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Preliminaries
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Dissimilarities and Metrics
Let S be a set (patients, phenotypes, clinics, etc).
Dissimilarity: a function

d : S × S −→ R+

such that d(p, q) = 0 if and only if p = q.

d(p, q) measures the dissimilarity between two objects;

if d(p, r) < d(p, q) this means that r resembles more

to p then q does.
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If d is a dissimilarity on S such that

d(p, q) = d(q, p)

for every objects p, q, then d is a symmetric
dissimilarity.

A metric on the set S is a symmetric dissimilarity that
satisfies the triangular inequality:

d(p, q) + d(q, r) ≥ d(p, r)

for every p, q, r ∈ S.
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Examples
• Standard distance on real line:

d(p, q) = |p− q|

• Minkowski distance in R
n:

dk(p,q) =

(

n
∑

i=1

|pi − qi|
k

)
1

k

for p = (p1, . . . , pn) and q = (q1, . . . , qn) ∈ R
n.
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Examples
In R

2:

d1(p,q) = |p1 − q1|+ |p2 − q2|

(Manhattan distance)

d2(p,q) =
√

|p1 − q1|2 + |p2 − q2|2

(Euclidean distance)
d∞(p,q) = lim

k→∞
dk(p,q)

= max{|p1 − q1|, |p2 − q2|}

(Canberra distance)
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-

6

p = (p1, p2)

q = (q1, q2)

|p1 − q1|

|p2 − q2|

R2
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Partitions
PART(S): set of partitions of set S
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Partition π = {B1, . . . , B7}

B1, . . . , B7 are the blocks of π
Metric Methods in Mining – p.9/79



Partitions Partial Order
σ ≤ π if each block C of σ is included in a block of π.
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Let L ⊆ S and π = {B1, . . . , Bn}. The trace of the
partition π on L is:

πL = {Bi ∩ L | 1 ≤ i ≤ k and Bi ∩ L 6= ∅}.

#
#

#
#

#
#�

�
�
�
�
�
�
�
�
�
�
���

�
�

�
�

�
�
e

e
e

e
ee

((((((((((((

E
E
E
E
E
E
E
E

B1

B2 B3

B4

B5

B6

B7

Trace of partition π = {B1, . . . , B7} on set L

L

Metric Methods in Mining – p.11/79



Key Issue for Data Mining:

Defining Dissimilarities and
Metrics for Partitions

Metric Methods in Mining – p.12/79



Shannon’s Entropy
For random variables...
The Shannon entropy is introduced for a random
variable distribution

X :

(

x1 · · · xn

p1 · · · pn

)

isH(X) = −
∑n

i=1 pi log2 pi.
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Shannon entropy
... for partitions
A partition π = {B1, . . . , Bm} on a finite, nonempty
set A generates naturally a random variable:

Xπ :

(

B1 · · · Bm
|B1|
|S| · · ·

|Bm|
|S|

)

We define the Shannon entropy of π as the Shannon

entropy of Xπ.
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Measuring concentration of val-
ues
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H1(π1) = 2.3219

H1(π2) = 2.1709

H1(π3) = 2.0464

H1(π4) = 1.9609
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Gini’s Index

H2(π) = 1−
n
∑

i=1

p2
i
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H1(π1) = 0.80

H1(π2) = 0.79

H1(π3) = 0.72

H1(π4) = 0.68

Metric Methods in Mining – p.16/79



Generalized Entropy of Parti-
tions

Daróczy’s β-generalized entropy of
π = {B1, . . . , Bn}:

Hβ(π) =
1

1− 21−β

(

1−
n
∑

i=1

(

|Bi|

|S|

)β
)

.

