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Abstract

We evaluate the extent to which a dissimilarity space differs

from a metric space by introducing the notion of metric

point and metricity in a dissimilarity space. The the effect of

triangular inequality violations on medoid-based clustering

of objects in a dissimilarity space is examined and the notion

of rectifier is introduce to transform a dissimilarity space into

a metric space.

1 Introduction

Clustering is the process of partitioning sets of objects
into mutually exclusive subsets (clusters), so that ob-
jects in one cluster are similar to each other in some
sense and dissimilar to members of other clusters.

The input data of a clustering technique is the dis-
similarity measure between objects. Typically, such dis-
similarities are actual metrics defined on the sets of ob-
jects; however, often instead of metrics, clustering uses
dissimilarities that violate the usual triangular inequal-
ity (TI) (see 2). Our objectives in this paper are to
analyze the extent to which a non-metric dissimilarity
differs from a metric, to analyze the impact that viola-
tions of the triangular inequality have on the quality of
clusterings, and to introduce the notion of rectifiers as
a solution for eliminating TI .

The role of the triangular inequality in designing
efficient clustering algorithm has been noted in [1],
where it is used to accelerate significantly the k-means
algorithm, and in [3], where it is used to improve the
efficiency of searching the neighborhood space in the
TI-DBSCAN variant of DBSCAN. Another area where
violations of the triangular inequality are relevant is
the estimation of delays between Internet hosts without
direct measurements [4, 5]. These violations, caused by
routing policies or path inflation impact the accuracy of
Internet coordinate systems.

The role of compliance with the triangular inequal-
ity in improving the performance of vector quantization
has been observed in [7]. Finally, the triangular inequal-
ity plays a fundamental role in the anchors hierarchy,
a data structure that allows fast data localization and
generates an efficient algorithm for data clustering [6].
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If a triangle {x, y, z} violates the triangular in-
equality for a dissimilarity d we may have d(x, y) >

d(x, z) + d(z, y). Thus, it becomes possible to have two
objects x, y that are very similar to a third object z,
but very dissimilar among themselves. If x and y are
placed in a cluster C whose centroid is z (because of the
similarity of x and y with z), the cohesion of C may be
seriously impacted by the large dissimilarity between x

and y.
We examine the effect of triangular inequality viola-

tions and modalities for rectifying these violation in the
context of medoid-based algorithms, specifically PAM
(Partition Around Medoids), as described in [2]. The
algorithm consists of two phases. In the first phase,
BUILD, a collection of k objects (where k is the pre-
scribed number of clusters) called medoids that are cen-
trally located in clusters are selected. In the second
phase, SWAP, the algorithm tries to improve the qual-
ity of the clustering by exchanging medoids with non-
medoid objects. We selected PAM over k-means, since
it works with a dissimilarity matrix without having the
actual coordinates of the points. This allows us to freely
generate dissimilarities in our experiments without hav-
ing the actual objects at hand.

In Section 2 we introduce dissimilarity spaces and
evaluate the extent a dissimilarity is distinct from a met-
ric by using the number of TI violations of a dissimilar-
ity space. We introduce the notion of rectifier in Sec-
tion 3 as a device for transforming a dissimilarity into a
metric such that the relative order of object dissimilari-
ties is preserved. A specific measure for quantifying the
impacts of TI violations of a dissimilarity on clustering
is discussed in Section 4. A measure of quality or coher-
ence of clusters which is the topic of Section 5. Finally,
we present the results of our experiments in Section 6.

2 Dissimilarity Spaces and Metricity

A dissimilarity space is a pair S = (S, d), where S is a
set and d : S × S −→ R≥0 is a function such that

(i) d(x, x) = 0 for every x ∈ S;

(ii) d(x, y) = d(y, x) for x, y ∈ S.

If d(x, y) = 0 implies x = y, then we say that d is a
definite dissimilarity. If T ⊆ S, then the pair (T, dT ) is



a subspace of (S, d), where dT is the restriction of d to
T × T . To simplify notations we refer to the subspace
(T, dT ) simply as T and we denote the restriction dT by
d.

If a dissimilarity satisfies the triangular inequality

d(x, y) ≤ d(x, z) + d(z, y)

for x, y, z ∈ S, then we say that d is a semi-metric. A
definite semi-metric is said to be a metric and the pair
(S, d) is referred to as a metric space.

