The Metric Space of Partitions and Its Applications in Data Mining

Dan Simovici

University of Massachusetts Boston, Department of Computer Science, Boston, Massachusetts 02125, USA

Applications:

- Building better classifiers
- Better discretization algorithms
- Stable incremental clustering categorical data
- Metric study of genetic codes

Collaborators:

Lucila Ohno-Machado Szymon Jaroszewicz Winston Kuo **Richard Butterworth** Namita Singla

Metrics and Partitions

Metrics

A metric on a set S is a mapping $d: S \times S \longrightarrow \mathbb{R}$ that satisfies the following:

- d(p,q) = 0 if and only if p = q;
- d(p,q) = d(q,p);
- $d(p,q) + d(q,r) \ge d(p,r)$,

for every $p, q, r \in S$.

Popular Examples ...

• Standard distance on real line:

$$d(p,q) = |p-q|$$

• Minkowski distance in \mathbb{R}^n :

$$d_k(\mathbf{p}, \mathbf{q}) = \left(\sum_{i=1}^n |p_i - q_i|^k\right)^{\frac{1}{k}}$$

for $\mathbf{p} = (p_1, \ldots, p_n)$ and $\mathbf{q} = (q_1, \ldots, q_n) \in \mathbb{R}^n$.

Examples

In \mathbb{R}^2 :

$$d_{1}(\mathbf{p}, \mathbf{q}) = |p_{1} - q_{1}| + |p_{2} - q_{2}|$$
(Manhattan distance)

$$d_{2}(\mathbf{p}, \mathbf{q}) = \sqrt{|p_{1} - q_{1}|^{2} + |p_{2} - q_{2}|^{2}}$$
(Euclidean distance)

$$d_{\infty}(\mathbf{p}, \mathbf{q}) = \lim_{k \to \infty} d_{k}(\mathbf{p}, \mathbf{q})$$

$$= \max\{|p_{1} - q_{1}|, |p_{2} - q_{2}|\}$$
(Canberra distance)

Partitions

 $\mathsf{PART}(S)$: set of partitions of set S

Partition $\pi = \{B_1, \ldots, B_7\}$

Let $L \subseteq S$ and $\pi = \{B_1, \ldots, B_n\}$. The trace of the partition π on L is:

 $\pi_L = \{B_i \cap L \mid 1 \le i \le k \text{ and } B_i \cap L \ne \emptyset\}.$ Trace of partition $\pi = \{B_1, \dots, B_7\}$ on set L

Partitions Partial Order

 $\sigma \leq \pi$ if each block C of σ is included in a block of π .

Partition $\sigma = \{C_1, ..., C_{12}\} \le \pi$

Tables

A database table τ is a triple $\tau = (T, H, \rho)$ The header: $H = A_1 \cdots A_n$ Dom (A_i) : domain of A_i

		T^{*}		
	A_1	A_2	•••	A_n
t_1	a_{11}	a_{12}	•	a_{1n}
t_2	a_{21}	a_{22}	• •	a_{2n}
•	•	•	•	• •
t_m	a_{m1}	a_{m2}	• • •	a_{mn}

The content of the table: $\rho = \{t_1, \ldots, t_m\}$ where $\rho \subseteq \text{Dom}(A_1) \times \cdots \times \text{Dom}(A_n)$.

Partitions induced by Attribute Sets

Every attribute set $K \subseteq H$ induces a partition π_K : same as: select K,count(K) from T group by K

Shannon's Entropy

For random variables...

The Shannon entropy is introduced for a random variable distribution

$$X:\begin{pmatrix} x_1 & \cdots & x_n \\ p_1 & \cdots & p_n \end{pmatrix}$$

is $\mathcal{H}(X) = -\sum_{i=1}^{n} p_i \log_2 p_i$.

Shannon entropy

... for partitions

A partition $\pi = \{B_1, \ldots, B_m\}$ on a finite, nonempty set A generates naturally a random variable:

$$X_{\pi}:\begin{pmatrix} B_1 & \cdots & B_m \\ \frac{|B_1|}{|S|} & \cdots & \frac{|B_m|}{|S|} \end{pmatrix}$$

We define the Shannon entropy of π as the Shannon entropy of X_{π} .

