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1 Introduction
The development of logical formalisms is paralleled by the development of their alge-
braic counterparts and the interplay between logic and algebra often plays an inspiring
role for both fields. Notable examples of this interaction are the theory of Łukasiewicz-
Moisil algebras that was born as an algebraic analogue of the many-valued logics in-
troduced by Łukasiewicz, Epsteins’s latticial treatment of Post algebras [Eps60], or
Cignoli’s study of the connection between Post algebras and Łukasiewicz-Moisil al-
gebras [Cig70]. Algebraic functions in lattices (in Grätzer’s sense [Grä79]), which
we investigate here, are useful in specifying the semantics of connective symbols in
various types of logics.

The purpose of this paper is to study ranges of algebraic functions in lattices and in
algebras that are obtained by extending the standard lattice signature by several unary
operations.

More specifically, we investigate ranges of ternary Łukasiewicz-Moisil algebras,
where we give a characterization of algebraic functions whose ranges are intervals.
Among other results we retrieve a canonical form of functions over three-element
ternary Łukasiewicz-Moisil algebras, a result due to Gr. C. Moisil, one of the founders
of switching theory [Moi57].

Further, we prove that in Artinian or Noetherian lattices the requirement that every
algebraic function has an interval as its range implies the distributivity of the lattice.

A lattice L = (L,∨, ·) is Artinian (Noetherian) if every ascending chain z0 ≤ z1 ≤
· · · (descending chain z0 ≥ z1 ≥ · · · ) is eventually stationary, that is, there is some
natural number p such that zm = zp for all m > p.

A lattice is distributive if it satisfies the distributive law, that is, if a · (b ∨ c) =
(a · b) ∨ (a · c) for every a, b, c ∈ L.

A lattice is modular if it satisfies the modular law, that is, a ≥ c implies a ·(b∨c) =
(a · b) ∨ c for every a, b, c ∈ L.

Definition 1.1 The lattice functions defined on a lattice (L,∨, ·) are:

1. the constant functions of the form fa, given by fa(x1, . . . , xn) = a;
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2. the projection function pn
i , given by pn

i (x1, . . . , xn) = xi;

3. if f, g are lattice functions, the functions f ∨ g and f · g defined by:

(f ∨ g)(x1, . . . , xn) = f(x1, . . . , xn) ∨ g(x1, . . . , xn)
(f · g)(x1, . . . , xn) = f(x1, . . . , xn) · g(x1, . . . , xn)

are lattice functions.

The simple lattice functions have a similar inductive definition that makes use of Parts
(2) and (3) of the previous definition. All lattice functions are isotonic (see, for exam-
ple [Rud01], Proposition 3.3.1).

An interval on a lattice L = (L,∨, ·) is a set of the form:

[a, b] = {x ∈ L | a ≤ x ≤ b},
where a, b ∈ L. Clearly an interval [a, b] is not empty if and only if a ≤ b. We denote
by INT(L) the collection of all intervals of the lattice L = (L,∨, ·).

If L = (L,∨, ·, 0, 1) is a bounded distributive lattice, n ∈ N and 〈n〉 = {1, . . . , n},
then every lattice function f : Ln −→ L can be represented in the form:

(1) f(x1, . . . , xn) =
∨

S⊆〈n〉
(f(δS1, . . . , δSn) · xS)

for all x1, . . . , xn ∈ L (see [Rud01], p.48, Lemma 3.1).
Here xS = xi1 · xi2 · · · · · xi`

, where S = {i1, i2 . . . , i`}, and

δSh =

{
1 if h ∈ S,

0 otherwise.

A De Morgan algebra is an algebra D = (L,∨, ·, N, 0, 1) such that (L,∨, ·, 0, 1) is a
bounded distributive lattice and N is an involutive dual endomorphism of the underly-
ing bounded lattice; the dual endomorphism N is the negation of D.

A three-valued Łukasiewicz-Moisil algebra (LM3) is an algebra (L,∨, ·, N, φ, 0, 1),
where (L,∨, ·, N, 0, 1) is a De Morgan algebra and φ : L −→ L is an idempotent en-
domorphism of the underlying lattice, that is, an endomorphism of (L,∨, ·, 0, 1) such
that φ(φ(x)) = φ(x) for every x ∈ L. It is assumed that φ has the following properties:

φ(x) ·N(φ(x)) = 0;(2)
φ(N(φ(x))) = N(φ(x));(3)
N(φ(N(x))) ≤ φ(x);(4)

φ(x) = φ(y) and φ(N(x)) = φ(N(y)) imply x = y.(5)

Alternatively, φ is denoted by φ2; the dual endomorphism φ1 is defined by φ1(x) =
φ2(N(x)) for x ∈ L. Using this notation, Property (5) can be written as φ1(x) = φ1(y)
and φ2(x) = φ2(y) imply x = y and is known as determination principle for φ1 and
φ2.

LM3-algebraic functions are defined by extending the definition of lattice functions
(Definition 1.1):
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Definition 1.2 The LM3-algebraic functions defined on a LM3-algebra (L,∨, ·, N, φ, 0, 1)
are:

1. the constant functions fa, where a ∈ L;

2. the projection functions pn
i ;

3. for every LM3-algebraic functions f, g, the functions f ∨ g and f · g;

4. for every LM3-algebraic function f , the functions Nf and φf .