Unless stated otherwise all dissimilarity spaces con-
sidered here are finite and all dissimilarities are definite.
The range of the dissimilarity d of a dissimilarity space
S = (S, d) is the finite set R(d) = {d(x, y) | x ∈ S, y ∈
S}. Clustering is often applied to dissimilarity spaces
rather than to metric spaces. As mentioned in the in-
troduction, we aim to analyze the impact on the quality
of the clustering when using dissimilarities rather than
metrics.

Let (S, d) be a dissimilarity space and let z ∈ S.
Denote by M(z) the set of pairs

M(z) = {(x, y) ∈ (S × S) | x, y, z are pairwise

distinct and d(x, y) ≤ d(x, z) + d(z, y)}.

The metricity of z is the number µ(z) = |M(z)|
(|S|−1)(|S|−2) .

An object z is metric if µ(z) = 1 and is anti-metric if
µ(z) = 0.

There exists dissimilarity spaces without any metric
point. Indeed, consider S0 = ({x1, . . . , xn}, d), where
n ≥ 4 and

d(xi, xj) =











0 if i = j,

1 if |i − j| ∈ {1, n− 1},

3 otherwise.

Then, every point xi is non-metric because we have
d(xi−1, xi) = d(xi, xi+1) = 1 and d(xi−1, xi+1) = 3
(here xn+1 = x1).

On the other hand, we can construct dissimilarity
spaces with a prescribed proportion of metric points.
Consider the set Spq = {x1, . . . , xp, y1, . . . , yq}, where
q ≥ 2 and the dissimilarity

dpq(u, v) =



















0 if u = v,

a if u 6= v and u, v ∈ {x1, . . . , xp}

b if u 6= v and u, v ∈ {y1, . . . , yq}

c if u ∈ {x1, . . . , xp}, v ∈ {y1, . . . , yq},

where u, v ∈ Spq. If b > 2c ≥ a, then every xi is
non-metric and every yk is metric. Indeed, any xi

is non-metric because b = dpq(yj , yh) > dpq(yj , xi) +

dpq(xi, yh) = 2c if j 6= h. In the same time, every yk

is metric because for any choice of u and v we have
d(u, v) ≤ d(u, yk) + d(yk, v), as it can be easily seen.

A triangle in a dissimilarity space (S, d) is a subset
T of S such that |T | = 3. A triangle T = {xi, xj , xk} is
said to be metric if d(xp1 , xp2) ≤ d(xp1 , xp3 )+d(xp3 , xp2)
for every permutation (p1, p2, p3) of the set {i, j, k}.
Thus, a triangle {xi, xj , xk} is metric if the subspace
{xi, xj , xk} is metric. The collection of metric triangles
and the collection of set of non-metric triangles of the
similarity space S are denoted by M(S) and N(S),
respectively.

Observe that for every triangle T of a dissimilarity
space (S, d) there is at most one TI violation. Indeed,
suppose that T = {x, y, z} is a triangle and there are
two violations of the TI involving the elements of T , say

d(x, y) > d(x, z) + d(z, y),

d(y, z) > d(y, x) + d(x, z).

Adding these inequalities and taking into account the
symmetry of d we obtain d(x, z) < 0, which is a
contradiction. A non-metric triangle {x, y, z} such that
d(x, z) > d(x, y) + d(y, z) is denoted by T(y,{x,z}).

Theorem 2.1. Let (S, d) be a dissimilarity space such
that |S| = n. The number of TI violations has a tight
upper bound of

(

n
3

)

.

Proof. For a collection of n distinct points we have
(

n
3

)

distinct triangles and, by the observation that
precedes this theorem, there is at most one TI violation
associated with each triangle which establishes the
upper bound. To prove that the upper bound is tight,
we need to show that there exists a dissimilarity d such
that the number of TI violations is exactly

(

n
3

)

. That
is, each distinct triangle has one TI violation. The
dissimilarity d is constructed inductively.

Base Construction Step: We have three points
x, y and z. We choose d(x, y), d(x, z) and d(y, z) such
that there is a TI violation. For example, this can be
achieved by defining d such that d(y, z) = d(x, y) +
d(x, z) + 1.

