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Abstract

We investigate charactizations of n-argument Boolean functions in the
class of functions defined on Boolean algebras and we extend our previous
results centered around the approximation of non-Boolean functions by
Boolean functions. We also generalize of the notions of upper and lower
semi-Boolean functions to the case of n-variable functions.

1 Introduction

The purpose of this paper is to extend several results established for one-
argument Boolean and non-Boolean functions over Boolean algebra (see [RS91,
MR&0]) to the case of functions of several arguments. This work is motivated
by the substantial body of research involving the use of set-valued non-Boolean
functions in circuit design [AKH89, KH88, Aok93, AH93, AKH92, AKH91]
and [AKH90].

Let B = (B,V,-,,0,1) be a Boolean algebra, where B is a set, V and - are
binary operations on B called disjunction and conjunctions, respectively, ’ is a
unary operation, called the complementation operation, and 0, 1 are two special
elements of B, with 0 # 1 such that the usual axioms of Boolean algebras are
satisfied as given in [Rud74] or [Hal74].

Elements of B"™, where n > 1 will be denoted by capital letters X,Y, ...,
while elements of the algebra B will be denoted with small letters. Boolean
functions will be denoted with small letters f, g, .... Arbitrary functions will be
denoted by capital letters: F,G, .. ..

If z € B and a € {0,1} we use the notation

a z ifa=1
T = ! M —
' ifa=0.

Note that a* = 1 for @ € {0,1}. If X = (z1,...,2,) € B" and A =
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(ay,...,a,) € {0,1}", define X4 as x{* ---z%. We have

jqo_Jrifa=c
o ifA#£C,

for every A, C € {0,1}". Also, if A # C, we have X4 X¢ = 0 for every X € B".

The binary operation “+” is defined on B by = +y = zy' V 2’y for z,y € B.
An easy argument by induction on n shows that if z1,...,2, € B such that
zizj =0for 1 <4,j <mnandi#j, then

Vo= Y a

1<i<n 1<i<n
If X = (x1,...,2,) € B", then we denote x; Va5V ---V z,, by XV.

Lemma 1.1 Let B = (B,V,-,",0,1) be a Boolean algebra and let XY € B™.
We have XAY 4 =0 for every A € {0,1}" if and only if X =Y.

Proof. Choose i such that 1 < ¢ < n. For Z € B” denote by Z; € B"~!
the tuple (21,...,2i—1,%it1,---»>2n). The condition X4Y4 = 0 for every A €
{0,1}" implies that X;“YiA"x?i y?* = 0. Consequently, X{'YV, %z y® = 0 for
every C' € B" !, so

Vo XY afyi=0
Ccef{o,1}»—1

Thus, zj*y;* = 0 for every a; € {0,1}, that is, z;y; = 0 and z}y} = 0. The first
inequality implies z; < y}; the second implies y; < (z})" = x;, so x; = y}. Thus,
X =Y’. The reverse implication is immediate. |

Another useful technical result is given next.

Lemma 1.2 Let B = (B,V,-,,0,1) be a Boolean algebra. If XY € B™, then
1+ Vaeqoyn XAy 4 = (X +Y)V.

Proof. For A € {0,1}" we write A = (a1,...,a,), where a; € {0,1} for
1 <14 <n. Then,

\/ XAyA = Z xXAyA

Ae{o,1}" Ae{o,1}"
n
= Z . Z H(wiyi)“"
ai an 1=1
= H Z(xlyl)al e Z(anyn)a"
i=1 a1 an

n

= @ +2590) - @nyn + 201)
=1
n

= H(1+a¢1 +y1)- - (14 20 + yn).
i=1



Therefore, an application of the DeMorgan law yields the equality:

n
1+ \/ xv*=\(@i+y)=X+Y)V
Ae{0,1} i=1

2 A Characterization of n-argument Boolean Func-
tions

Characterization of Boolean functions in the class of all functions defined on
Boolean algebra has been investigated in various contexts. One of the earliest
such characterization belongs to McColl [McC77, McC78, McC79] who proved
that an n-argument function F : B — B is Boolean if and only if X4 f(X) =
XAf(A) for every A € {0,1}". An equivalent condition that is useful in the
current context is given next:

Theorem 2.1 An n-argument function F' : B™ — B is Boolean if and only if

FX)+Fy)<1+ \/ x*v* (1)
Ae{0,1}"

for every X,Y € B™.