The axioms of the three-valued Łukasiewicz-Moisil algebra imply:

x ·N(x) = φ(x) ·N(x)(6)
φ(x) ∨N(x) = 1(7)

x ≤ φ(x),(8)

as it is shown in [BFGR91], pp. 131-133.
Let C(L) be the set of complemented elements of a three-valued Łukasiewicz-

Moisil algebra. It can be shown that C(L) = φ(L) and (L,∨, ·, N, φ, 0, 1) is a Boolean
algebra in which N plays the role of the complement.

Lemma 1.3 Let (L,∨, ·, N, φ, 0, 1) be a three-valued Łukasiewicz-Moisil algebra. We
have:

φ(x) ∨ φ(N(x)) = 1(9)
N(φ(x)) ≤ φ(N(x))(10)

N(φ(N(x))) ≤ x(11)
x ·N(φ(x)) = 0,(12)

for every x ∈ L.

Proof. The first part of the lemma follows from (7) and (8).
Since N is involutive we have N(N(φ(x)) = φ(x), so, by Equality (9), we have

N(N(φ(x)) ∨ φ(N(x)) = 1. This yields N(φ(x)) ≤ φ(N(x)), that is, Equality (10).
Replacing x by N(x) in Inequality (8) gives N(x) ≤ φ(N(x)). This implies

N(φ(N(x)) ≤ N(N(x)) = x, which is Inequality (11).
Finally, the Equality (2) combined with the Inequality (8) gives:

x ·N(φ(x)) ≤ φ(x) ·N(φ(x)) = 0,

which implies
x ·N(φ(x)) = 0.
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2 The Algebraic Functions of ternary Łukasiewicz-Moisil
Algebras

To study the properties of the algebraic functions of LM3 we investigate the submonoid
of the monoid of transformations of the set L generated by I , N , and φ, where I is the
identity mapping of the set L.

Theorem 2.1 Let (L,∨, ·, N, φ, 0, 1) be an LM3 algebra. The submonoid M(I, N, φ)
of the monoid of transformations of the set L generated I , N , and φ consists of
I, N, φ, Nφ, φN,NφN .

Proof. We define inductively the sets of transformations of L, Fk for k ≥ 1 as:

F1 = {I, N, φ}
Fk+1 = {fg | f ∈ Fk and g ∈ F1}

∪{gf | f ∈ Fk and g ∈ F1}.

Since I ∈ Fk it is clear that Fk ⊆ Fk+1 for k ≥ 1. Observe that

F2 = {I, N, φ, Nφ, φN},

because φ2 = φ and N2 = I .
For F3 we have:

F3 = {I, N, φ,Nφ, φN,NφN},
because φNφ = Nφ by Axiom (3). Finally, F4 = F3 because φNφN = NφN and
NφNφ = φ. Thus, Fk = F3 for k ≥ 3 and the submonoid generated by I, N, φ equals
F3.

Theorem 2.2 Let (L,∨, ·, N, φ, 0, 1) be an LM3 algebra. For every LM3-algebraic
function f : Ln −→ L there exists a family of elements {a0} ∪ {ai | i ∈ I} ⊆ L such
that

f(x1, . . . , xn) = a0 ∨
∨

i∈I

ai · gi(x1, . . . , xn),

for (x1, . . . , xn) ∈ Ln, where each gi is a conjunction of the form

gi(x1, . . . , xn) =
qi∏

`=1

t`i(xi`
),

such that t1i , . . . , t
qi

i ∈ M(I, N, φ) and {xi1 , . . . , xiqi
} ⊆ {x1, . . . , xn}.

Proof. The argument is by structural induction on the definition of LM3-algebraic
functions.

The basis case has two subcases. In the first subcase let f be a constant function
whose value is a0. Then,

f(x1, . . . , xn) = a0,
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for (x1, . . . , xn) ∈ Ln.
In the second case let f be a projection, say f(x1, . . . , xn) = xk for x1, . . . , xn ∈

L. The function f can be written as

f(x1, . . . , xn) = 1 · I(xk),

for (x1, . . . , xn) ∈ Ln.
Suppose that the statement holds for the LM3-algebraic functions f, h : Ln −→ L,

that is,

f(x1, . . . , xn) = a0 ∨
∨

i∈I

ai · gi(x1, . . . , xn)

k(x1, . . . , xn) = b0 ∨
∨

i∈I

bi · hi(x1, . . . , xn)

for (x1, . . . , xn) ∈ Ln.
It is immediate that f ·k and f∨k can be written in a similar way by the distributivity

of ∨ over ·. For φf we can write

φ(f(x1, . . . , xn)) = φ(a0) ∨
∨

i∈I

φ(ai) · φ(gi(x1, . . . , xn)),

because φ is an endomorphism. If g(x1, . . . , xn) =
∏qi

`=1 t`i(xi`
), then

φ(g(x1, . . . , xn)) =
qi∏

`=1

φt`i(xi`
),

and every function φt`i belongs to M(I, φ, N).
Finally, since N is a dual endomorphism, we have

N(f(x1, . . . , xn)) = N

(
a0 ∨

∨

i∈I

ai · gi(x1, . . . , xn)

)

= N(a0) ·
∏

i∈I

(N(ai) ∨N(gi(x1, . . . , xn))

= N(a0) ·
∏

i∈I

(N(ai) ∨N(
qi∏

`=1

t`i(xi`
))

= N(a0) ·
∏

i∈I

(N(ai) ∨
qi∨

`=1

Nt`i(xi`
)).