Measuring concentration of values

Gini's Index

$$\mathcal{H}_2(\pi) = 1 - \sum_{i=1}^n p_i^2$$

				•	
•	•	•	•	• • •	●

$$\mathcal{H}_1(\pi_4) = 0.68$$

$$\mathcal{H}_1(\pi_3) = 0.72$$

$$\mathcal{H}_1(\pi_2) = 0.79$$

$$\mathcal{H}_1(\pi_1) = 0.80$$

Generalized Entropy of Partitions

Daróczy's β -generalized entropy of $\pi = \{B_1, \dots, B_n\}$:

$$\mathcal{H}_{\beta}(\pi) = \frac{1}{1 - 2^{1-\beta}} \left(1 - \sum_{i=1}^{n} \left(\frac{|B_i|}{|S|} \right)^{\beta} \right)$$

For $\beta = 2$ we obtain the Gini index. Also, $\lim_{\beta \to 1} \mathcal{H}_{\beta}(\pi)$ is Shannon's entropy

$$\mathcal{H}(\pi) = -\sum_{i=1}^{n} \frac{|B_i|}{|S|} \log_2 \frac{|B_i|}{|S|}$$

Set Purity and Entropy

 $\mathcal{H}(\pi_L)$ measures the impurity of the set L relative to the partition π : the larger the entropy, the more L is scattered among the blocks of π . If $\pi, \sigma \in \mathsf{PART}(S)$, the average impurity of the blocks of σ relative to π is the *conditional entropy of* π relative to σ :

$$\mathcal{H}(\pi|\sigma) = \sum_{j=1}^{m} \frac{|Q_j|}{|S|} \mathcal{H}(\pi_{Q_j}),$$

where $\sigma = \{Q_1, \ldots, Q_m\}.$

Generalized Conditional Entropy

For $\pi, \sigma \in \mathsf{PART}(S)$ such that

$$\pi = \{P_1, \dots, P_k\}$$

$$\sigma = \{Q_1, \dots, Q_m\}$$

the conditional β -entropy $\mathcal{H}_{\beta}(\pi|\sigma)$ is:

$$\mathcal{H}_{\beta}(\pi|\sigma) = \sum_{j=1}^{m} \left(\frac{|Q_j|}{|S|}\right)^{\beta} \mathcal{H}_{\beta}(\pi_{Q_j})$$
$$= \frac{1}{(2^{1-\beta}-1)|S|^{\beta}} \left(\sum_{i=1}^{k} \sum_{j=1}^{m} |P_i \cap Q_j|^{\beta} - \sum_{j=1}^{m} |Q_j|^{\beta}\right)$$

Metrics on Partitions Sets

López de Mántaras:

$$d(\pi,\sigma) = \mathcal{H}(\pi|\sigma) + \mathcal{H}(\sigma|\pi)$$

Simovici and Jaroszewicz:

$$d_{\beta}(\pi,\sigma) = \mathcal{H}_{\beta}(\pi|\sigma) + \mathcal{H}_{\beta}(\sigma|\pi)$$

= $\frac{1}{(2^{1-\beta}-1)|S|^{\beta}} \left(2 \cdot \sum_{i=1}^{k} \sum_{j=1}^{m} |P_i \cap Q_j|^{\beta} - \sum_{i=1}^{n} |P_i|^{\beta} - \sum_{j=1}^{m} |Q_j|^{\beta}\right).$

Special Cases ...

De Mántaras' Metric:

$$\lim_{\beta \to 1} d_{\beta}(\pi, \sigma) = d(\pi, \sigma)$$

The $\beta = 2$ case:

$$d_2(\pi, \sigma) = \frac{2}{\sqrt{|S|}} \left(\sum_{i=1}^n |P_i|^2 + \sum_{j=1}^m |Q_j|^2 - 2 \cdot \sum_{i=1}^k \sum_{j=1}^m |P_i \cap Q_j|^2 \right)$$

GK Classification Rule

Let X, Y be two discrete random variables.