For β = 2 we obtain the Gini index. Also,
limβ→1Hβ(π) is Shannon’s entropy

H(π) = −
n
∑

i=1

|Bi|

|S|
log2

|Bi|

|S|
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Set Purity and Entropy
H(πL) measures the impurity of the set L relative to
the partition π: the larger the entropy, the more L is
scattered among the blocks of π.
If π, σ ∈ PART(S), the average impurity of the
blocks of σ relative to π is the conditional entropy of
π relative to σ:

H(π|σ) =
m
∑

j=1

|Qj|

|S|
H(πQj

),

where σ = {Q1, . . . , Qm}.
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Generalized Conditional En-
tropy

For π, σ ∈ PART(S) such that

π = {P1, . . . , Pk}

σ = {Q1, . . . , Qm}

the conditional β-entropyHβ(π|σ) is:

Hβ(π|σ) =
∑m

j=1

(

|Qj |
|S|

)β

Hβ(πQj
)

= 1
(21−β−1)|S|β

(

∑k
i=1

∑m
j=1 |Pi ∩Qj|

β −
∑m

j=1 |Qj|
β
)

.
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Metrics on Partition Sets
López de Mántaras:

d(π, σ) = H(π|σ) +H(σ|π)

Simovici and Jaroszewicz:

dβ(π, σ) = Hβ(π|σ) +Hβ(σ|π)

= 1
(21−β−1)|S|β

(

2 ·
∑k

i=1

∑m
j=1 |Pi ∩Qj|

β

−
∑n

i=1 |Pi|
β −

∑m
j=1 |Qj|

β
)

.

lim
β→1

dβ(π, σ) = d(π, σ)
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Tables

A database table τ

is a triple τ = (T,H, ρ)

The header:
H = A1 · · ·An

Dom(Ai): domain of Ai

T

A1 A2 · · · An

t1 a11 a12 · · · a1n

t2 a21 a22 · · · a2n
... ... ... ... ...
tm am1 am2 · · · amn

The content of the table: ρ = {t1, . . . , tm} where
ρ ⊆ Dom(A1)× · · · × Dom(An).
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Partitions induced by Attribute
Sets

Every attribute
set K ⊆ H

induces a
partition πK :

T

· · · ←− K −→ · · ·

t1 · · · k1 · · ·

t2 · · · k1 · · ·

t3 · · · k1 · · ·
... ... ... ...

tl · · · kp · · ·

tl+1 · · · kp · · ·

tl+2 · · · kp · · ·
... ... ... ...

tn−1 · · · kr · · ·

tn · · · kr · · ·
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Classification in Data Mining

Training Set
Initial Data Set CLASSIFIER-

Test Data

?

/ w· · ·

Classification of test data
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Goodman-Kruskal Association
Index and Metric
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The Goodman-Kruskal Coeffi-
cient

Let X , Y be two discrete random variables. The
Goodman-Kruskal coefficient of X and Y is defined
by

GK(X,Y )

=
l
∑

i=1

P (X = ai)

(

1− max
1≤j≤k

P (Y = bj|X = ai)

)

= 1−
l
∑

i=1

P (X = ai) max
1≤j≤k

P (Y = bj|X = ai).

Classification rule: an elementary event is classified in

the class that has the maximal probability.
Metric Methods in Mining – p.25/79



GK Classification Rule
• P (Y = bj|X = ai): the probability of predicting

the value bj for Y when X = ai

An event that has the component X = ai is
classified in the Y -class bj if j is the number for
which P (Y = bj|X = ai) has the largest value.

• The probability of misclassification:

1− max
1≤j≤k

P (Y = bj|X = ai).
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GK(X,Y ) is the expected probability that in a
randomly chosen case the value of Y will be
incorrectly predicted from X .
λY |X is the relative reduction in the probability of
prediction error:

λY |X = 1−
GK(X,Y )

1−max1≤j≤k P (Y = bj)

λY |X is the proportion of the relative error in predicting

the value of Y that can be eliminated by knowledge of

the X-value.
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The Goodman-Kruskal Coeffi-
cient for Partitions

Consider two partitions

π = {B1, . . . , Bl} and σ = {C1, . . . , Ck}.

Define the Goodman-Kruskal coefficient of these
partitions GK(π, σ) as the number:

GK(π, σ) = 1−
l
∑

i=1

max
1≤j≤k

|Cj ∩Bi|

|S|
.
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Partitions and Random Vari-
ables

The partitions π, σ define two random variables

X :

(

1 · · · l
|B1|
|S| · · ·

|Bl|
|S|

)

and Y :

(

1 · · · k
|C1|
|S| · · ·

|Ck|
|S| .