Applying distributivity to the previous equality leads to the desired conclusion for Nf .

Lemma 2.3 The set Cx of conjunctions of the form
∏`

i=1 fi(x), where fi ∈ M(I, N, φ)
for 1 ≤ i ≤ ` and ` ≥ 1 consists of:

0, x, N(x), φ(x), N(φ(x)), φ(N(x)), N(φ(N(x))), φ(x) ·N(x), φ(x) · φ(N(x)).
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Proof. Define inductively the chain of sets of conjunctions Ck (for k ≥ 1) as:

Cx
1 = {f(x) | f ∈ M(I, N, φ)}

Cx
k+1 = Cx

k ∪ Cx
1 · Cx

k.

Clearly, Cx =
⋃{Cx

k | k ≥ 1}. By Theorem 2.1 the set Cx
1 is:

Cx
1 = {x,N(x), φ(x), N(φ(x)), φ(N(x)), N(φ(N(x)))}.

To compute the set Cx
2 we need to consider the equalities:

x ·N(x) = φ(x) ·N(x) (Equality (6)),
x · φ(x) = x,(13)

x ·N(φ(x)) = 0, (Equality (12)),
x · φ(N(x)) = φ(x) ·N(x),(14)

x ·N(φ(N(x))) = N(φ(N(x))).(15)

Equality (13) follows from Inequality (8). Substituting N(x) for x in Equality (6) gives
N(x) · x = φ(N(x)) · x; but N(x) · x = φ(x) ·N(x), again by Equality (6). Thus, we
have shown Equality (14).

Inequality (11) implies Equality (15).
Let us compute now the conjunctions involving N(x). Applying N to Inequal-

ity (8) and taking into account that N is a dual endomorphism yields N(φ(x)) ≤ N(x),
or, equivalently, N(x) ·N(φ(x)) = N(φ(x)).

The same Inequality (8) implies N(x) · φ(N(x)) = N(x).
Inequality (8) and Equality (2) give:

N(x) ·N(φ(N(x))) ≤ φ(N(x)) ·N(φ(N(x))) = 0.

Thus, we have shown that:

N(x) ·N(φ(x)) = N(φ(x))(16)
N(x) · φ(N(x)) = N(x)(17)

N(x) ·N(φ(N(x))) = 0.(18)

To compute the conjunctions involving φ(x) we can use Axiom (2):

φ(x) ·N(φ(x)) = 0.

Also, that by (4) we have φ(x) ·N(φ(N(x))) = N(φ(N(x))).
Conjunctions involving N(φ(x)) are used in the following equalities:

N(φ(x)) · φ(N(x)) = N(φ(x)(19)
by Inequality (10)

N(φ(x)) ·N(φ(N(x))) = N(φ(x) ∨ φ(N(x)))(20)
= N(1)

by Inequality (9)
= 0
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Finally, we observe that:

φ(N(x)) ·N(φ(N(x))) = 0,

by Equality (2). Thus, Cx
2 is the set:

Cx
2 = {0, x, N(x), φ(x), N(φ(x)), φ(N(x)), N(φ(N(x))),

φ(x) ·N(x), φ(x) · φ(N(x))}.
The equalities:

x · φ(x) ·N(x) = x ·N(x) = φ(x) ·N(x), by Equality (6),
x · φ(x) · φ(N(x)) = x · φ(N(x)) = φ(x) ·N(x), by Equality (14)
N(x) · φ(x) ·N(x) = φ(x) ·N(x),
N(x) · φ(x) · φ(N(x)) = N(x) · φ(x), by Inequality (8),
φ(x) · φ(x) ·N(x) = φ(x) ·N(x),
φ(x) · φ(x) · φ(N(x)) = φ(x) · φ(N(x))
N(φ(x)) · φ(x) ·N(x) = 0, by Axiom (2)
N(φ(x)) · φ(x) · φ(N(x)) = 0, by Axiom (2)
φ(N(x)) · φ(x) ·N(x) = φ(x) ·N(x), by Inequality (8)
φ(N(x)) · φ(x) · φ(N(x)) = φ(x) · φ(N(x)),
N(φ(N(x))) · φ(x) ·N(x) = 0, by Equality (12)
N(φ(N(x))) · φ(x) · φ(N(x)) = 0, by Axiom (2),

allow us to conclude that Cx
3 ⊆ Cx

2 , and therefore, that Cx
3 = Cx

2 .
Assuming that Cx

k = Cx
2 , it follows that Cx

k+1 = Cx
2 ∪ Cx

1 · Cx
2 = Cx

3 = Cx
2 , which is

precisely the equality we intended to prove.