- P(Y = b_j | X = a_i): the probability of predicting the value b_j for Y when X = a_i
 Classification rule: An event that has the component X = a_i is classified in the Y-class b_j if j is the number for which P(Y = b_j | X = a_i) has the largest value.
- The probability of misclassification:

$$1 - \max_{1 \le j \le k} P(Y = b_j | X = a_i).$$

The Goodman-Kruskal Coefficient

The Goodman-Kruskal coefficient of X and Y is defined by

GK(X, Y) is the expected probability that in a randomly chosen case the value of Y will be incorrectly predicted from X. $\lambda_{Y|X}$ is the relative reduction in the probability of prediction error:

$$\lambda_{Y|X} = 1 - \frac{\mathsf{GK}(X, Y)}{1 - \max_{1 \le j \le k} P(Y = b_j)}$$

 $\lambda_{Y|X}$ is the proportion of the relative error in predicting the value of Y that can be eliminated by knowledge of the X-value.

The Goodman-Kruskal Coefficient for Partitions

Consider two partitions

 $\pi = \{B_1, \ldots, B_l\} \text{ and } \sigma = \{C_1, \ldots, C_k\}.$

The Goodman-Kruskal coefficient of π, σ :

$$\mathsf{GK}(\pi, \sigma) = 1 - \sum_{i=1}^{l} \max_{1 \le j \le k} \frac{|C_j \cap B_i|}{|S|}.$$

Interpretation of GK

For a fixed i, the largest error in predicting Y is:

$$1 - \max_{1 \le j \le k} P(Y = j | X = i) = 1 - \max_{1 \le j \le k} \frac{|C_j \cap B_i|}{|B_i|}.$$

Expected value of the largest error in predicting Y is $\mathsf{GK}(X, Y)$:

$$\sum_{i=1}^{l} \frac{|B_i|}{|S|} \cdot \left(1 - \max_{1 \le j \le k} \frac{|C_j \cap B_i|}{|B_i|}\right)$$
$$= 1 - \sum_{i=1}^{l} \max_{1 \le j \le k} \frac{|C_j \cap B_i|}{|S|},$$

Properties of GK

- $\mathsf{GK}(\pi, \sigma) = 0$ if and only if $\pi \leq \sigma$.
- GK is monotonic in its first argument and dually monotonic in its second:
- GK satisfies a triangular inequality:

 $\mathsf{GK}(\pi,\sigma) \leq \mathsf{GK}(\pi,\tau) + \mathsf{GK}(\tau,\sigma).$

Metric Associated to GK

The Goodman-Kruskal coefficient generates a metric on $\mathsf{PART}(S)$. Let $d_{GK} : \mathsf{PART}(S) \times \mathsf{PART}(S) \longrightarrow \mathbb{R}$ be

$$d_{GK}(\pi,\sigma) = \mathbf{GK}(\pi,\sigma) + \mathbf{GK}(\sigma,\pi).$$

for $\pi, \sigma \in \mathsf{PART}(S)$. The function d_{GK} is a metric on the set $\mathsf{PART}(S)$.

Goodman-Kruskal Coefficient for Attribute Sets

Let K, L be two sets of attributes of a table. Define $GK(K, L) = GK(\pi_K, \pi_L)$: the expected error that occurs when we try to predict the value of t[L] from the value of t[K].

- If $K_1 \subseteq K_2$, then $\pi_{K_2} \leq \pi_{K_1}$, so $\mathsf{GK}(K_2, L) \leq \mathsf{GK}(K_1, L)$.
- If $L_1 \subseteq L_2$, then $\mathsf{GK}(K, L_2) \leq \mathsf{GK}(K, L_1)$.

Goodman-Kruskal Metric on Attribute Sets

$$d_{GK}(K,L) = d_{GK}(\pi_K,\pi_L)$$

The new metric can be used for:

- constructing classifiers;
- discretization of continuous attributes;
- attribute clustering, feature selection and data compression.

Data Mining Applications

Clustering Generic Codes

A Proof-of-Concept Experiment

- Aminoacids in proteins are created according to a DNA blueprint, the *genetic code* (GC).
- Each GC is a function $c: \{A, G, C, T\}^3 \longrightarrow \mathcal{A} \cup \{\text{Ter}\}; \text{ thus, each GC}$ defines a partition on the set $\{A, G, C, T\}^3$.
- The NCBI site lists 16 genetic codes: 6 nuclear and 10 mitochondrial.

