
Generating an informative cover for association rules

Laurentiu Cristofor
University of Massachusetts at Boston,

Department of Computer Science,
Boston, Massachusetts 02125, USA

Dan Simovici
University of Massachusetts at Boston,

Department of Computer Science,
Boston, Massachusetts 02125, USA

Abstract

Mining association rules may generate a large num-
bers of rules making the results hard to analyze manually.
Pasquier et al. have discussed the generation of Guigues-
Duquenne–Luxenburger basis (GD-L basis). Using a sim-
ilar approach, we introduce a new rule of inference and
define the notion of association rules cover as a minimal
set of rules that are non-redundant with respect to this new
rule of inference. Our experimental results (obtained us-
ing both synthetic and real data sets) show that our covers
are smaller than the GD-L basis and they are computed in
time that is comparable to the classic Apriori algorithm for
generating rules.

1 Introduction

The number of association rules generated by data min-
ing algorithms can easily overwhelm a human analyst. To
address this problem several methods were proposed. Our
paper continues the line of research from [7] by introducing
a new rule of inference for association rules and by defining
the concept of a cover of the association rules as a minimal
set of rules that are non-redundant with respect to this new
inference rule.

We use the terminology and notations of [9]. Let ��������	�
����
be a table, where

�
is the name of the table,

� ����������	���
is the heading of the table, and

����������� � �
. We

assume that each attribute have
������� �

as its domain. The
projection of a tuple on a set ! �"�

is denoted by #%$!'& .
The tuple over (that consists of 1s is denoted by)�* . An
itemset (is a set of items (�+�

. The support of (, denoted
by supp

� (, is given by supp
� (�-, .0/2143�, /25 *�6 7�8%9;: ,, 3�, . In

addition, supp
�=<4

is defined to be
�
. The closure of an

itemset (is cl
� (� � ��>@? �BA

if #%$ (& �)C* then #%$ ��> & �� �
. An itemset is called closed if it is equal to its closure.
An association rule DFEHG consists of two disjoint non-

empty itemsets D and G , called antecedent and consequent
and denoted by antc

��I
and cons

��I
, respectively. We

refer to the items of a rule
I

by items
��I � antc

��I KJ
cons

��I
. The support of the association rule is the support

of items
��I

. The confidence of the association rule is the
ratio:

conf
��I � supp

�
items

��I �
supp

�
antc

��I � �

If conf
��I � �

, then
I

is called an exact association rule
and denoted by DMLNG ; otherwise,

I
is called an approx-

imative association rule (see [7]). Given a table � , a mini-
mum support value minsupp, and a minimum confidence
value minconf, we seek to generate all valid association
rules (cf. [8]), that is, all rules with support greater or equal
to minsupp and confidence greater or equal to minconf.

To deal with the usual large number of association rules
it is preferrable to generate only the association rules that
cannot be inferred from other rules by using rules of infer-
ence. A minimal set of such association rules was called
basis in [7]. To avoid confusion, we mention here that the
single word “rule” will only be used in the sense of an as-
sociation rule and will never be used to denote an inference
rule. The Guigues-Duquenne basis for exact rules and the
Luxenburger basis for approximative rules are introduced
in [7]; together they form a basis for the valid rules.

The Guigues-Duquenne basis is a minimal set of ex-
act rules from which the complete set of exact rules can
be deduced using as following two inference rules: DOLG �QP LSRUT�D P LVGWR , and DHLVG � GXLSRUTYDHL
R . The Guigues-Duquenne basis does not allow us to infer
the support of the rules and in fact, by ignoring the support
values, the first inference rule can lead to rules that have in-
ferior support compared to the rules used in its generation.

The Luxenburger basis is a minimal set of approximative
rules from which the complete set of approximative rules
can be deduced using the two properties introduced in [6]:
(1) the association rule DZEOG has the same support and
confidence as the rule cl

� D E cl
� G

, and (2) for any
three closed itemsets D , G , and R , such that D � G � R ,
the confidence of the rule D[E\R is equal to the product
of the confidences of the rules D[E]G and GFE\R , and
its support is equal to the support of the rule G^E[R Both

these properties can be regarded as new inference rules and
they permit the inference of both the support and confidence
of the resulting rules. Together, the Guigues-Duquenne ba-
sis and the Luxenburger basis, provide a minimal basis for
rules, which we will denote as the GD-L basis.

Next, we introduce a new rule of inference for rules.