Theorem 2.4 Let (L,∨, ·, N, φ, 0, 1) be an LM3 algebra. For every algebraic function
f : L −→ L there exist a1, . . . , a9 ∈ L such that:

(21)
f(x) = a1 · φ(x) ·N(x) ∨ a2 · φ(x) · φ(N(x)) ∨ a3 ·N(φ(N(x)))
∨a4 · φ(N(x)) ∨ a5 ·N(φ(x)) ∨ a6 · φ(x) ∨ a7 ·N(x) ∨ a8 · x ∨ a9,

for every x ∈ L.

Proof. By Theorem 2.2 an LM3-algebraic function f : L −→ L can be written as:

f(x) = a0 ∨
∨

i∈I

ai · gi(x),

where each gi is a conjunction:

gi(x) =
qi∏

`=1

t`i(x),

such that t1i , . . . , t
qi

i ∈ M(I, N, φ). In view of Lemma 2.3 we obtain the desired
Equality (21).

We retrieve now a result obtained in [Moi57], which highlights the significance of
Theorem 2.4. Moisil obtained the formula contained by the next corollary starting from
the known completeness of L3.
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Corollary 2.5 Let L3 = {0, 1
2 , 1} be the three-element LM algebra. Every function

f : L3 −→ L3 can be written as:

(22) f(x) = f

(
1
2

)
· φ(x) · φ(N(x)) ∨ f(1) ·N(φ(N(x))) ∨ f(0) ·N(φ(x)),

for x ∈ L3.

Proof. Suppose first that f is an algebraic function. Then, Theorem 2.4 yields:

f(0) = a4 ∨ a5 ∨ a7 ∨ a9,

f(1) = a3 ∨ a6 ∨ a8 ∨ a9,

f

(
1
2

)
= (a1 ∨ a7 ∨ a8) · 1

2
∨ a2 ∨ a4 ∨ a6 ∨ a9.

In particular, the algebraic functions for which

a1 = a4 = a6 = a7 = a8 = a9 = 0

satisfy f(0) = a5, f(1) = a3, f( 1
2 ) = a2 and, since a5, a3, a2 can be chosen arbitrar-

ily, it follows that these functions comprise in fact all functions f : L3 −→ L3. By
substituting these values in Equality (21) we obtain the desired Equality (22).

Note that the range of f fails to be an interval if and only if Ran(f) = {0, 1}, that
is, if and only if {a5, a3, a2} = {0, 1}.

2.1 Equations in LM3
We now return to the study of LM3 algebras. To resolve the equation f(x) = 0, where
f is an algebraic function of an LM3 algebra we use the determination principle by
requiring that φ(f(x)) = 0 and φ(N(f(x)) = 1.

Clearly, a9 = 0 is a necessary condition of consistency for f(x) = 0.
Let bi = φ(ai) and ci = φ(N(ai)) for 1 ≤ i ≤ 9. Note that bi ∨ ci = φ(ai) ∨

φ(N(ai)) = 1 by Equality ( 9). Further, let X = φ(x) and Y = φ(N(x)). Note that
both belong to the center of the algebra and, by Equality (9), we have X ∨ Y = 1. The
elements N(X) and N(Y ) are denoted by X ′ and Y ′, respectively.

Lemma 2.6 Let f be an algebraic function of an LM3 algebra. We have the equalities:

φ(f(x)) = (b1 ∨ b2) ·X · Y ∨ b3 · Y ′ ∨ (b4 ∨ b7) · Y
∨b5 ·X ′ ∨ (b6 ∨ b8) ·X ∨ b9,

φ(N(f(x))) = (c2 ∨X ′ ∨ Y ′) · (c3 · c8 ∨ Y )
·(c4 ∨ Y ′) · (c5 · c7 ∨X) · (c6 ∨X ′) · c9.

for every x ∈ L3.
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Proof. We have

φ(f(x)) = b1 · φ(x) · φ(N(x)) ∨ b2 · φ(x) · φ(N(x)) ∨ b3 ·N(φ(N(x)))
∨b4 · φ(N(x)) ∨ b5 ·N(φ(x)) ∨ b6 · φ(x) ∨ b7 · φ(N(x))
∨b8 · φ(x) ∨ b9

= (b1 ∨ b2) · φ(x) · φ(N(x)) ∨ b3 ·N(φ(N(x))) ∨ (b4 ∨ b7) · φ(N(x))
∨b5 ·N(φ(x)) ∨ (b6 ∨ b8) · φ(x) ∨ b9,

which gives the first equality of the lemma.
Starting from the equality:

N(f(x)) = (N(a1) ∨N(φ(x)) ∨ x) · (N(a2) ∨N(φ(x)) ∨N(φ(N(x))))
·(N(a3) ∨ φ(N(x))) · (N(a4) ∨N(φ(N(x))))
·(N(a5) ∨ φ(x)) · (N(a6) ∨N(φ(x)))
·(N(a7) ∨ x) · (N(a8) ∨N(x)) ·N(a9),

by applying φ to both sides one gets:

φ(N(f(x))) = (c1 ∨N(φ(x)) ∨ φ(x)) · (c2 ∨N(φ(x)) ∨N(φ(N(x))))
·(c3 ∨ φ(N(x))) · (c4 ∨N(φ(N(x))))
·(c5 ∨ φ(x)) · (c6 ∨N(φ(x)))
·(c7 ∨ φ(x)) · (c8 ∨ φ(N(x))) · c9

= (c2 ∨N(φ(x)) ∨N(φ(N(x)))) · (c3 · c8 ∨ φ(N(x)))
·(c4 ∨N(φ(N(x)))) · (c5 · c7 ∨ φ(x))
·(c6 ∨N(φ(x))) · c9,

Replacing φ(x), φ(N(x)) by X and Y , and N(X), N(Y ) by X ′ and Y ′, respectively
we obtain the second equality of the lemma.