Proof. The condition is sufficient. Indeed, we have

XY(F(X)+F4) < X* |1+ |/ x°4°
ce{o,1}»
< XA+ x4=o0.

Thus, X4 (F(X) + F(A)) = 0; equivalently, we obtain X4F(X) = XAF(A)
for every A € {0,1}™ which is McColl’s characterization of Boolean functions.

Conversely, to prove the necessity, suppose that F' is Boolean and thus, the
McColl’s conditions hold. We can write:

(FX)+FY) 1+ \/ X4
Ae{o0,1}"

= FX)+FY)+ \/ FX)Xv*+ \/ Fy)x*yv?
Ae{0,1}" Ae{0,1}»

= FX)+FY)+ \/ FAXY*+ \/ FA)XY4
Ae{0,1}" Ae{0,1}"

F(X)+ F(Y),



which shows that

FX)+F(Y)<1+ \/ Xx*v~

Ae{0,1}n
|
Lemma j1.2 shows that an equivalent condition to the Equality (1) is:
F(X)+ F(Y) < (X + Y)Y (2)

for every X,Y € B™.

The necessity of the condition (2) was established by McKinsey in [McK36].
Our result shows that this condition is also sufficient and this, it is actually a
characterization of Boolean functions.

Other useful equivalent forms of condition (1) are:

\V XWYA <1+ F(X)+ F(Y) (3)
Ae{o0,1}"
and
(FX)+FY) \/ Xx'v*'=o0 (4)
Ae{0,1}»

for every X,Y € B™.

3 Local Approximation of Non-Boolean Func-
tions

Non-Boolean functions can be locally approximated by Boolean functions. When
the number of such Boolean approximants is small this can lead to cheaper im-
plementations of non-Boolean functions.

Let F': B® — B be a function. Define the set B C B" by:

BY={UeB" | FX)+FU)<1+ \/ X*U"}.
Ae{0,1}»

The binary relation ~F is given by X ~r Y if BY = BE.

It is easy to verify that the relation ~p is an equivalence on B™. The
equivalence class of an element X € B" will be denoted by (X)r. Note that if
Y € (X)p, then Y € B%.

Forn =1, X = (2),W = (w), and we have 1+ \/ 4¢3 XAWA =1+
20w’ + z'w' =1+ (1 +2)(1 + w) + 2w = ¥ + w. Thus, the current definition
reduces to the definition of the equivalence ~r that we introduced in [RS91] for
the case n = 1.

Observe that if X ~p Y, then, by taking W =Y we have FI(X) + F(Y) <
1+ VAG{O,I}" XAY 4. In other words, the equivalence class of X is included in
the set Bx for every X € B".



Let € be an equivalence class of the relation ~ . Define the Boolean function
fe:B™ — B by

fe)y=\ Fv)- \/ utv?
YeC Ae{o,1}»

for U € B™. Equivalently, the function fe can be written as
fe@ =\ (\/ F(Y) -YA> vt
Ae{0,1}" \YeC
for U € B™. Then, fe is also given by:
fe(4)=\/ F(v) - v* (5)
Yee
for A € {0,1}".

Theorem 3.1 Let F' : B® — B be a function on the Boolean algebra B =
(B,V,-,0,1). We have F(U) = fix)(U) for every U € (X)r for every X €
B".