Theorem 1.1 Let
I ��I��

be two rules such that items
��I�� �

items
��I

and supp
�
antc

��I�� ���
supp

�
antc

��I �
.

Then, supp
��I�����

supp
��I

and conf
��I�� ��

conf
��I

.

This justifies the introduction of the inference rule:

I �
items

��I�� �
items

��I �
supp

�
antc

��I�� ���
supp

�
antc

��I �
I � �

Definition 1.2 If for two rules,
I �

and
I
	

, it is possible to
infer

I
	
from

I �
using Theorem 1.1, then we say that rule

I�	
is covered by rule

I �
(and that

I �
covers

I
	
), and we writeI ��� I
	

. The coverage relation
�

consists of all ordered
pairs of rules

��I � ��I
	�
, such that

I ��� I
	
. If

I ��� I
	
andI
	 � I �

, then
I � ��I
	

are said to be equipotent.

Because of Definition 1.2, we will also refer to the property
of Theorem 1.1 as the coverage rule.

Theorem 1.3 The rules
I �

and
I
	

are equipotent if and
only if items

��I � � items
��I
	�

and supp
�
antc

��I � � �
supp

�
antc

��I
	��
.

Equipotent rules are interchangeable from the point of
view of the coverage relation, that is, if

I �
and

I
	
are equipo-

tent and
I �� I
�

for some
I
�

, then
I
	 � I
�

.

2 Covers for association rules

Theorem 1.1 suggests the following definition:

Definition 2.1 Let � be the set of all valid rules extracted
from a table � . A cover of � is a minimal set � � � , such
that any rule from ����� is covered by a rule in � . A rule
belonging to � is called a � -cover rule.

Theorem 2.2 Let � be a cover of a set of rules � ex-
tracted from a table � . If

I
is a � -cover rule, then for

any
I � ? � such that items

��I � items
��I �

, we have
supp

��I ��
supp

��I���
and conf

��I ��
conf

��I��
and

there is no
I � ? � such that antc

��I � antc
��I �

and cons
��I ��

cons
��I �

. Further, if
I � ��I
	 ? � , then

items
��I � �� items

��I
	�
.

Definition 2.3 An informative cover is a cover where for
each cover rule

I
there is no equipotent rule

I �
such that

antc
��I�� ��

antc
��I

.

Theorem 2.4 Let � be an informative cover of a set of rules
� extracted from a table � . If

I
is a � -cover rule, then there

is no valid rule
I��

such that items
��I�� � items

��I
and

antc
��I�� ��

antc
��I

.

Note that it is possible to have an informative cover ruleI
and a valid rule

I��
, such that items

��I � items
��I��

andA
antc

��I �A�� A
antc

��I�� �A
, as the next example shows.

A cover summarizes the set of valid rules in a similar
way in which the large itemsets summarize the set of fre-
quent itemsets [2]. A cover can also be used to simplify
the presentation of rules to users: initially, only cover rules
could be shown to a user, then the user could select a cover
rule

I
and retrieve a subset of all rules covered by

I
, and

then the process could be repeated. In this manner, the user
could guide his search for rules without being overwhelmed
by their number. A similar type of rule exploration has been
proposed in [5], in the context of the so called direction set-
ting rules.

The following pseudocode describes an algorithm for
generating an informative cover for the set of valid rules.

Algorithm 2.5 (CoverRules) Algorithm for generating an
informative cover for the valid rules.

Let � be a queue that will contain frequent itemsets and
let � be the set of rules in which we will place the cover
rules.

1 Initialize � by enqueuing into it all maximal frequent
itemsets, in decreasing order of their size. � is

<
.

2 If � is empty, then output � and exit; else extract an
itemset (from � .

3 For all strict non-empty subsets (> of (, with � �� ������� , * , � �
, sorted primarily by their support values

(decreasingly) and secondarily by their cardinality (in-
creasingly), do:

3.1 If the rule (> EZ(��B(> is valid, then add it to �
if it is not covered by a rule already in � . Go to
step 2.

3.2 If � � �
and

A (A � �
, then add to � each subset

of (that has size
A (A � �

and that is not already
included in an itemset from � . Continue step 3.