Thus, we have the system of equations in X, Y :

(b1 ∨ b2) ·X · Y ∨ b3 · Y ′ ∨ (b4 ∨ b7) · Y ∨ b5 ·X ′ ∨ (b6 ∨ b8) ·X ∨ b9 = 0
(c2 ∨X ′ ∨ Y ′) · (c3 · c8 ∨ Y ) · (c4 ∨ Y ′) · (c5 · c7 ∨X) · (c6 ∨X ′) · c9 = 1
X ∨ Y = 1,

where X ′ = N(X), Y ′ = N(Y ), and bi ∨ ci = 1 for 1 ≤ i ≤ n.
Taking into account the consistency conditions b9 = 0 and c9 = 1, the system can

be written as a single equation:

(23)

(b1 ∨ b2) ·X · Y ∨ b3 · Y ′ ∨ (b4 ∨ b7) · Y
∨b5 ·X ′ ∨ (b6 ∨ b8) ·X
∨c′2 ·X · Y ∨ (c′3 ∨ c′8) · Y ′ ∨ (c′4 · Y ) ∨ (c′5 ∨ c′7) ·X ′

∨c′6 ·X ∨X ′ · Y ′ = 0.

Note that bi ∨ c′i = bi ∨ b′ic
′
i = bi for 1 ≤ i ≤ 9.
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Equation (23) can be written as:

(b1 ∨ b2)XY ∨ (b3 ∨ c′8)Y
′ ∨ (b4 ∨ b7)Y ∨ (b5 ∨ c′7)X

′ ∨ (b6 ∪ b8)X ∨X ′Y ′ = 0,

or, equivalently,

(b1 ∨ b2 ∨ b4 ∨ b7 ∨ b6 ∨ b8)XY ∨ (b3 ∨ c′8 ∨ b6 ∨ b8)XY ′

∨(b4 ∨ b7 ∨ b5 ∨ c′7)X
′Y ∨X ′Y ′ = 0.

This equality can be further simplified by absorbing c′i:

(b1 ∨ b2 ∨ b4 ∨ b7 ∨ b6 ∨ b8)XY ∨ (b3 ∨ b6 ∨ b8)XY ′

∨(b4 ∨ b7 ∨ b5)X ′Y ∨X ′Y ′ = 0.

The consistency condition for this equation is:

(b1 ∨ b2 ∨ b4 ∨ b7 ∨ b6 ∨ b8) · (b3 ∨ b6 ∨ b8) · (b4 ∨ b7 ∨ b5) = 0.

If B = b6 ∨ b8 and C = b4 ∨ b7 the last condition can be written as

(b1 ∨ b2 ∨ C ∨B) · (b3 ∨B) · (C ∨ b5) = 0,

which can be written as:

[B ∨ b3 · (b1 ∨ b2 ∨ C)] · (b5 ∨ C) = 0.

Applying distributivity we get:

b5 ·B ∨B · C ∨ b3 · b5 · (b1 ∨ b2) ∨ b3 · C = 0.

This equality is equivalent to the conditions:

(b6 ∨ v8) · (b4 ∨ b5 ∨ b7) = 0,

b3 · (b1 · b5 ∨ b2 · b5 ∨ b4 ∨ b7) = 0.

We obtained the general equation (23) that allows us to extract the values of φ(x)
and φ(N(x)). However, obtaining the value of x is possible when specific properties
of φ and N allow it. One such situation is the result of Theorem 2.9.

2.2 Finite LM Algebras
A result obtained by Gr. C. Moisil in [Moi41] and by R. Cignoli in [Cig69] shows that
every finite algebra LMn is a direct product of subalgebras of Ln = {0, 1

n , . . . , n−1
n , 1}.

Since L3 has only the subalgebras L2 and L3 it follows that every finite algebra in LM3
is a direct product of algebras L2 and L3.

Thus, every algebraic function on L is the product of algebraic functions on L2

and L3, so the range of a function is an interval if and only if the ranges of the com-
ponent functions are intervals, or equivalently, if the range of every L3 component is
an interval. Thus, the problem of identifying the algebraic functions whose ranges are
intervals is reduced to the case L = L3, where we can take advantage of the fact that
C(L3) = L2.

If we try to generalize this approach by imposing directly the condition C(L) =
L2 we could use the equivalent characterization of algebras that satisfy this condition
(Theorem 1.6, p. 288 in [BFGR91]), namely L being a subalgebra of Ln, or L a chain.
Thus, for the case of current interest, L must be a finite chain.
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2.3 The Ranges of Algebraic Functions of LM3
To determine the range of an algebraic function f of LM3 we need to find those y
for which the equation f(x) = y is consistent. This amounts to the consistency of
the equations φ(f(x)) = φ(y) and φ(N(φ(x))) = φ(N(y)), by the determination
principle.