Proof. Let U € (X)p. 'Y € (X)p, then U ~p Y, and therefore F(U) +
F(Y) <1+ Vacqonyn UMY, or equivalently, \ 4 g 130 UMY A <14+ F(U) +
F(Y). Consequently,

FY)- \/ UYA<FY)1+FU)+FY)) =FY)F{U). (6)
Ae{0,1}»

Note that we can write

f<X>F(U)

F(U) \V ut]v
Ae{0,1}"
V  Fy)- /) vt
Ye(X)-{U} Ae{0,1}n
= FU)V V  Fy)- /) oty
Ye(X)r—{U} Ae{0,1}"
(because V 49132 = 1)
= F(U)
(because the inequality (6)).

4 A-Boolean Functions

By relaxing the condition from Theorem 2.1 that characterizes Boolean func-
tions one obtains interesting classes of non-Boolean functions that extend to the
case of functions of n arguments the classes of upper and lower semi-Boolean
functions of one-variable introduced in [MR80].



Definition 4.1 Let B = (B, V,-,,0,1) be a Boolean algebra and let F' : B" —
B be a function. For A € {0,1}", F'is an A-Boolean function if F'(X)+ F(Y) <
1+ XAY4 for every X,Y € B™. 0

Note that if F' is A-Boolean for every A € {0,1}", then

FX)+F(Y) < ][] a+xv%
Ae{0,1}"

Z XAyA

Ae{o,1}n

= 1+ Y X4
Ae{0,1}»

!

which is precisely the condition of Theorem 2.1. Thus, a function that is an A-
Boolean function for every A € {0,1}™ is a Boolean function. Note that when
n = 1, every 1-Boolean function is an upper semi-Boolean function and every
0-Boolean functions is a lower semi-Boolean function.

Theorem 4.2 A function F : B® — B is A-Boolean if and only if it satisfies
the McColl’s condition for A, namely XAF(X) = XAF(A) for every X € B".

Proof. Suppose that F is A-Boolean, that is F(X) + F(Y) < 1+ X4v4
for every X,Y € B". Choose Y = A. This implies F(X) + F(A) < 1+ X4 for
every X, hence XAF(X)+ X4F(A) < 0, which implies the McColl’s condition
XAF(X) = XAF(A).

Conversely, suppose that the McColl’s condition X4 F(X) = X4 F(A) holds
for every X. Then, YAF(Y) = YAF(A) and, therefore, we have both

XAYAFR(X) = XAYAFR(Y) = XAYAF(A)
for every X, Y € B". Thus, XAYA(F(X) + F(Y)) = 0, which implies F(X) +
F(Y) <1+ XA4Y4 for every X,Y € B". 1
Note that for any function F': B™ — B the function G : B" — B defined
by G(X) = XAF(X) for X € B" is an C-Boolean function for every C # A
because XG(X) = XCX4AF(X) =0 and X°G(C) = CAF(C) = 0.
Note that if F': B® — B is an A-Boolean function, then we have

F(X) = X“F(A) + F(X) > ooxP (7)
De{0,1}"—{A}

for every X € B™ because Y- ey 1y X = land XA F(X) = X4 F(A). There-
fore, if F' is A-Boolean, then G(X) = XA F(X) is a Boolean function. To prove
this fact note that G(A) = F(A), G(C) =01if C # A, and

0 if O£ A

XOGX) = XOXAF(X) = {XAF(X)if C=4



Therefore, X“G(X) = X“G(C) for every C € {0,1}", which means that G is
indeed Boolean.

Theorem 4.3 A function F : B® — B is A-Boolean if and only if there is an
element k € B and a function K : B® — B such that

F(X)= X%+ K(X) > oooxP
De{0,1}"—{A}

for X € B™. Moreover, F is a Boolean function if and only if K is a D-Boolean
function for every D # A.

Proof. The necessity of the condition follows immediately from Equal-
ity (7). The condition is sufficient because it implies X4F(X) = X4k and
F(A) = k. Thus, XAF(X) = XAF(A), which shows that F is indeed A-
Boolean.