An Example: The "Universal" GC

Trp TGG								Met ATG							
Lys	+	Phe	e	Pro			Ser			\mathbf{Thr}		Tyr	Val		Ile
AAA AAG		TTT TTC	C C	CCT CCC CCA CCG		TC TC TC TG AG AG		TAA TAC TGA	A G A	ACT ACC ACA ACG		TAT TAC	() () ()	GTT GTC GTA GTG	ATT ATC ATA
Ala Arg			Asn	Asp	Cys	Gln	Glu	G	Gly His		Leu				
GCT GCC GCA GCG			CGT CGC CGA CGG AGA AGG			AAT AAC	GAT GAC	TGT TGC	CAA CAG	GAA GAG	GGT GGC GGA GGG		CAT CAC	TTA TTG CTT CTC CTA CTG	

– p. 34/9

Visualizing Genetic Codes

Visualization process:

- codes are viewed as partitions on the set of codons {A, G, C, T}³;
- inter-code distances are computed using the entropic distance d_2 ;
- codes are represented as points in \mathbb{R}^2 using the "classical multidimensional scaling".

Scaling of Genetic Codes

Incremental Clustering

Main focus

- Nominal data
- Incremental clustering

Main Feature of IC: Incremental clustering forms clusterings gradually by a sequential process of adding objects to clusters or initiating new clusters.

Incremental Clustering

The interest in incremental clustering

- Main memory usage is minimal.
- Algorithms are scalable with the size of the set of objects.

Valuations and Metrics

• $v : \mathsf{PART}(S) \leftarrow \mathbb{R} \text{ is } v(\pi) = \sum_{i=1}^{n} |B_i|^2$, where $\pi = \{B_1, \dots, B_n\}$ is a lower valuation on $\mathsf{PART}(S)$:

$$v(\pi \lor \sigma) + v(\pi \land \sigma) \ge v(\pi) + v(\sigma)$$
(1)
for $\pi, \sigma \in \mathsf{PART}(S)$.

 For every lower valuation v, d : (PART(S))² ← ℝ defined by d(π, σ) = v(π) + v(σ) - 2v(π ∧ σ) is a metric on PART(S).

Clusterings as Partitions

We seek a clustering $\kappa = \{C_1, \ldots, C_n\} \in \mathsf{PART}(S)$ such that the total distance from κ to the partitions of the attributes:

$$D(\kappa) = \sum_{i=1}^{n} d(\kappa, \pi^{A_i})$$

is minimal.

Distance between clustering and attribute partitions

$$d(\kappa, \pi^A) = \sum_{i=1}^n |C_i|^2 + \sum_{j=1}^{m_A} |B_{a_j}^A|^2 - 2\sum_{i=1}^n \sum_{j=1}^{m_A} |C_i \cap B_{a_j}^A|^2,$$

AMICA

A Metric Incremental Clustering Algorithm) If $t \notin S$, and let $Z = S \cup \{t\}$. The following may occur:

- 1. the object t is added to an existing cluster C_k , or
- 2. a new cluster, C_{n+1} is created that consists only of t.

Relative to π^A , t is added to the block $B_{t[A]}^A$.

Object is added to existing cluster

$$\kappa_{(k)} = \{C_1, \dots, C_{k-1}, C_k \cup \{t\}, C_{k+1}, \dots, C_n\}$$

$$\pi^{A'} = \{B_{a_1}^A, \dots, B_{t[A]}^A \cup \{t\}, \dots, B_{a_{m_A}}^A\}$$

$$d(\kappa_{(k)}, \pi^{A'}) - d(\kappa, \pi^{A})$$

$$= (|C_{k}| + 1)^{2} - |C_{k}|^{2} + (|B_{t[A]}^{A}| + 1)^{2}$$

$$-|B_{t[A]}^{A}|^{2} - 2(2|C_{k} \cap B_{t[A]}^{A}| + 1)$$

$$= 2|C_{k}| + 1 + 2|B_{t[A]}^{A}| + 1 - 4|C_{k} \cap B_{t[A]}^{A}| - 2$$

$$= 2|C_{k} \oplus B_{t[A]}^{A}|.$$

The minimal increase of $d(\kappa_{(k)}, \pi^{A'})$ is given by:

