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Abstract

We study an algorithm for feature selection that clusters
attributes using a special metric and then makes use of the
dendrogram of the resulting cluster hierarchy to choose the
most relevant attributes. The main interest of our technique
resides in the improved understanding of the structure of
the analyzed data and of the relative importance of the at-
tributes for the selection process.

1 Introduction

The performance, robustness, and usefulness of classi-
fication algorithms are improved when relatively few fea-
tures are involved in the classification. Thus, selecting rele-
vant features for the construction of classifiers has received
a great deal of attention. A lucid taxonomy of algorithms for
feature selection was discussed in [17]; a more recent ref-
erence is [7]. Several approaches to feature selection have
been explored, including wrapper techniques [12], support
vector machines [6], neural networks [11] and prototype-
based feature selection [9] that is close to our own approach.

The central idea of this work is to introduce an algorithm
for feature selection that clusters attributes using a special
metric and, then uses a hierarchical clustering for feature
selection.

Hierarchical algorithms generate clusters that are placed
in a cluster tree, which is commonly known as a dendro-
gram. Clusterings are obtained by extracting those clusters
that are situated at a given height in this tree.

We show that good classifiers can be built by using a

small number of attributes located at the centers of the clus-
ters identified in the dendrogram. This type of data com-
pression can be achieved with little or no penalty in terms
of the accuracy of the classifier produced and highlights the
relative importance of attributes.

An object system is a pair S = (S,H), where S is set
called the set of objects of S, H = {A1, . . . , Am} is a set
of mappings defined on S. We assume that for each map-
ping Ai (referred to as an attribute (or a feature) of S) there
exists a nonempty set Ei called the domain of Ai such that
Ai : S −→ Ei for 1 ≤ i ≤ m. This terminology is con-
sistent with the terminology used in relational databases,
where a table can be regarded as an object system; how-
ever, the notion of object system is more general because
objects have an identity as members of the set S, instead of
being regarded as just m-tuples of values. In this spirit, we
shall refer to t[Ai] as projection of t on Ai.

Let S be a set. A partition on S is a non-empty collection
of subsets of S indexed by a set I , π = {Bi | i ∈ I} such
that

⋃
i∈I Bi = S and i �= j implies Bi ∩ Bj = ∅. The sets

Bi are commonly referred to as the blocks of the partition
π. The set of partitions on S is denoted by PART(S).

An attribute A of an object system S = (S,H) generates
a partition πA of the set of objects S, where two objects be-
long to the same block of πA if they have the same projec-
tion on A. We denote by BA

a the block of πA that consists
of all tuples of S whose A-component is a. Note that for
relational databases, πA is the partition of the set of rows of
a table that is obtained by using the group by A option of
select in standard SQL.

For π, σ ∈ PART(S) we write π ≤ σ if every block B of
π is included in a block of σ, or equivalently, if every block
of σ is an exact union of blocks of π. This partial order



generates a lattice structure on PART(S); this means that
for every two partitions π, π′ ∈ PART(S) there is a least
partition π1 such that π ≤ π1 and π′ ≤ π1 and there is a
largest partition π2 such that π2 ≤ π and π2 ≤ π′. The first
partition is denoted by π ∨ π′, while the second is denoted
by π ∧ π′.

2 Distance between partitions and the Pear-
son index

To introduce a metric on the set of partitions of a fi-
nite set we define the mapping v : PART(S) −→ R by
v(π) =

∑n
i=1 |Bi|2, where π = {B1, . . . , Bn}. The map-

ping v is a lower valuation on PART(S), that is, v(π∨σ)+
v(π ∧ σ) ≥ v(π) + v(σ) for π, σ ∈ PART(S). For ev-
ery lower valuation v the mapping d : (PART(S))2 −→ R

defined by d(π, σ) = v(π) + v(σ) − 2 · v(π ∧ σ) is a met-
ric on PART(S) (see [3, 2, 14]). We will refer to d as the
Barthélemy-Montjardet distance.

Using the cardinalities of the blocks of the partitions we
can write

d(π, σ) =
∑

i

|Bi|2 +
∑

j

|Cj |2 − 2 ·
∑

i

∑

j

|Bi ∩ Cj |2,

where π = {B1, . . . , Bn} and σ = {C1, . . . , Cp}. This
metric was used for the development of an incremental clus-
tering algorithm[15]. In this paper we use it to cluster at-
tributes.