Inductive Construction Step: Given a collec-
tion of n distinct points S with exactly

(

n

3

)

TI violations,
we want to add a point u 6∈ S to S. If we set

d(u, x) = d(x, u) =
min(y,z∈S,y 6=z) d(y, z)

2 + ε
,

where ε > 0, then, for each newly added triangle
{u, y, z} we have

d(y, z) > d(y, u) + d(u, z).



Corollary 2.1. Let (S, d) be a dissimilarity space.
Then the average of the metricity of points of S has
a tight lower bound of 2

3 .

3 Rectifiers

We introduce the notion of rectifier as an instrument for
modifying non-metric dissimilarities into metrics, with
the preservation of the relative order of the dissimilari-
ties between objects.

Definition 3.1. A rectifier is a function f : R≥0 ×
U −→ R≥0 that satisfies the following conditions:

(i) U ⊆ R>0 and inf U = 0;

(ii) limα→0+ f(t, α) = y0 for every t > 0, where y0 > 0;

(iii) f(0, α) = 0 for every α ∈ U ;

(iv) f is strictly increasing in its first argument;

(v) f is sub-additive in its first argument, that is
f(t1 + t2, α) ≤ f(t1, α) + f(t2, α) for t1, t2 ∈ R≥0

and α ∈ U .

Example 3.1. Let f(t, α) = tα for t ∈ R≥0 and α ∈
(0, 1]. The function f is a rectifier. Indeed, we have
limα→0+ tα = 1 for every t > 0 and f(0, α) = 0 for
every α ∈ (0, 1].

For a fixed α the function f is obviously monotoni-
cally increasing in its first argument. Furthermore, for
any t1, t2 > 0 the function

ϕ(α) =

(

t1

t1 + t2

)α

+

(

t2

t1 + t2

)α

is decreasing on [0, 1] and ϕ(1) = 1. Therefore,
(

t1

t1 + t2

)α

+

(

t2

t1 + t2

)α

≥ 1,

which yields the sub-additivity.

Example 3.2. Let g(t, α) = 1 − e−
t
α for t ∈ R≥0 and

α ∈ (0,∞). We claim that g is a rectifier.
Indeed, we have limα→0+ g(t, α) = 1 for every t > 0.

Also, g(0, α) = 0 and g is obviously increasing in t. The
sub-additivity of g in its first argument amounts to

(3.1) 1 − e−
(t1+t2)

α ≤ 2 − e−
t1
α − e−

t2
α ,

or equivalently

1 − u − v + uv ≥ 0,

where u = e−
t1
α and v = e−

t2
α . In turn, this is

equivalent to
(1 − u)(1 − v) ≥ 0.

Since t ≥ 0, u, v ≤ 1 which proves the sub-additivity of
g.

Note that for a rectifier f(t, α) and a metric d, the
function dα : S × S −→ R≥0 defined by

dα(x, y) = f(d(x, y), α)

is also a metric on S. Indeed, d(x, y) ≤ d(x, z) + d(z, y)
implies dα(x, y) = f(d(x, y), α) ≤ f(d(x, z) + d(z, y), α)
because f is increasing and f(d(x, z) + d(z, y), α) ≤
f(d(x, z), α) + f(d(z, y), α) because f is sub-additive.
Together, they yield the triangular inequality. However,
our interest in the notion of rectifier stems mainly from
the following result.

Theorem 3.1. Let d : S × S −→ R≥0 be a (in)definite
dissimilarity and let f be a rectifier. There exists δ > 0
such that the function dα is a (semi-)metric on S if
α < δ. Furthermore, if d(s1, s

′
1) ≤ d(s2, s

′
2), then

dα(s1, s
′
1) ≤ dα(s2, s

′
2) for s1, s

′
1.s2, s

′
2 ∈ S.

Proof. Note that dα(x, x) = f(d(x, x), α) = f(0, α) = 0
due to the second property of f . Also, it is immediate
that dα(x, y) = dα(y, x), so we need to show only that
there exists δ with the desired properties.

Since limα→0+ f(t, α) = y0 for any t, it follows that
for every ε > 0 there is δ(ε, t) > 0 such that α < δ(ε, t)
implies y0−ε < f(t, α) < y0+ε for every t. If we choose

δ0(ε) = min{δ(ε, t) | t ∈ R(d)},

then α < δ0(ε) implies

dα(x, y) = f(d(x, y), α) < y0 + ε

and

dα(x, z)+dα(z, y) = f(d(x, z), α)+f(d(z, y), α) ≥ 2y0−2ε.