Object forms a new cluster

$$\kappa' = \{C_1, \dots, C_n, \{t\}\}$$

$$\pi^{A'} = \{B_{a_1}^A, \dots, B_{t[A]}^A \cup \{t\}, \dots, B_{a_{m_A}}^A\}$$

$$d(\kappa', \pi^{A'}) - d(\kappa, \pi^A) = 2|B_{t[A]}^A|.$$

Course of Action

$$D(\kappa') - D(\kappa) = \begin{cases} 2 \cdot \sum_{A} |C_k \oplus B^A_{t[A]}| & \text{in Case 1} \\ 2 \cdot \sum_{A} |B^A_{t[A]}| & \text{in Case 2.} \end{cases}$$

If $\min_k \sum_A |C_k \oplus B_{t[A]}^A| < \sum_A |B_{t[A]}^A|$ add t to a cluster C_k for which $\sum_A |C_k \oplus B_{t[A]}^A|$ is minimal; otherwise, create a new one-object cluster.

Difficulties of IC

- Incremental clustering algorithms are affected, in general, by the order in which objects are processed by the clustering algorithm.
- Each such algorithm proceeds typically in a hill-climbing fashion that yields local minima rather than global ones.

The "not-yet" technique introduced by Roure and Talavera:

In our framework : A new cluster is created only when

$$r(t) = \frac{\sum_{A} |B_{t[A]}^{A}|}{\min_{k} \sum_{A} |C_{k} \oplus B_{t[A]}^{A}|} < \alpha,$$

is satisfied, that is, only when the effect r(t) of adding the object t on the total distance is significant enough.

 $\alpha \leq 1$ is a parameter provided by the user (no buffer if $\alpha = 1$

The AMICA Algorithm:

Input: data set *S* and threshold α **Output:** clustering C_1, \ldots, C_{nc} **Method:** $nc = 0; \ell = 1;$ while $S \neq \emptyset$ do select an object t; $S = S - \{t\}$; if $_A |B_{t[A]}^A| \le \alpha \min_{1 \le k \le nc} _A |C_k \oplus B_{t[A]}^A|$ then nc ++; create a new single-object cluster $C_{nc} = \{t\};$ else $r(t) = A |B_{t[A]}^A| / \min_{1 \le k \le \text{nc}} A |C_k \oplus B_{t[A]}^A|$ if r(t) > 1then $k = \arg \min_k |C_k \oplus B^A_{t[A]}|$ add t to cluster C_k ; else /* this means $\alpha < r(t) \leq 1$ */ place t in NOT-YET buffer; end if; endwhile; process objects in the NOT-YET buffer as above with $\alpha = 1$;

Experiments on Synthetic Data

- Synthetic data sets: produced by an algorithm that generates clusters of objects having real-numbered components grouped around a specified number of centroids.
- Data was discretized using a specified number of discretization intervals which allowed us to treat the data as nominal.
- The experiments were applied to several data sets with an increasing number of tuples and increased dimensionality and using several permutations of the set of objects.
- All experiments describe use $\alpha = 0.95$.

Cluster Stability

- A data set that consists of 10,000 objects (grouped by the synthetic data algorithm around 6 centroids)
- A first pass of the algorithm produced 11 clusters.
- Most objects (9895) are concentrated in the top 6 clusters, a good approximation of the "natural" clusters produced by the synthetic algorithm.

Insensitivity to Orderings

Initial Run		Random Permutation					
Cluster	Size	Cluster	Cluster Size Distribution				
				(Original cluster)			
1	1548	1	1692	1692 (2)			
2	1693	2	1552	1548 (1), 3 (3), 1 (2)			
3	1655	3	1672	1672 (5)			
4	1711	4	1711	1711 (4)			
5	1672	5	1652	1652 (3)			
6	1616	6	1616	1616 (6)			
7	1	7	85	85 (8)			
8	85	8	10	10 (9)			
9	10	9	8	8 (10)			
10	8	10	1	1 (11)			
11	1	11	1	1 (7)			

5000	410	381	432	407.7
10000	782	761	831	794.7
20000	1103	1148	1061	1104

Time for 3

permutations (ms)

140

154

131

Average

time (ms)

141.7

Scalability

objects

2000

Number of

The Mushrooms Data Set

- The data set contains 8124 mushroom records and is typically used as test set for classification algorithms.
- Classifiers seek to predict the poisonous/edible character of the mushrooms.
- The class attribute (poisonous/edible) was removed and AMICA was applied to the remaining data set.