Suppose that F is a Boolean function. Then, XPF(X) = XPF(D) for
every D € {0,1}". Let D be different from A. We have F(D) = K(D), and
XPF(X) = XPK(X), which implies XPK(X) = XPKP. Thus, K is a D-
Boolean function for every D # A. |

5 Chain-Valued Functions

Let B = (B,V,-,,0,1) be a Boolean algebra. A p-chain-valued function is a
function F : B® — B, where F(B™) C {co,...,cp},and 0 =¢cop < 1 < -+- <
¢p—1 < ¢p = 1. The number p is the length of the chain (cg,c1, ..., ¢p).

Initially, we focus our attention on binary functions on Boolean algebras,
that is, on chain-valued functions F' : B™ — B, where the chain is of length 2.
In other words, F': B™ — B is a binary function if f(B™) C {0,1}. For such
functions, the sets BY have a special, simple form.

Lemma 5.1 Let F' : B"™ — B be a binary function on the Boolean algebra
B=(B,V,-,,0,1). If X € B", then BY — {X'} = F"}(F(X)).

Proof. Suppose that U € BY. Then, we have F(X) + F(U) < 1+
Vaeoy XU
If U # X', then by Lemma 1.1, \/ s (g 132 XU # 0, s0

1+ \/ Xxvt<iu,
Ae{0,1}"

which implies F(X) + F(U) = 0 because F' is a binary function. This means

that F(X) = F(U),so U € F1(F(X)). Thus, BY — {X'} C F }{(F(X)).
Conversely, if U € F~Y(F(X)), then F(U) = F(X), so F(U) + F(X) = 0,

which implies U € BY%. 1



Theorem 5.2 Let F : B* — B be a binary function on the Boolean algebra
B=(B,V,-,,0,1). We have

BY = F Y (F(X))u{X'}.
for every X € B".

Proof. Suppose initially, that F(X') = F(X). Then, X’ € F~1(F(X)), so
BY = F~Y(F(X)) by Lemma 5.1. Suppose now that F(X') # F(X). In this
case, we have BY = F~!1(F(X))U{X'}, by the same lemma. In either case the
above equality is verified. |

Note that F~1(F (X)) is the equivalence class [X]p of X relative to kerF. If
F is not constant then there are two such classes, namely F~1(0) and F~1(1).
Thus, the statement of the theorem can also be written as

x =

BE — [X]F leIE[X]F
[X]pU{X'} otherwise.

This allows us to conclude that X ~p Y if and only if
[(X]rU{X'} =[Y]r U{Y'}. (8)

Suppose that X ~p Y.

If F(X) # F(Y), the classes [X]Fr and [Y]F are disjoint. Since [X]|pU[Y]r =
B" the Equality (8) is possible only if [X]r = {Y'} and [Y]r = {X'}, which
means that B™ = {X’,Y'}. This is possible only if B = {0,1} and n = 1.

If F(X)=F(Y)and X # Y, then we must have X', Y' € [X]r = [V]F,
that is, F(X') = F(Y') = F(X) = F(Y). Thus, if n > 1 we have X ~p Y if
and only if F(X)=F(Y)=F(X')=F(Y").

Example 5.3 Let a € B — {0,1}, where we assume that |B| > 2, and let
F : B2 — B be the function defined by:

1 ifzi+22<a

F(z1,22) =
(z1,22) {0 otherwise
for x1, 25 € B. The function F is not Boolean. Indeed, if F' were Boolean we
could write:

F(€U1,£C2) =p+qri +1T2 + ST1T2

for every x;,x9 € B. If 21,25 range in the set {0,1} we obtain immediately
that F'(z1,22) = 1+ x1 + 2. Now, by choosing ;1 = a and zo = 1, we
obtain F(a,1) = 0 because a + 1 £ a. On another hand, 1+ a+ 1 = a, so
F(a,1) = 0 # a. This shows that F' is not Boolean.

Note that we always have F(X) = F(X') for X € B? because if X = (x1,x5),
then z1 + x2 = 2} + ©%. Thus, the relation ~p coincides with ker f and we can
approximate F' using two Boolean functions: fg-1(1) and fp-1(q).