)

such that conditional probability P (Y = j|X = i) is
given by:

P (Y = j|X = i) =
P (Y = j ∧X = i)

P (X = i)
=
|Cj ∩Bi|

|Bi|
.
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Interpretation of GK
For a fixed i, the largest error in predicting Y is:

1− max
1≤j≤k

P (Y = j|X = i) = 1− max
1≤j≤k

|Cj ∩ Bi|

|Bi|
.

The expected value of the largest error in predicting Y
is:

l
∑

i=1

|Bi|

|S|
·

(

1− max
1≤j≤k

|Cj ∩ Bi|

|Bi|

)

= 1−
l
∑

i=1

max
1≤j≤k

|Cj ∩ Bi|

|S|
,

which is exactly GK(X,Y ). Metric Methods in Mining – p.30/79



Properties of GK
• We have GK(π, σ) = 0 if and only if π ≤ σ.
• The function GK is monotonic in its first

argument and dually monotonic in its second:
• If π, π′, σ are three partitions of the set S such

that π ≤ π′, then GK(π, σ) ≤ GK(π′, σ).
• If π, σ′, σ are three partitions of the set S such

that σ ≤ σ′, then GK(π, σ) ≥ GK(π, σ′).
• GK satisfies a triangular inequality:

GK(π, σ) ≤ GK(π, τ) + GK(τ, σ).
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Metric Associated to GK
The Goodman-Kruskal coefficient allows us to define
a metric on PART(S).
Let dGK : PART(S)× PART(S) −→ R be

dGK(π, σ) = GK(π, σ) + GK(σ, π).

for π, σ ∈ PART(S).

The function dGK is a metric on the set PART(S).
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Goodman-Kruskal Coefficient
for Attribute Sets

Let K,L be two sets of attributes of a table.
Define GK(K,L) = GK(πK , πL): the expected error
that occurs when we try to predict the value of t[L]
from the value of t[K].
• If K1 ⊆ K2, then πK2

≤ πK1
, so

GK(K2, L) ≤ GK(K1, L).
• If L1 ⊆ L2, then GK(K,L2) ≤ GK(K,L1).
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Goodman-Kruskal Metric on
Attribute Sets

Define dGK(K,L) = dGK(πK , πL) for any two sets of
attributes K,L.
The new metric can be used for:
• constructing classifiers;
• discretization of continuous attributes;
• attribute clustering, feature selection and data

compression.
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ε-predictors
An ε-predictor for a set of attributes Y is a set of
attributes K such that GK(K,Y ) ≤ ε.

• If K is an ε-predictor for Y , then any superset K ′

of K is also a ε-predictor for Y .
• An ε-predictor such that no of its proper subsets

is an ε-predictor is called minimal.
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An Apriori-like Algorithm for ε-
predictors

Input: A set of attributes H , a target attribute Y , Y 6∈ H and an error level ε.
Output: Set P of all minimal ε-predictors from H .
(1) Cand = {{A} : A ∈ H};
(2) P = ∅;
(3) P = P ∪ {K ∈ Cand : GK(K,Y ) ≤ ε};
(4) Cand = Cand \ P;
(5) Cand = {L ⊆ H : for all K ⊂ L,

|K| = |L| − 1 we have K ∈ Cand};
(6) goto (3);
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• If a set is a nonminimal predictor, so are all of its
supersets, which can thus be skipped.

• Initialize candidate set of predictors Cand to
include one-set attributes.

• The set of minimal predictors P is constructed
starting from Cand.
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• Initialize P to include all singleton predictors
whose error is below the threshold ε. Remove
those from C and the search for minimal
two-attribute predictors makes use of the
remaining candidate attributes, etc.