Experimental Results

Cl.	Poisonous/Edible	Total	Percentage of			
num.			dominant group			
1	825/2752	3577	76.9%			
2	8/1050	1058	99.2%			
3	1304/0	1304	100%			
4	0/163	163	100%			
5	1735/28	1763	98.4%			
6	0/7	7	100%			
7	0/192	192	100%			
8	36/16	52	69%			
9	8/0	8	100%			

Cluster Stability

C_i	Computed Clusters									
	First Random Permutation									
	C'_1	C_2'	C'_3	C'_4	C'_5	C_6'	C'_7	C'_8	C'_9	C_{10}^{\prime}
	3540	1797	1095	192	1296	8	36	7	137	16
3577	3540	0	37	0	0	0	0	0	0	0
1058	0	0	1058	0	0	0	0	0	0	0
1304	0	8	0	0	1296	0	0	0	0	0
163	0	26	0	0	0	0	0	0	137	0
1763	0	1763	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	7	0	0
192	0	0	0	192	0	0	0	0	0	0
52	0	0	0	0	0	0	36	0	0	16
8	0	0	0	0	0	8	0	0	0	0

Analysis of Microarray Data

ϵ -predictors

An ϵ -predictor for a set of attributes Y is a set of attributes K such that $GK(K, Y) \leq \epsilon$.

- If K is an ε-predictor for Y, then any superset K' of K is also a ε-predictor for Y.
- An ε-predictor such that no of its proper subsets is an ε-predictor is called *minimal*.

An Algorithm for *e***-predictors**

Input: Set of attributes H, a target attribute $Y, Y \notin H$ and an error level ϵ . **Output:** Set P of all minimal ϵ -predictors from H.

(1) **Cand** =
$$\{\{A\} : A \in H\};$$

$$(2) P = \emptyset;$$

(3)
$$\mathbf{P} = \mathbf{P} \cup \{K \in \mathbf{Cand} : \mathbf{GK}(K, Y) \le \epsilon\};$$

(4) Cand = Cand
$$\setminus P$$
;

(5) **Cand** =
$$\{L \subseteq H : \text{ for all } K \subset L,$$

|K| = |L| - 1 we have $K \in \mathsf{Cand}$ };

(6) goto (3);

- If a set is a non-minimal predictor, so are all of its supersets, which can thus be skipped.
- Initialize candidate set of predictors Cand to include one-set attributes.
- The set of minimal predictors P is constructed starting from Cand.

- Initialize P to include all singleton predictors whose error is below the threshold *ε*. Remove those from C and the search for minimal two-attribute predictors makes use of the remaining candidate attributes, etc.
- The stopping condition could be exceeding the maximum predictor size or finding a predictor with desired prediction error.

Experimental Results – KHAN

J. Khan et.al.: Classification and Diagnostic Prediction of Cancers using gene expression profiling and artificial neural networks, Nature Medicine, vol 7., 2001

Differential diagnosis of four small round blue cell tumors of childhood (SRBCTs) :

- NB: neuroblastoma
- RMS: rhabdomyosarcoma
 - **BL:** Burkitt lymphoma
- **EWS**: Ewing family of sarcomas

Previous work:

single layer neural networks (Khan) logistic regression model (Weber) SVMs (Mukerjee) combined classifiers (Yeo)

Khan Data

- 2308 genes were measured using cDNA microarrays
- Training Data: 63 cases (12 NB, 20 RMS, 8 BL, and 23 EWS)
- Test Data: 25 cases (6 EWS, 5 RMS, 6 NB, 3 BL, and 5 non-SRBCTs)
- The test cases include 5 cases which do not belong to any of the predicted SRBCT types. Such cases are not present in the training set.

Preprocessing

Replace each class attribute with 4 binary attributes, one for each cancer type.

original attribute	computed attributes					
Cancer type	NB	RMS	BL	EWS		
NB	1	0	0	0		
EWS	0	0	0	1		
RMS	0	1	0	0		
other	0	0	0	0		

- A separate predictor is built for each binary attribute to allow for handling of cases of type 'other' present in the test set, but absent in the training set.
- We expect that for 'other' cancer type all of the predictors will give the value of 0 thus indicated that none of the 4 cancer types is present.