Let Z = φ(y) and T = φ(N(y)). We have Z ∨ T = 1. Thus, by Lemma 2.6, we
have the system S of equations in X, Y :

(b1 ∨ b2) ·X · Y ∨ b3 · Y ′ ∨ (b4 ∨ b7) · Y ∨ b5 ·X ′ ∨ (b6 ∨ b8) ·X ∨ b9 = Z
(c2 ∨X ′ ∨ Y ′) · (c3 · c8 ∨ Y ) · (c4 ∨ Y ′) · (c5 · c7 ∨X) · (c6 ∨X ′) · c9 = T
X ∨ Y = 1,

where X ′ = N(X), Y ′ = N(Y ), and bi ∨ ci = 1 for 1 ≤ i ≤ n.

Lemma 2.7 In an arbitrary Boolean algebra the system S is consistent if and only if

(24)

(b′1 · b′2 · b′4 · b′6 · b′7 · b′8 · b′9 ∨ c′2 ∨ c′4 ∨ c′6 ∨ c′9)
·(b′3 · b′6 · b′8 · b′9 ∨ c′3 ∨ c′6 ∨ c′8 ∨ c′9)
·(b′4 · b′5 · b′7 · b′9 ∨ c′4 ∨ c′5 ∨ c′7 ∨ c′9) · Z · T
∨c2 · c3 · c4 · c5 · c6 · c7 · c8 · c9 · Z · T ′∨
(b1 ∨ b2 ∨ b4 ∨ b6 ∨ b7 ∨ b8 ∨ b9) · (b3 ∨ b6 ∨ b8 ∨ b9)
·(b4 ∨ b5 ∨ b7 ∨ b9) · Z ′T ∨ Z ′T ′ = 0.

Proof. The system S can be written as a single equation:

[(b1 ∨ b2) ·X · Y ∨ b3 · Y ′ ∨ (b4 ∨ b7) · Y ∨ b5 ·X ′ ∨ (b6 ∨ b8) ·X ∨ b9] · Z ′∨
(b′1 · b′2 ∨X ′ ∨ Y ′) · (b′3 ∨ Y ) · (b′4 · b′7 ∨ Y ′) · (b′5 ∨X) · (b′6 · b′8 ∨X ′) · b′9 · Z
∨(c2 ∨X ′ ∨ Y ′) · (c3 · c8 ∨ Y ) · (c4 ∨ Y ′) · (c5 · c7 ∨X) · (c6 ∨X ′) · c9T

′

∨[c′2 ·X · Y ∨ (c′3 ∨ c′8) · Y ′ ∨ c′4 · Y ∨ (c′5 ∨ c′7) ·X ′ ∨ c′6 ·X ∨ c′9] · T
∨X ′ · Y ′ = 0.

The consistency condition for a Boolean equation F (X,Y ) = 0 is F (1, 1) · F (1, 0) ·
F (0, 1) · F (0, 0) = 0. In the case of this equation we obtain:

[(b1 ∨ b2 ∨ b4 ∨ b7 ∨ b6 ∨ b8 ∨ b9) · Z ′ ∨ b′1 · b′2 · b′4 · b′7 · b′6 · b′8 · b′9 · Z
∨c2 · c4 · c6 · c9 · T ′ ∨ (c′2 ∨ c′4 ∨ c′6 ∨ c′9) · T ]

·[(b3 ∨ b6 ∨ b8 ∨ b9) · Z ′ ∨ b′3 · b′6 · b′8 · b′9 · Z ∨ c3 · c8 · c6 · c9 · T ′
∨(c′3 ∨ c′8 ∨ c′6 ∨ c′9) · T ]

·[(b4 ∨ b7 ∨ b5 ∨ b9)Z ′ ∨ b′4 · b′7 · b′5 · b′9 · Z ∨ c4 · c5 · c7 · c9 · T ′
∨(c′4 ∨ c′5 ∨ c′7 ∨ c′9) · T ]

∨Z ′ · T ′ = 0.

The coefficient of Z · T is:

(b′1·b′2·b′4·b′6·b′7·b′8·b′9∨c′2∨c′4∨c′6∨c′9)·(b′3·b′6·b′8·b′9∨c′3∨c′6∨c′8∨c′9)·(b′4·b′5·b′7·b′9∨c′4∨c′5∨c′7∨c′9).

The coefficient of Z · T ′ is:

(b′1·b′2·b′4·b′6·b′7·b′8·b′9∨c2·c4·c6·c9)·(b′3·b′6·b′8·b′9∨c3·c6·c8·c9)·(b′4·b′5·b′7·b′9∨c4·c5·c7·c9).

11



Since bi ∨ ci = 1, we have b′i · c′i = 0, hence c′i ≤ bi, or, equivalently, bi ∨ c′i = bi.
Therefore, the coefficient of Z ′ · T reduces to:

(b1 ∨ b2 ∨ b4 ∨ b6 ∨ b7 ∨ b8 ∨ b9) · (b3 ∨ b6 ∨ b8 ∨ b9) · (b4 ∨ b5 ∨ b7 ∨ b9).