• The stopping condition could be exceeding the
maximum predictor size or finding a predictor
with desired prediction error.
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Experimental Results – KHAN
J. Khan et.al.: Classification and Diagnostic
Prediction of Cancers using gene expression
profiling and artificial neural networks,
Nature Medicine, vol 7., 2001

Differential diagnosis of four small round blue cell
tumors of childhood (SRBCTs) :

NB: neuroblastoma

RMS: rhabdomyosarcoma

BL: Burkitt lymphoma

EWS: Ewing family of sarcomas
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Previous work:

single layer neural networks (Khan)
logistic regression model (Weber)
SVMs (Mukerjee)
combined classifiers (Yeo)
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Khan Data
• 2308 genes were measured using cDNA

microarrays
• Training Data: 63 cases (12 NB, 20 RMS, 8 BL,

and 23 EWS)
• Test Data: 25 cases (6 EWS, 5 RMS, 6 NB, 3 BL,

and 5 non-SRBCTs)
• The test cases include 5 cases which do not

belong to any of the predicted SRBCT types.
Such cases are not present in the training set.
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Preprocessing
Replace each class attribute with 4 binary attributes,
one for each cancer type.

original attribute computed attributes

Cancer type NB RMS BL EWS
NB 1 0 0 0

EWS 0 0 0 1
RMS 0 1 0 0
other 0 0 0 0
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• A separate predictor is built for each binary
attribute to allow for handling of cases of type
‘other’ present in the test set, but absent in the
training set.

• We expect that for ‘other’ cancer type all of the
predictors will give the value of 0 thus indicated
that none of the 4 cancer types is present.
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• Predictors may contradict each other
(infrequently, because low error rate of individual
classifiers).

• If presence of more than one cancer type is
predicted consider it misclassified.

• Small predictors decrease the risk of overfitting
(small number of training cases!)
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Discretization
• Every gene expression level X attribute is

discretized into two intervals: X ≤ T and
X > T .

• T is chosen such that the Shannon entropy
H(Y |X ′) of the target Y conditional on the
discretized attribute X ′ is minimal.

• A separate discretization (using Fayyad-Irani) has
been performed with respect to each cancer type.
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Limitations on the Computation
• We find all predictors with 1 or 2 attributes,

allowing up to one misclassified instance on the
training set.

• The stopping rule: reaching the maximum
prescribed size of the predictor, or obtaining an
error rate less than to 1

t
, where t is the size of the

training set.
• All but 30 most predictive attributes are

discarded.
• For each cancer type the first predictor with

minimal training error is manually picked at
random (without looking at its test set
performance to avoid bias in the choice).
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Cancer selected predictor image ids mtr mte 1GP 2GP

type

BL WAS ≤ 0.69 ⇒ BL 236282 0 1 15 5

EWS FCGRT ≤ 1.59 ⇒ EWS 770394 1 3 2 10

NB MAP1B > 2.17 629896 - 383188 0 0 2 28

or RCV1 > 1.98 ⇒ NB

RMS TNNT2 > 0.55 298062 - 796258 0 2 0 25

or SGCA > 0.44 ⇒ RMS

Legend:
mte misclassified cases in test set
mtr misclassified cases in training set
1GP number of one-gene predictors
2GP number of two-gene predictors
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• A fairly large number (12–30) of very simple
predictors have been found for each cancer type.

• Each of those predictors has very good
classification rate on the training set: up to one
misclassified case is allowed.

• The results show that there are many genes based
on which a diagnosis can be made for each cancer
type.

• All genes except for the one that predicts BL
were reported among the 96 selected in Khan.
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Bonferroni Correction
The probability that a single gene expression predicts
BL perfectly on training set when there is no
correlation between the gene and the tumor type:

2 ·
55! · 8!

63!
= 5.16 · 10−10

much less than 0.05/2308 = 2.16 · 10−5, the 5%
significance level after Bonferroni correction.

This shows that selected gene is with very high proba-

bility related to BL.
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• If a classifier for only one type of tumor gave a
positive prediction, then the instance was
classified as this type of tumor.

• If none of them gave positive prediction we
declared the case as ‘other tumor type’.

• If more than one classifier was active the case
was considered a prediction error.

• The combined classifier used a total of 6 genes
and classified correctly 19 out of 25 test cases.

• Out of the 6 misclassified cases, 2 gave
classifications when the real outcome was ‘other’,
3 SRBCT cases were undetected, and there was 1
conflict.
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Experimental Results - GOLUB
• Training data: 38 cases (27 acute lymphoblastic

leukemia and 11 acute myelocytic leukemia)
Test data: 34 cases (20 ALL and 14 AML);

• Data involves 6817 genes.
• We discretized the gene expression levels using

Fayyad-Irani
• 20 genes were retained for which the

Goodman-Kruskal coefficient was below 0.04.
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• Five single-genes predictors and 66 two-gene
predictors were identified.