Algorithm CoverRules starts from the set of maximal
frequent itemsets and examines them in decreasing order of
their cardinalities (steps 1–2). For each such itemset (, we
search for a subset ! having maximum support, such that
! EM(��"! is a valid association rule (step 3). Such a rule
is a candidate cover rule and, once found, the search stops
and the rule is added to the set of cover rules � if it is not

covered by one of the rules of � (step 3.1). During the ex-
amination of each subset ! of (, we may encounter some
subsets such that they cannot be used as an antecedent of a
rule based on the items of (. For these subsets, we will have
to verify whether they can be antecedents of rules based on
subsets of (. This is why, in step 3.2 of the algorithm, we
add to � all the subsets of (. Those subsets that are al-
ready included in an itemset of � , however, do not need to
be added. Step 3.2 needs to be performed only once, so we
perform it if the first subset examined in step 3 cannot be
used as an antecedent. The collection � is a queue because
we want to examine the maximal frequent itemsets in de-
creasing order of their size before we examine their subsets
(added in step 3.2). We examine these itemsets in decreas-
ing order of their size because a rule whose set of items
is larger cannot be covered by a rule whose set of items is
smaller. This ensures that a cover rule added to � cannot be
covered by another cover rule that we may discover later.
Each time that we intend to add a rule to � , however, we
still need to check whether that rule can be covered by one
of the rules already in � .

The strategy of examining first the maximal frequent
itemsets and then their subsets, in decreasing order of their
size, guarantees that the set of rules that we generate is min-
imal. Step 3.2 guarantees that all valid rules can be inferred
from the rules in set � . Together, these ensure that the re-
sulting set � is a minimal set of rules from which all valid
rules can be inferred, and thus, � is a cover. The cover is in-
formative because, in step 3, for subsets with same support,
we examine first those with smaller cardinality.

3 Experimental results

The optimized version of CoverRules implemented in
Java is available in ARtool [4]. We tested CoverRules on
several databases. In a first experiment, presented in Ta-
ble 1, we executed the algorithm on the Mushroom database
from the UCI Repository of Machine Learning Databases
[3]. Note that the UCI repository contains two versions of
the Mushroom database. We have used the version contain-
ing fewer rows, which was used in the experiments of [7].

Mushroom database (minsupp = 30%)
minconf Valid rules Cover GD-L Basis

90% 20399 238 382
70% 45147 176 453
50% 64179 159 479
30% 78888 78 493

Table 1. Results for Mushroom database

The cover contains fewer rules than the GD-L basis and
its size decreases as minconf is lowered (see also Fig. 1).

This may seem surprising at first, but is due to the fact
that, as minconf is lowered, more valid rules exist, the re-

�

70% 50% 30%90%

Minimum confidence

�

�
�

�

�

�

�
�

Number of rules

100

200

300

400

500

�

Cover �

GD-L Basis �

Figure 1. Comparative Results on Mushroom
Database

dundancy of these rules is greater, and thus they can be sum-
marized better. In fact, for minconf = 30%, the size of the
cover is identical to the number of maximal frequent item-
sets existing in the mushroom database (for minsupp =
30% there are 78 such maximal frequent itemsets), and this
happens because all rules that can be generated using sub-
sets of a maximal frequent itemset are valid. In this case, the
cover size is one order of magnitude smaller than the size of
the GD-L basis, and three orders of magnitude smaller than
the total number of valid rules.

For minconf = 30%, all cover rules have the item
veil-type = partial as antecedent. Interestingly,
this item is common to all the mushrooms described in the
database, so its support value is 1 — the maximum possi-
ble support value. By looking at a cover rule separately, the
fact that the rule has the most frequent item as antecedent
might make us think that the rule is trivial. Knowing that
this is a cover rule, however, its antecedent being the most
frequent item takes new meaning because it implies that any
rule that we can build from the items of the cover rule will
be a valid association rule. Usually, the most frequent items
are known to the users of the database, so a cover rule hav-
ing such an item as antecedent can be easily interpreted,
even without the help of the computer.

In the case of the Mushroom database, the CoverRules
algorithm is about as fast as the Apriori ap-genrules proce-
dure for generating all valid rules, which was described in
[1]. Both algorithms finished their processing in a couple
of seconds, so we do not include their detailed time results
here.

To test the on synthetic data we generated database
SPARSE with 100,000 transactions of average size 10, hav-
ing 100 items, and containing 300 patterns of average size 5.
We mined SPARSE for minsupp = 5% and discovered 207
maximal frequent itemsets. For all our experiments on this

database, the times taken by CoverRules and ap-genrules
were well below 1 second so we omit them again. The num-
ber of rules discovered and the corresponding cover size are
presented in Table 2.

