reasonable amount of time. A detailed analytical comparison
of our method with other approaches has also been presented.

We plan to concentrate our further efforts on including background
knowledge in the mining/pruning process. In most real applications the
user already has a lot of domain knowledge about the dataset and is
only interested in rules which are not implied by what is already known.
We believe that this is the approach one should use to achieve further
reductions in the number of rules and make them more applicable for
the user.

Currently, the selection of interestingness threshold is made by trial and
error. A more formal procedure, possibly based on statistical tests and
confidence levels would be very useful.

Even though our method was fast enough to apply it to real datasets,
we plan to further improve its performance by analyzing which config-
urations of constraints occur most frequently and provide closed form
solutions for them.
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