• We identified two two-genes predictors (MGST1,
APLP2 and CD33, CystatinA) for which the
errors on the test set are 0 and 0.0294118,
respectively.

• CD33 was among the 50 genes selected by Golub
et al.
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Distribution of the errors on the test set for the
remaining set of minimal two-genes predictors:

Error Interval Number of 2-attribute

predictors

[0.0, 0.05] 2

(0.05, 0.10] 9

(0.10, 0.15] 10

(0.15, 0.20] 7

(0.20, 0.25] 13

(0.25, 0.30] 14

(0.30, 0.35] 3

(0.35, 0.40] 4

(0.40, 0.45] 3
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Voting Mechanism
• We retained 19 one-attribute predictors whose

prediction error on the training set did not exceed
5.3% (that is, two errors out of the 38 training
cases).

• A vote was taken, and the instance was classified
according to the majority vote.

• We obtained 3 errors on the test set of 34 cases.
Namely, the errors occurred on the 57th, 60th and
66th cases of the original Golub test set
("unclassifiable" in the original study (Golub)).
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Conclusions - 1A
• The Goodman-Kruskal dissimilarity GK is a

simple, but powerful measure of predictive power
that can be used to produce robust classifiers.

• The small number of training cases makes
reliable construction of more complex models
like Bayesian networks or C4.5 trees very hard or
even impossible.

• Naive Bayesian classifiers suffer from
independence assumptions which may not be
satisfied in the microarray setting where most
genes are correlated with each other.

• The Bonferroni correction, though conservative,
yields valid results.
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Conclusions - 1B
The fact that GK generates a metric suggests one
could use this metric to cluster attributes such that
those that belong to a cluster have similar predictive
power and, thus, are interchangeable in classifiers.

The clustering structure could be used in forming the

voting committees, and in simplifying and increasing

the robustness of predictive algorithms.
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A New Metric Discretization
Algorithm
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From numerical to nominal
Previous work on discretization:
• fixed k-interval discretization (J. Dougherty, R.

Kohavi, M. Sahami, 1995)
• fuzzy discretization (Kononenko 1992-1993)
• Shannon-entropy discretization (Fayyad and

Irani, 1993)
• proportional k-interval discretization (Yang and

Web, 2001, 2003)
• highly dependent attributes (M. Robnik and I.

Kononenko, 1995)
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Basic Results
• a generalization of Fayyad-Irani discretization

technique
• a geometric criterion for halting the discretization

process
• better results in building

• naive Bayes classifiers
• decision trees
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Discretization of a numeric at-
tribute B

Set of cutpoints: S = {t1, . . . , t`} in aDom(B), where
t1 < t2 < · · · < t`.

-
t1 t2 · · · t`

Q0 Q1 · · · Ql+1Q`

Discretization partition of aDom(B):

πS = {Q0, . . . , Q`}
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Boundary Points
πA the partition of the set of tuples of a table
determined by the values of an attribute A:

select * from T group by A
t1, . . . , tn: the list of tuples sorted on the values of an
attribute B.
πB,A is the partition of aDom(B) that consists of the
longest runs of consecutive B-components of the
tuples in this list that belong to the same block K of
the partition πA.
The boundary points of the partition πB,A are the least
and the largest elements of each of the blocks of the
partition πB,A.

We have πB,A∗ ≤ πA for any attribute B.
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Main Results -I
Theorem: Let T be a table where the class of the
tuples is determined by the attribute A and let
β ∈ (1, 2].

If S is a set of cutpoints such that the conditional en-

tropyHβ(πA|π
S
∗ ) is minimal among the set of cutpoints

with the same number of elements, then S consists of

boundary points of the partition πB,A of aDom(B).
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Main Results -II
Theorem: Let β ∈ (1, 2].