SPARSE database (minsupp = 5%)
minconf Valid rules Cover

90% 3 2
80% 19 13
70% 42 25
60% 87 55
50% 186 124
40% 321 196
30% 455 240
20% 658 257
10% 880 194
5% 880 194
1% 880 194

Table 2. Results for SPARSE database

Note that the cover size increases initially as minconf
decreases. This happens because the database is sparse,
so the redundancy is poor and rules that are discovered
when the confidence threshold is lowered do not necessar-
ily allow the inference of rules with higher confidence. For
minconf = 10%, we obtain all valid rules and lowering the
confidence threshold further does not bring any new rules.
In fact, the 194 cover rules correspond to the maximal large
itemsets that have cardinality greater than one, since there
are 13 such maximal frequent itemsets of size one.

For our final experiment, we generated a dense synthetic
database, which we will call DENSE, with 100,000 transac-
tions of average size 15, having 100 items, and containing
100 patterns of average size 10. Our strategy for obtaining
dense synthetic databases consists of choosing fewer and
longer patterns. We mined this database for minsupp =
5% and we obtained 3,182 maximal frequent itemsets. For
this experiment, the times taken by the CoverRules and
ap-genrules algorithms became noticeable and we include
them in Table 3.

Again, for this dense database, the cover size generally
tends to decrease as we lower the confidence threshold. All
valid rules are discovered for confidence 5%, so lowering

DENSE database (minsupp = 5%)
minconf Valid rules ap-genrules Cover CoverRules

Time(seconds) Time(seconds)
90% 87722 9 8875 215
80% 344001 30 9375 236
70% 511191 46 9020 220
60% 574554 49 7878 178
50% 603861 50 6483 130
40% 630706 52 6506 133
30% 656724 51 5496 104
20% 682076 53 5674 99
10% 703373 52 3416 41
5% 703924 52 3181 37
1% 703924 52 3181 37

Table 3. Results for DENSE database

minconf further does not result in more rules. There is
only one maximum frequent itemset of size one, which ac-
counts for the difference between the number of maximal
frequent itemsets and the cover size obtained in this case.
The time taken by the rule generation algorithms is more
significative and allows us to notice that CoverRules’s per-
formance tends to improve with the lowering of the confi-
dence threshold, while ap-genrules tends to take more time
as minconf is decreased. ap-genrules runs initially faster
than CoverRules, which performs better for lower values
of minconf. These results, however, do not include the
time necessary to output the generated rules. The space re-
quirements of ap-genrules are more significant than those
of CoverRules, and in some experiments we had to increase
the memory available to the Java Virtual Machine so that
ap-genrules would not run out of memory.

As expected, the performance of CoverRules, as well
as that of ap-genrules, slows down when the databases are
denser, and when the number of maximal frequent itemsets
increases. The performance of the algorithms varies differ-
ently with the change of minconf. For dense databases,
the size of the cover is one–two orders of magnitude smaller
than the number of valid rules and shows the tendency of
getting smaller as the redundancy in the generated rules in-
creases.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules. RJ 9839, IBM Almaden Research Center, Al-
maden, California, 1994.

[2] R. J. Bayardo. Efficiently mining long patterns from
databases. In Proceedings of ACM-SIGMOD International
Conference on Management of Data, pages 85–93, 1998.

[3] C. L. Blake and C. J. Merz. University of California,
Irvine: Repository of machine learning databases, 1998.
http://www.ics.uci.edu/ � mlearn/MLRepository.html.

[4] L. Cristofor. ARtool: Association rule mining algorithms and
tools, 2002. http://www.cs.umb.edu/ � laur/ARtool/.

[5] B. Liu, W. Hsu, and Y. Ma. Pruning and summarizing the
discovered associations. In Proceedings of the 5th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 125–134, 1999.

[6] M. Luxenburger. Implications partielles dans un con-
texte. Mathématiques, Informatique et Sciences Humaines,
29(113):35–55, 1991.

[7] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Closed
set based discovery of small covers for association rules. In
Proceedings of the 15th Conference on Advanced Databases,
pages 361–381, 1999.

[8] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient
mining of association rules using closed itemset lattices. In-
formation Systems, 24(1):25–46, 1999.

[9] D. A. Simovici and R. L. Tenney. Relational Database Sys-
tems. Academic Press, New York, 1995.