If ε is sufficiently small we have y0 + ε < 2y0−2ε, which
implies

dα(x, y) ≤ dα(x, z) + dα(z, y),

which concludes the argument for the first part of the
statement. The second part follows immediately from .

Theorem 3.1 shows that by using a rectifier we
can transform a dissimilarity into a semi-metric. In
some instances we can avoid computing δ0(ε) using the
technique shown in the next example.

Example 3.3. Let f(t, α) = tα be the rectifier consid-
ered in Example 3.1. Suppose that the triple (u, v, w) ∈
S3 violates the triangular inequality, that is, d(u, v) >

d(u, w) + d(w, v).
Since d(u, v)0 ≤ d(u, w)0 + d(w, v)0, the set

Eu,v,w = {α ∈ R≥0 | d(u, v)α ≤ d(u, w)α + d(w, v)α}



is non-empty, so sup Eu,v,w ≥ 0. If αS =
inf{supEu,v,w | u, v, w ∈ S} > 0, then dαS

is a non-
trivial semi-metric on S.

Thus, we need to solve the inequality 1 ≤ aα + bα,
where

a =
d(u, w)

d(u, v)
and b =

d(w, v)

d(u, v)
.

Because of the assumption made about (u, v, w) we have
a + b < 1, so we have a, b < 1.

The solution of this inequality cannot be expressed
using elementary functions. However, a lower bound of
the set of solution can be obtained as follows.

Let f : R≥0 −→ R≥0 be the function defined by
f(x) = ax + bx. It is clear that f(0) = 2 and that f is a
decreasing function because both a and b belong to [0, 1).
The tangent to the graph of f in (0, 2) is located under
the curve and its equation is

y − 2 = x ln ab.

Therefore, an upper bound of the solution of the equation
1 = ax + bx is obtained by intersecting the tangent with
y = 1, which yields

x = −
1

ln ab
=

(

ln
d2(u, v)

d(u, w)d(w, v)

)−1

.

Thus, if

α ≤ inf

{

(

ln
d2(u, v)

d(u, w)d(w, v)

)−1
∣

∣

∣
(u, v, w) ∈ N(S)3

}

,

we can transform d into semi-metric dα.

Example 3.4. It is easy to see that for the dissimilarity
space (Spq, dpq) introduced in Section 2, the function

f(t, α) = tα is a rectifier if and only if α ≤ log 2

log b
c

.

4 Impact of TI Violations on Clustering

We evaluate the impact of using a triangular inequality
violating dissimilarity d on clustering. Let (X, d) be a
dissimilarity space, where X = {x1, . . . , xn}. Without
loss of generality, we may assume that the range of a
dissimilarity has the form

R(d) ⊆ {n ∈ N | 0 ≤ n ≤ m},

where m ∈ N is the maximum value for dissimilarity d.
This is a safe assumption, since we can multiply all the
dissimilarities among a finite set of objects by a positive
constant without affecting their ratios. Define,

AVG(d) =
∑

1≤i<j≤n

2d(xi, xj)

n2 − n
.

Then, if d(xi, xj) ≤ AVG(d) we say that xi, xj are
almost-similar, otherwise they are almost-dissimilar.

In a non-metric triangle T(xj,{xi,xk}) the objects
xi, xk may be similar to xj but very dissimilar to each
other. Clearly, this impacts negatively the quality of the
clustering. Yet, the degree of impact differs depending
on which of the following cases may occur:

1. If xi, xk are almost-similar, that is, d(xi, xk) ≤
AVG(d), then d(xi, xj) ≤ AVG(d) and
d(xj , xk) ≤ AVG(d). Thus, all three objects are
almost-similar to each other and the clustering al-
gorithm most likely will put all the three objects in
one cluster and this will limit the negative impact
of this instance of TI violation.

2. If d(xi, xj) > AVG(d) and d(xj , xk) > AVG(d).
then d(xi, xk) > AVG(d). No pair of objects
are almost-similar and the clustering algorithm will
likely place each object in a separate cluster, which
cancels the effects of this triangular inequality
violation.

3. If d(xi, xk) > AVG(d), d(xi, xj) > AVG(d) and
d(xj , xk) ≤ AVG(d), then xi is almost-dissimilar
from the two other objects. The clustering algo-
rithm will likely put the two similar objects xj and
xk in one cluster and xi in another. This diminishes
the negative influence of this triangular inequality
violation.