Furthermore, we have b′i ≤ ci, hence b′i ·d∨ ci = (b′i∨ ci) · (d∨ ci) = ci · (d∨ ci) = ci,
then b′i · b′j · d ∨ ci · cj = (b′i · b′j · d ∨ ci) · (b′i · b′j · d ∨ cj) = ci · cj , etc. This shows
that the coefficient of Z · T ′ reduces to c2 · c3 · c4 · c5 · c6 · c7 · c8 · c9. Therefore, the
consistency condition reduces to Equation (24).

Lemma 2.8 Let L be an LM3 algebra, f : L −→ L an algebraic function and let
y ∈ L. Then, a necessary condition for y to be in Ran(f) is that Z = φ(y) and
T = φ(N(y)) satisfy the condition of Lemma 2.7.

Proof. We have y = f(x) for some x, hence (X, Y ) = (φ(x), φ(N(x)) is a
solution of the system S .

The condition in Lemma 2.8 is not sufficient because, although it implies the exis-
tence of a solution (X,Y ) to the system S , this solution is not necessarily of the form
(φ(x), φ(N(x)). However, we can prove sufficiency in a particular case:

Theorem 2.9 Let L3 = {0, 1
2 , 1} be the three-element LM algebra and let f : L3 −→

L3 be an arbitrary function, as described in Corollary 2.5. Then, a necessary and
sufficient condition for an element y ∈ L3 to be in Ran(f) is that Z = φ(y) and
T = φ(N(y)) satisfy the equality:

(25) (b′2∨c′2)·(b′3∨c′3)·(b′5∨c′5)·Z ·T∨c2 ·c3 ·c5 ·Z ·T ′∨b2 ·b3 ·b5 ·Z ·T ′∨Z ′ ·T ′ = 0.

Proof. The arbitrary function f : L3 −→ L3 has the representation given in
Corollary 2.5, which is the representation (21) given in Theorem 2.4 with ai = 0 for
i ∈ {1, 4, 6, 7, 8, 9}. These values for ai imply bi = 0 and ci = 1 for the same values
of i. In view of Lemma 2.8, Z = φ(y) and T = φ(N(y)) should satisfy the condition
of Lemma 2.7, which now reduces to Equality (25).

To prove sufficiency, suppose that (Z, T ) = (φ(y), φ(N(y)) satisfies Equality (25)
which is a specialization of the equality of Lemma 2.7 to the Boolean algebra L2 =
{0, 1} and bi = 0, ci = 1 for i 6∈ {2, 3, 5}. It follows that the corresponding reduced
system S (studied in Lemma 2.7) has a solution (X,Y ). If X = Y = 1, then X =
φ(1

2 ) and Y = φ( 1
2 ); if X = 1, Y = 0, then X = φ(1), Y = φ(N(1)); if X = 0, Y =

1, then X = φ(0), Y = φ(N(0)). Thus, in all cases we have found an element x ∈ L3

such that φ(f(x)) = φ(y) and φ(N(f(x))) = φ(N(y)), hence f(x) = y.

Theorem 2.10 The range of a function f : L3 −→ L3, where L3 = {0, 1
2 , 1} is the

three-valued LM algebra, is an interval if and only if

(b2 ∨ c′2) · (b′3 · c′5 ∨ b′5 · c′3) ∨ b′2 · c′3 · c′5 ∨ c′2 · b′3 · b′5 = 0.

Proof. The range f(L3) of an algebraic function fails to be an interval if and only if
both 1 ∈ f(L3) and 0 ∈ f(L3), but 1/2 6∈ f(L3). In view of Lemma 2.7 this happens
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if and only if Equation (24) has the solutions (Z = 1, T = 0) and (Z = 0, T = 1), but
fails to have the solution (Z = 1, T = 1). This is equivalent to the conditions:

K1 = (b′2 ∨ c′2) · (b′3 ∨ c′3) · (b′5 ∨ c′5) = 1
K2 = c2 · c3 · c5 = 0
K3 = b2 · b3 · b5 = 0

We conclude that f(L3) is an interval if K1 = 0, or K2 = 1, or K3 = 1; equivalently,
f(L3) is an interval if K1 ·K ′

2 ·K ′
3 = 0, which amounts to

(b′2 ∨ c′2) · (b′3 ∨ c′3) · (b′5 ∨ c′5) · (c′2 ∨ c′3 ∨ c′5) · (b′2 ∨ b′3 ∨ b′5) = 0.

Grouping conveniently the factors, this equality can be written in the form:

(b′2 ∨ c′2) · [c′3 ∨ b′3 · (c′2 ∨ c′5)] · [b′5 ∨ c′5 · (b′2 ∨ b′3)] = 0,

or equivalently, taking into account that b′i · c′i = 0.

(b′2 ∨ c′2) · (c′3 · b′5 ∨ c′3 · c′5 · b′2 ∨ b′3 · b′5 · c′2 ∨ b′3 · c′5) = 0,

which is the desired equality because (p ∨ q) · (p · r ∨ q · s) = p · r ∨ q · s.