If S is a set of cutpoints such that the distance

dβ(πA, πS
∗ ) is minimal among the set of cutpoints with

the same number of elements, then S consists of

boundary points of the partition πB,A of aDom(B).
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To discretize aDom(B) we seek a set of cutpoints
such that

dβ(πA, πS
∗ ) = Hβ(πA|π

S
∗ ) +Hβ(π

S
∗ |πA)

is minimal.
Seek a set of cutpoints S such that the partition πS

∗
induced on the set of rows is as close as possible to
the target partition πA.
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Discretization Algorithm
Input: A table T, a class attribute A,

and a real-valued attribute B.
Output: A discretized attribute B.

BP is the set of boundary points of partition πB,A∗

Metric Methods in Mining – p.65/79



Method:
sort T on B;
compute BP;
S = ∅; d =∞;
while BP 6= ∅ do

let t = arg min t∈BPdβ(πA, π
S∪{t}
∗ );

if d ≥ dβ(πA, π
S∪{t}
∗ ) then

begin
S = S ∪ {t}; BP = BP− {t};
d = dβ(πA, πS

∗ )
end

else exit while loop;
end while
for πS

∗ = {Q0, . . . , Q`} replace
every value in Qi by i for 0 ≤ i ≤ `.
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dβ(πA, πS
∗ ) as a function of |S|

-

6
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78% of the total time is spent on decreasing the dis-

tance by the last 1%
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dβ(πA, πS
∗ ) = Hβ(πA|π

S
∗ ) +Hβ(π

S
∗ |πA)

If S ⊆ S ′ then πS ≥ πS′

and

Hβ(πA|π
S
∗ ) ≥ Hβ(πA|π

S′

∗ )

Hβ(πS
∗ |πA) ≤ Hβ(πS′

∗ |πA).

Process starts with S = ∅, so πS
∗ = ω.

Practical halting criterion:

|d− dβ(πA, πS∪{t}
∗ )| > 0.01d.

Metric Methods in Mining – p.68/79



Experimental Results

• Accuracy measured in stratified 10-fold
cross-validation

• UCI datasets with β ∈ {1.5, 1.8.1.9, 2}
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Experimental Results - I

heart-c:

Method Size Leaves Accuracy
standard 51 30 79.20
β = 1.5 20 14 77.36
β = 1.8 28 18 77.36
β = 1.9 35 22 76.01
β = 2.0 54 32 76.01

glass:

standard 57 30 57.28
β = 1.5 32 24 71.02
β = 1.8 56 50 77.10
β = 1.9 64 58 67.57
β = 2.0 92 82 66.35
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Experimental Results - II

ionosphere:

standard 35 18 90.88
β = 1.5 15 8 95.44
β = 1.8 19 12 88.31
β = 1.9 15 10 90.02
β = 2.0 15 10 90.02

iris:

standard 9 5 95.33
β = 1.5 7 5 96
β = 1.8 7 5 96
β = 1.9 7 5 96
β = 2.0 7 5 96
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Experimental Results - III

diabetes:

standard 43 22 74.08
β = 1.8 5 3 75.78
β = 1.9 7 4 75.39
β = 2.0 14 10 76.30
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Glass
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Naive Bayes Classifiers
Error Rate

Discretization Diabetes Glass Ionosphere Iris
Method
β = 1.5 34.9 25.2 4.8 2.7
β = 1.8 24.2 22.4 8.3 4
β = 1.9 24.9 23.4 8.5 4
β = 2.0 25.4 24.3 9.1 4.7
weighted prop 25.5 38.4 10.3 6.9
prop. 26.3 33.6 10.4 7.5
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Conclusions
An appropriate choice of β that defines the metric
used in discretization, yields better classifiers
(decision trees and naive Bayes)

Open issues:
• identifying simple parameters of data sets that

inform the best choice of β;
• metric discretization for data with missing values.
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Future Directions of Work
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The metric space of attributes can be used to cluster
attributes.
• Similar attribute are grouped in clusters, that may

have biological significance.
• Retaining one attribute per cluster (e.g., the

centroid) allows for data compression and for
simplification of decision techniques.
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• Our metric approach to discretization can be used
to provide “quasi-optimal” discretization to
microarray data. It would be interesting to
compare this approach with a previous fuzzy
discretization approach (Ohno-Machado).

• Microarray data have high dimensionality (in the
thousands or tens of thousands). By focusing on
partitions induced by genes rather than on
individual phenotypes we hope to avoid the
difficulties related to high dimensionality.
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