4. The last case occurs when d(xi, xk) > AVG(d),
d(xi, xj) ≤ AVG(d) and d(xj , xk) ≤ AVG(d). In
this situation, if the clustering algorithm assigns
all three objects to one cluster, we end up with
two almost-dissimilar objects xi and xk inside a
cluster which is not desirable. On the other hand,
if the clustering algorithm puts the two dissimilar
objects xi and xk in two different clusters and xj in
one of the two clusters, for instance in the cluster
which contains xk then, two almost-similar objects
xi and xj are in two different clusters which is
also undesirable. Thus, in this case the impact of
triangular violation is substantial.

We penalize the dissimilarity for any triangular
inequality violation, but this penalty must be heavier
on instances of the last case. Define

θijk = AVG(d)max

(

d(xi, xk) − AVG(d)

d(xi, xj) + d(xj , xk)
, 0

)

.

Let T(xj,{xi,xk}) be a non-metric triangle. If the TI
violation falls in to the first category θijk = 0. If
the violation falls into second and third categories θijk

will be a positive number. For the last case, θijk



will be a larger positive number which exhibits the
negative impacts of this violation on clustering. We can
normalize θijk to make its magnitude consistent across
different values of m, the upper bound of dissimilarity,
as follows,

θ̂ijk

=
2θijk

AVG(d)(m − AVG(d))

= max

(

2 d(xi, xj) − 2 AVG(d)

(d(xi, xq) + d(xj , xq))(m − AVG(d))
, 0

)

.

The total score for the impact of TI violations of d on
clustering is defined as

Φ(X, d) =
∑

{θ̂ijk | T(xj ,{xi,xk}) ∈ M(X)}.

Φ(X, d) is normalized by dividing it by the maximum
possible number of triangular inequality violations in
order to make the measure consistent across different
values of n, the number of objects:

Φ̂(X, d) =
6Φ(X, d)

n(n − 1)(n − 2)
.

5 A quality measure for clusterings

Let C = {C1, C2, · · · , Ck} be a clustering of the set of
objects S and assume that mi is the medoid of the
cluster Ci for 1 ≤ i ≤ k. To assess the quality of
the clustering C we define a measure which we refer as
incoherence degree of the clustering and is denoted by
γ(C). This measure is computed from a k × k matrix I
referred to as the incoherence matrix defined as follows:

Iij =















maxv∈Ci

∑

u∈Ci
d(u,v)

∑

u∈Ci
d(u,mi)

if i = j and |Cj | ≥ 1,

1 if i = j and |Cj | = 1,
|Cj|·d(mi,mj)

minu∈Ci

∑

v∈Cj
d(u,v) otherwise.

In a “good” clustering, objects within a cluster are
similar to each other, and objects that belong to distinct
clusters are dissimilar. We construct clusters based on
the similarity of objects to medoids. Thus, a clustering
is considered as coherent if

1. the average dissimilarity between an object and the
other members of the cluster is about the same as
the average dissimilarity between the medoid of the
cluster and the non-medoid object of the cluster;

2. the sum of dissimilarities of an object u in cluster
Ci from all objects v ∈ Cj is about the same as the
product |Cj | · d(mi, mj).

The incoherence degree of a clustering C is the average
of the maximum diagonal and maximum off-diagonal
elements of I. That is,

γ(C) = max
1≤i≤k

maxv∈Ci

∑

u∈Ci
d(u, v)

2 ·
∑

u∈Ci
d(u, mi)

+ max
1≤i,j≤k

i6=j

|Cj | · d(mi, mj)

2 · minu∈Ci

∑

v∈Cj
d(u, v)

.

6 Experimental Results

We performed two series of experiments. In the first
type of experiments we randomly generated symmetric
n×n dissimilarity matrices with the maximum dissimi-
larity value m. For such a matrix M the corresponding
dissimilarity is denoted by dM. In the next step, we ap-
plied the PAM clustering algorithm to partition the set
of n objects into k clusters using dM. We computed the
incoherence degree γ(CM) for the resulting clustering
CM and Φ̂(X, dM) for dissimilarity dM.