For the partitions π = {B1, . . . , Bn}, σ =
{C1, . . . , Cp} the contingency matrix is the matrix Pπ,σ

whose entries are given by pij = |Bi ∩ Cj | for 1 ≤ i ≤ n
and 1 ≤ j ≤ p. The Pearson χ2 association index can be
written in our framework as:

χ2
π,σ =

∑

i

∑

j

(pij − |Bi||Cj |)2
|Bi| · |Cj | .

It is well-known (see [1]) that the asymptotic distribution of
this index is a χ2-distribution with (n − 1)(p − 1) degrees
of freedom.

Let Mπ and mπ the largest and the smallest size of a
block of a partition π, respectively.

Theorem 2.1 Let S be a finite set and let π, σ ∈ PART(S),
where π = {B1, . . . , Bn} and σ = {C1, . . . , Cp}. We
have:

v(π)+v(σ)−d(π,σ)
2MπMσ

− 2np + |S|2
≤ χ2

π,σ ≤
v(π)+v(σ)−d(π,σ)

2mπmσ
− 2np + |S|2.

The Pearson coefficient decreases with the distance and,
thus, the probability that π and σ are independent increases
with the distance. This suggest that partitions that are cor-
related are close in the sense of the Barthélemy-Montjardet

distance; therefore, if attributes are clustered using the cor-
responding distance between partitions we could replace
clusters with their centroids and, thereby, drastically reduce
the number of attributes involved in a classification without
significant decreases in accuracy of the resulting classifiers.

3 Experimental Validation

We experimented with several data sets from the UCI
dataset repository [4] and, due to space limitations we dis-
cuss only the results obtained with the votes and zoo
datasets, which have a relative small number of cate-
gorical features. In each case, starting from the ma-
trix (d(πAi , πAj )) of Barthélemy-Montjardet distances be-
tween the partitions of the attributes A1, . . . , An, we clus-
tered the attributes using AGNES, an agglomerative hier-
archical algorithm [10] implemented as a component of the
cluster package of system R (see [13]).

Clusterings were extracted from the tree produced by the
algorithm by cutting the tree at various heights starting with
the maximum height of the tree created above (correspond-
ing to a single cluster) and working down to a height of 0
(which consists of single-attribute clusters). A ‘representa-
tive’ attribute was created for each cluster as the attribute
that has the minimum total distance to the other members
of the cluster, again using the Barthélemy-Montjardet dis-
tance. The J48 and the Naı̈ve Bayes algorithms of the
WEKA package [16] were used for constructing classifiers
on data sets obtained by projecting the initial data sets on
the sets of representative attributes.

The dataset votes records the votes of 435 US Con-
gressmen on 15 key questions, where each attribute can
have the value ”y”,”n”, or ”?” (for abstention), and each
Congressman is classified as a democrat or republican. It
is interesting to note that by applying the AGNES clus-
tering algorithm with the Ward method of computing the
inter-cluster distance the voting issues group naturally into
clusters that involve larger issues, as shown in Figure 1. For
example, ”el salvador aid”,”aid to nicaraguan contras”,
”mx missile”, and ”anti satellite test ban” are grouped
quite early into a cluster that can be described as deal-
ing with defence policies. Similarly, social budgetary
legislation issues such as ”budget resolution”, ”physi-
cian fee freeze”, and ”education spending”, are grouped
together.

Two types of classifiers (J48 and Naı̈ve Bayes) were
generated using ten-fold cross validation by extracting cen-
trally located attributes from cluster obtained by cutting
the dendrogram at successive levels. The accuracy of
these classifiers is shown in the table of Figure ??. Our
method identifies the most influential attribute 5 (in this case
”el salvador aid”). So, in addition to reducing number of at-
tributes, the proposed methodology allows us to assess the
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1 handicapped infants
2 water project cost sharing
3 budget resolution
4 physician fee freeze
5 el salvador aid
6 religious groups in schools
7 anti satellite test ban
8 aid to nicaraguan contras
9 mx missile

10 immigration
11 synfuels corporation cutback
12 education spending
13 superfund right to sue
14 crime
15 duty free exports