3 A Characterization of Distributive Lattices
The sets of values of lattice functions on bounded distributive lattices are intervals of
the lattice. This result belongs to R. L. Goodstein [Goo67] (cf. Corollary 3.5., page
55 of [Rud01]). The main result of this section is to show that for an Artinian or
Noetherian lattice the inverse is also true. To this end, we shall prove the following
statement:

Theorem 3.1 Let (L,∨, ·) be an Artinian or Noetherian lattice. If for every lattice
function f : L −→ L the set of values belongs to INT(L), then L is a bounded distrib-
utive lattice.

Proof. To prove that L is bounded consider the projection p1
1, whose set of values

is L. Since L is an interval [z, u], z is the least and u is the largest element of L, so
L is bounded lattice. As usual, we denote the least and greatest elements of L by 0, 1,
respectively.

Let a, b be two arbitrary elements of L. Suppose that L is Artinian and let φ, ψ :
L −→ L be the lattice functions

φ(x) = (a · x) ∨ (b · x)
ψ(x) = x · (a ∨ b).

for x ∈ L. We have φ(x) ≤ ψ(x) for x ∈ L. Since L is bounded and the sets of
values of φ, ψ are intervals, both sets equal [0, a∨b]. We shall prove that φ(x) = ψ(x),
thereby proving the distributivity of L.
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Suppose that ψ(u) = ψ(v), that is, u · (a ∨ b) = v · (a ∨ b). Thus, u · (a ∨ b) · a =
v · (a∨ b) ·a, which yields u ·a = v ·a. Similarly, u · b = v · b. Thus, we may conclude
that φ(u) = φ(v).

Since ψ(x) ∈ Ran(φ) there exists x1 ∈ L such that ψ(x) = φ(x1), hence
ψ(x) ≤ ψ(x1). The process can now be repeated for x1; this yields an element
x2 ∈ L such that ψ(x1) = φ(x2) ≤ ψ(x2), etc. Thus, we obtain a sequence
x = x0, x1, . . . , xn, xn+1, . . . such that:

ψ(x0) = φ(x1) ≤ ψ(x1)
ψ(x1) = φ(x2) ≤ ψ(x2)

...
ψ(xn) = φ(xn+1) ≤ ψ(xn+1)

...

and since L is Artinian, there is p such that:

ψ(x0) < · · · < ψ(xp−1) < ψ(xp) = ψ(xp+1) = · · · .

Taking into account
(26)

ψ(x0) = φ(x1) ≤ ψ(x1) = φ(x2) ≤ ψ(x2) = · · ·
= ψ(xp−2) = φ(xp−1) ≤ ψ(xp−1) = φ(xp) ≤ ψ(xp) = φ(xp+1) ≤ ψ(xp+1),

the equality ψ(xp) = ψ(xp+1) implies φ(xp) = φ(xp+1), which, in turn, implies
ψ(xp−1) = ψ(xp). Repeating this process, we note that the inequalities (26) collapse
into equalities. Since ψ(x0) = ψ(x1) implies φ(x0) = φ(x1) it follows that φ(x0) =
ψ(x0), which is the desired equality.

If L is Noetherian, the dual argument works by replacing the functions φ, ψ by the
functions µ, ν given by:

µ(x) = (a ∨ x) · (b ∨ x)
ν(x) = x ∨ (a · b).

for x ∈ L.
The previous theorem implies immediately the following result:

Corollary 3.2 Let (L,∨, ·) be a finite lattice. If for every lattice function f : L −→ L
the set of values belongs to INT(L), then L is a distributive lattice.

If L is an Artinian or Noetherian lattice that is not distributive, then it is always
possible to find lattice functions whose range is not an interval. For example, suppose
that L is the 5-element diamond lattice M3 shown in Figure 1. It is well known that M3

is a modular, but non-distributive lattice (cf. [Bir73]). For the function φ : M3 −→ M3

given by φ(x) = (a · x) ∨ (b · x) for x ∈ M3 we have Ran(φ) = {0, a, b, 1}. Since
0 ≤ c ≤ 1 and c 6∈ Ran(φ) it follows that the range of φ is not an interval. However,
this set is a sublattice of M3.
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Figure 1: The modular and non-distributive lattice M3
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Figure 2: The non-modular lattice N5

For the pentagon non-modular lattice N5 given in Figure 2 consider the function
φ : N5 −→ N5 given by: φ(x) = (a ·x)∨(b ·x). We have φ(0) = 0, φ(a) = φ(c) = a,
φ(b) = b, and φ(1) = 1. Thus, the set Ran(φ) = {0, a, b, 1} is not an interval; it is
however, a non-convex sublattice of N5, because {a, 1} ⊆ Ran(φ), a ≤ c ≤ 1, but
c 6∈ Ran(φ).

4 Open Issues
It would be interesting to examine ranges of algebraic functions of other lattice-based
algebras (such as Post algebras, or more general subclasses of LM algebras) and ob-
tain characterizations of those algebraic functions whose ranges are intervals. Using
ranges of algebraic functions to characterize modular lattices in a manner similar to
Theorem 3.1 is another possible research topic.
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schemelor cu contacte şi relee. Bul. Mat. al Soc. de Ştiinte Mat. şi Fiz. din
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