This process was repeated 200 times for randomly
generated dissimilarity matrices such that the number
Φ̂(X, dM) lies within a given subinterval. Figures 1,
2, 3, 4, 5 and 6 depict the results of this experiment.
The x-coordinate of each point is the Φ̂(X, dM) average
and the y-coordinate is the average incoherence degrees
γ(CM) for the clusterings of the form CM. These figures
show a clear ascending trend in the incoherence degree
of resultant clusterings (indicating a deterioration of the
quality of these clusterings) as the TI violation measure
Φ̂(X, dM) for underlying dissimilarities dM increases.

Figure 1: Plot of average γ(CM) to average Φ̂(X, dM)
over 200 randomly generated M for k = 5, n = 60 and
m = 50.

In the second experiment, we used the adjustable
dissimilarity dpq described in Section 2, where p specifies
the number of non-metric points and q = n − p the
number of metric points.



Figure 2: Plot of average γ(CM) to average Φ̂(X, dM)
over 200 randomly generated M for k = 7, n = 60 and
m = 50.

Figure 3: Plot of average γ(CM) to average Φ̂(X, dM)
over 200 randomly generated M for k = 7, n = 100 and
m = 50

Figure 4: Plot of average γ(CM) to average Φ̂(X, dM)
over 200 randomly generated M for k = 9, n = 60 and
m = 50

Figure 5: Plot of average γ(CM) to average Φ̂(X, dM)
over 200 randomly generated M for k = 7, n = 60 and
m = 25

Figure 6: Plot of average γ(CM) to average Φ̂(X, dM)
over 200 randomly generated M for k = 7, n = 60 and
m = 100



Figure 7: Plot of γ(Cpq) to p for n = 60, k = 7.

First, we defined various dissimilarities dpq by set-
ting parameters a, b and c to 1, 7 and 3 respectively and
we assigned p with different values. Then, we rectified
the dissimilarities dpq by applying the rectifier described
in Example 3.4. We denote the rectified dissimilarities
with dr

pq. In the next step we used PAM to gener-
ate clusterings based on these two dissimilarities. We
denote by Cpq and Cr

pq the clusterings generated based
on dissimilarities dpq and dr

pq respectively. Finally, we
calculated the incoherence measures γ(Cpq) and γ(Cr

pq).
Figures 7, 8, 9 and 10 show the increase in the inco-
herence measure γ(Cpq) as we increase p. That is the
incoherence degree of the clustering is increased as the
number of triangular inequality violations of our dissim-
ilarity increases. We repeated the experiment for vari-
ous parameters. Figures 11, 12, 13 and 14 plot the dif-
ference γ(Cpq)−γ(Cr

pq) as p varies. Observe that not only
using rectified dissimilarity yields a clustering with bet-
ter quality according to incoherence measure, but also
this improvement in the quality of the clustering due to
rectification process increases even when the number of
triangular inequality violations of the original dissimi-
larity increases.

7 Conclusions and Future Work

We investigated the impact of using non-metric dissim-
ilarities in medoid-based clustering algorithms on the
quality of clusterings and demonstrated the impact that
TI violations have on clustering quality.

A similar study will be carried out on several
variations of the k-means algorithm, which is centroid-
based, as well as on density-based clusterings such as
DBSCAN. In the later type of algorithms the notion of
density is closely tied with the idea of ε-neighborhood
of an object. Clearly, objects x and z are in the
max[d(x, y), d(y, z)]-neighborhood of y and we expect
x and z be in (d(x, y) + d(y, z))-neighborhood of each

Figure 8: Plot of γ(Cpq) to p for n = 100, k = 7.

Figure 9: Plot of γ(Cpq) to p for n = 60, k = 5.

Figure 10: Plot of γ(Cpq) to p for n = 60, k = 9.



Figure 11: Plot of the difference γ(Cpq)−γ(Cr
pq) to p for

n = 60, k = 7

Figure 12: Plot of the difference γ(Cpq)−γ(Cr
pq) to p for

n = 100, k = 7

Figure 13: Plot of the difference γ(Cpq)−γ(Cr
pq) to p for

n = 60, k = 5

Figure 14: Plot of the difference γ(Cpq)−γ(Cr
pq) to p for

n = 60, k = 9

other, which may not be the case in a TI violating
triangle T(y,{x,z}).

Another direction for extending this work is further
analysis of rectifiers involving the relative magnitude
deviations of the rectified dissimilarity dα from the
original dissimilarity d.
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