For the function fp-1(;) we can write:

fry(U) = \/UA \/
A

YeF-1(U)

Y

= wugus Vuruha V ujusa V ujug
= (14w +u2)Valus +us)
= (1+U1 +UQ)+(L(U1 +U2)

(because (1 + uy + us) -

= 1+a'(u +us).

a(uy + us)

It is easy to see that fp-1(g) is the constant function 0.

=0)

Next, we consider an example involving a 3-chain-valued function.

Example 5.4 Consider the 4-element Boolean algebra Let B =
where B = {0,a,a’,1}, and the function F : B> —s B, defined by the following

table:
T2
F(z1,22) |0 a d 1
0 01 0 a
T a 1 0 a O
a' 00 a 0 1
1 a 0 1 O

(B,V, 'a’ 701 1)7

Note that this function is a 3-chain-valued function, because its range is the
chain 0 < a < 1. This function is not Boolean because F(0,a) + F(a,a) =
14+0 =1, ((0,a) + (a,a))¥ = (a,0)¥V = a and 1 £ a. The function is clearly
symmetric and, in addition, F(X) = F(X') for every X € B>.

A direct but tedious computation shows that:

Bio,ay = B(o,1) = B(ma’) = B(a,1) = B(a )

B(oo> B(a.q) = B = {(0,a), (a, 0)}

( o = Bl = B —{(La'), (', 1)}

( >—B( o) = B ={(0,0), (a, a))

Biua) = By = B> = {(1,1), (", a")}.

Thus, there are five equivalence classes of ~p:

¢ = {( ) ( ) (aval)v(aa 1)7(a170)1(a’
€ = {(0,0),(a,a)},
C; = {(aa ) (1 1)}1
€, = {(av ) (0 a)}a
¢ = {(Lad).(d D}

= B )

= B0

;a),(1,0), (1,

- B(l,a) - 32

a)},



The corresponding Boolean functions that approximate F' can be obtained from
formula (5):

fe,(A) = a[(0,)*V (a,a)* Vv (a',a)? Vv (1,0)1],
fe.(4) = fe,(4) =0,

fes(4) = (2,001 Vv (0,a)",

fe(4) = (l,a')A Vv (a, l)A,

for every A € {0,1}>. 0

The study on non-binary chain-valued functions is significantly more com-
plicated. We are presenting here several initial results involving such functions.

Let B = (B,V,+,,0,1) be a Boolean algebra and let ¢ € B. Define the
relation X =, YV if (X + Y)Y < a. It is immediate that =, is reflexive and
symmetric. To show that it is transitive suppose that X =, Y and Y =, Z,
where X = (z1,...,2,), Y = (y1,...,Yn), and Z = (21,...,2,). This means
that z; + y; < aand y; + 2; < a for 1 < i < n, that is z; + y; = z;a + y;a
and y; + z; = y;a + z;a. Adding these equalities we obtain z; + z; = (z; + 2)a,
that is z; + z; < a for 1 < i < n, which implies (X + Z)V < a. Thus, =, is an
equivalence for every a € B. Moreover, by Lemma 1.2, =, is a congruence on
B™ for every a € B. Note that =; equals the set B™ x B".

Theorem 5.5 Let Q = {cg,...,cp} be a chain of the Boolean algebra B =
(B,V,-,,0,1). The mapping dg : B® x B® — R defined by

do(X,Y) = k if k is the least number such that (X +Y)V < ¢y,
for XY € B™ is an ultrametric on B™.

Proof. We have X =¢ X; therefore, do(X,X) = 0 for every X € B".
Conversely, if dg(X,Y) = 0 we have (X + Y)Y = 0, and, therefore X =Y.