Classifier Accuracy
Attribute Set Classifiers
(class attribute not listed) J48% NB%
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 96.78 90.34
1,2,3,4,5,6,7,9,10,11,12,13,14,15 96.78 91.03
1,2,3,4,5,6,7,10,11,12,13,14,15 96.55 91.26
1,2,4,5,6,7,10,11,12,13,14,15 95.17 92.18
1,2,4,5,6,10,11,12,13,14,15 95.17 92.64
1,2,4,5,6,10,11,13,14,15 95.40 92.18
1,2,6,8,10,11,13,14,15 86.20 85.28
1,2,8,10,11,13,14,15 86.20 85.74
1,2,8,10,11,14,15 84.13 85.74
1,2,8,10,11,14 83.69 85.74
2,8,10,11,14 83.67 84.36
2,5,10,11 88.73 88.50
2,5,10 84.82 84.82
2,5 84.82 84.82
5 84.82 84.82

Figure 1. Dendrogram of votes Dataset using
AGNES and the Ward method

Attribute Experimental
Selection Results

CSF
Attr. set: 1,2,4,8,9,10,12,13,14
Accuracy for J48: 91.08%
Accuracy for NB: 95.04%

Wrapper with J48
Attr. set: 1,2,4,8,9,12,13
Accuracy for J48: 96.03%
Accuracy for NB: 92.07%

Table 1. Accuracy of classifiers obtained
through attribute selection techniques

relative importance of attributes.
A similar study was undertaken for the zoo database,

after eliminating the attribute animal which determines
uniquely the type of the animal. Starting from a dendrogram
build by using the Ward method shown in Figure 2 we con-
structed J48 and Naı̈ve Bayes classifiers for several sets of
attributes obtained as successive sections of the cluster tree.
The results are shown in the table from Figure 2. Note that
attributes that are biologically correlated (e.g. hair,milk, and
eggs, or aquatic (6), breathes (10), and fins(12)) belong to
relatively early clusters).

The main interest of the proposed approach to attribute
selection is the possibility of the supervision of the process
allowing the user to opt between quasi-equivalent attributes
(that is, attributes that are close relatively to the Barthélemy-
Montjardet metric) in order to produce more meaningful
classifiers. We compared our approach with two existing
attribute set selection techniques: the correlation-based fea-
ture (CSF) selection (developed in [8] and incorporated in
the WEKA package and the wrapper technique, using the
“best-first” and the greedy method as search methods, and
the J48 classifier for the classifier incorporated by the wrap-
per. For the zoo data set we obtained identical attribute sets
with either “best-first” or with the greedy method. The re-
sults are shown in Table 1.

These results suggest that this method has comparable
accuracy to the wrapper method and CSF. However, the tree
of attributes helps to understand the relationships between
attributes and their relative importance.

4 Conclusion and Future Work

Attribute clustering help to build classifiers in a semi-
supervised manner allowing analysts a certain degree of
choice in the selection of the features that may be consid-
ered by classifiers, and illuminating relationships between
attributes and their relative importance for classification.

As stated in [7], in early studies of relevance published
in the late 90s [5, 12], few applications explored data with
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9 backbone
1 hair 10 breathes
2 feathers 11 venomous
3 eggs 12 fins
4 milk 13 legs
5 airborne 14 tail
6 aquatic 15 domestic
7 predator 16 catsize
8 toothed 17 type

Classifier Accuracy
Attribute Set Classifiers
(class attribute not listed) J48% NB%
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 92.07 93.06
1,2,4,5,6,7,8,9,10,11,12,13,14,15,16 92.07 92.07
2,4,5,6,7,8,9,10,11,12,13,14,15,16 87.12 88.11
2,4,5,6,7,8,9,10,11,12,13,15,16 87.12 88.11
2,4,6,7,8,9,10,11,12,13,15,16 88.11 87.12
2,4,6,7,8,9,10,11,13,15,16 91.08 91.08
2,4,6,7,8,9,10,11,13,16 89.10 90.09
2,4,7,8,9,10,11,13,16 86.13 90.09
2,4,7,9,10,11,13,16 84.15 90.09
2,4,7,9,10,11,13 87.12 89.10
4,5,7,9,10,11 88.11 88.11
4,5,7,9,10 88.11 90.09
4,5,9,10 89.10 91.09
4,5,10 73.26 73.26
4,10 73.26 73.26
4 60.39 60.39

Figure 2. Dendrogram of zoo dataset using
AGNES and the Ward method

more than 40 attributes. With the increased interest of data
miners in bio-computing in general, and in microarray data
in particular, classification problems that involve thousands
of features and relatively few examples came to the fore.
We intend to apply our techniques to this type of data.
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