Suppose now that dg(X,Y) = k and dg(Z,Y) = h. We have z; + z; < ¢
and z;+y; < ¢ for 1 <4 < n. This means that z;+2z; = x;cp+zicr and z;+y; =
zicp +yicn for 1 <4 < n, which, in turn implies z; +v; = ;¢ + 2zi(cp +cx) +yich-
Furthermore, suppose that h < k, which means that ¢, = cpcg. This allows us to
write z;+y; = xicp+2zi(cner+cr) tyicner = (xi+2zi(cp+1)+yicn)cr < ¢, which
shows that dg(X,Y) < max{dg(X, Z),dq(Z,Y)}. Thus, dg is an ultrametric
on B™. |

The sphere centered in X € B" with radius k in the ultrametric space
(B™,dg) will be denoted by

Sk ={W € B" | do(X,W) < k}.
Note that S% = 0.

Lemma 5.6 Let Q = {co,...,cp}, be a chain in the Boolean algebra B =
(B,V,-,,0,1), where 0 = cg < ¢1 < -+~ < ¢p_1 < ¢ = 1. Ifciej,c0 € Q
are such that c; + c; < ci, then either ¢; = ¢;, or we have both c; < ¢ and
Cj S Ck -

10



Proof. Observe first that ¢; < ¢ if and only if ¢; < ¢;. Indeed, the
inequality ¢; + ¢; < ¢ implies ¢; + ¢; = ¢;cp + cjeg. Thus, ¢; < ¢ is equivalent
to ¢; = cjcx, and this, in turn, is equivalent to ¢; = cjcy, which means ¢; < ¢y.

Suppose that ¢; # ¢; and that ¢; < ¢;, and therefore, ¢; < ¢;. This implies
cr = ¢C; = CkCj, 80 ¢;+c; = 0, that is, ¢; = ¢;. This contradicts the assumption
that c;,c; are distinct. So, the single possible conclusion is that we have both
¢; < c¢p and ¢j < . |

The next two results offer the possibility to simplify the computations of the
sets B for chain-valued functions.

Theorem 5.7 For any chain-valued function F : B® — B, where F(B") C
{co,---,¢cpt,and 0 =cog < 1 < -+ < cp_1 < ¢p =14fY € Bx, then for every
J, 0 < j <p, do(X,Y) = k implies either F(X) = F(Y) or both F(X) < ¢
and F(Y) < ¢.

Proof. Since Y € Bx we have F(X)+F(Y) < (X+Y)V. On the other hand,
do(X,Y) = k means that (X + Y)Y < ¢, which implies F(X) + F(Y) < cg.
Since we have F(X),F(Y) € @, by Lemma 5.6, we have either F(X) = F(Y)
or both F(X) < ¢ and F(Y) < ¢g. 1

Theorem 5.8 Let F': B" — B be a chain-valued function , where F(B™) C
{coy..-,¢p}t, and 0 =1co < ¢1 < --- < c¢p_1 < ¢p, =1. For any X € B™ such that
F(X) = ¢; we have (Bx — F"Y(F(X))NSk =0 if k <i and

(Bx —~ FY(F(X) N8k € |J F(¢))-
J<k

ifi < k.

Proof. Let W € (Bx — F}(F(X))) N S%. We have F(W) # F(X) and
F(X)+F(W) < (X+W)V by the definition of Bx. Since W € S% we also have
do(X,W) < k, which means that (X + W)Y < ¢;. Thus, F(X) + F(W) < ck.
By Lemma 5.6, this implies ¢; = F(X) < ¢; and also, ¢; = F(W) = ¢; < ¢.
Thus, W € U<, F~'(¢))-

6 Conclusions

We extended our previous results centered around the approximation of non-
Boolean functions by Boolean functions over Boolean algebras. This extension
involved a new characterization of Boolean functions (obtained by proving the
sufficiency of McKinsey inequality) as well as a generalization of the notions of
upper and lower semi-Boolean functions (introduced by Melter and Rudeanu
in [MR&0] to the case of n-variable functions.

It would be interesting to investigate further the Boolean approximability
of various classes of non-Bollean functions, such as the A-Boolean functions
introduced here, or the generalized Boolean functions introduced in [Tan81,
Tan82, Tan84].
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