- Predictors may contradict each other (infrequently, because low error rate of individual classifiers).
- If presence of more than one cancer type is predicted consider it misclassified.
- Small predictors decrease the risk of overfitting (small number of training cases!)

Limitations on the Computation

- We find all predictors with 1 or 2 attributes, allowing up to one misclassified instance on the training set.
- The stopping rule: reaching the maximum prescribed size of the predictor, or obtaining an error rate less than to $\frac{1}{t}$, where *t* is the size of the training set.
- All but 30 most predictive attributes are discarded.
- For each cancer type the first predictor with minimal training error is manually picked at random (without looking at its test set performance to avoid bias in the choice).

Cancer	selected predictor	image ids	mtr	mte	1GP	2GP
type						
BL	$WAS \le 0.69 \Rightarrow BL$	236282	0	1	15	5
EWS	$\text{FCGRT} \le 1.59 \Rightarrow \text{EWS}$	770394	1	3	2	10
NB	MAP1B > 2.17	629896 - 383188	0	0	2	28
	or RCV1 > $1.98 \Rightarrow NB$					
RMS	TNNT2 > 0.55	298062 - 796258	0	2	0	25
	or SGCA > $0.44 \Rightarrow \text{RMS}$					

Legend:

mtemisclassified cases in test setmtrmisclassified cases in training set1GPnumber of one-gene predictors2GPnumber of two-gene predictors

- A fairly large number (12–30) of very simple predictors have been found for each cancer type.
- Each of those predictors has very good classification rate on the training set: up to one misclassified case is allowed.
- The results show that there are many genes based on which a diagnosis can be made for each cancer type.
- All genes except for the one that predicts BL were reported among the 96 selected in Khan.

- If a classifier for only one type of tumor gave a positive prediction, then the instance was classified as this type of tumor.
- If none of them gave positive prediction we declared the case as 'other tumor type'.
- If more than one classifier was active the case was considered a prediction error.
- The combined classifier used a total of 6 genes and classified correctly 19 out of 25 test cases.
- Out of the 6 misclassified cases, 2 gave classifications when the real outcome was 'other', 3 SRBCT cases were undetected, and there was 1 conflict.

Experimental Results - GOLUB

- Training data: 38 cases (27 acute lymphoblastic leukemia and 11 acute myelocytic leukemia) Test data: 34 cases (20 ALL and 14 AML);
- Data involves 6817 genes.
- We discretized the gene expression levels using Fayyad-Irani
- 20 genes were retained for which the Goodman-Kruskal coefficient was below 0.04.

- Five single-genes predictors and 66 two-gene predictors were identified.
- We identified two two-genes predictors (MGST1, APLP2 and CD33, CystatinA) for which the errors on the test set are 0 and 0.0294118, respectively.
- CD33 was among the 50 genes selected by Golub et al.

Voting Mechanism

- We retained 19 one-attribute predictors whose prediction error on the training set did not exceed 5.3% (that is, two errors out of the 38 training cases).
- A vote was taken, and the instance was classified according to the majority vote.
- We obtained 3 errors on the test set of 34 cases. Namely, the errors occurred on the 57th, 60th and 66th cases of the original Golub test set ("unclassifiable" in the original study (Golub)).

- The Goodman-Kruskal dissimilarity GK is a simple, but powerful measure of predictive power that can be used to produce robust classifiers.
- The small number of training cases makes reliable construction of more complex models like Bayesian networks or C4.5 trees very hard or even impossible.
- Naive Bayesian classifiers suffer from independence assumptions which may not be satisfied in the microarray setting where most genes are correlated with each other.

A New Metric Discretization Algorithm

From numerical to nominal

Previous work on discretization:

- fixed *k*-interval discretization (J. Dougherty, R. Kohavi, M. Sahami, 1995)
- fuzzy discretization (Kononenko 1992-1993)
- Shannon-entropy discretization (Fayyad and Irani, 1993)
- proportional *k*-interval discretization (Yang and Web, 2001, 2003)
- highly dependent attributes (M. Robnik and I. Kononenko, 1995)

Basic Results

- a generalization of Fayyad-Irani discretization technique
- a geometric criterion for halting the discretization process
- better results in building
 - naive Bayes classifiers
 - decision trees

Discretization of a numeric attribute *B*

Set of cutpoints: $S = \{t_1, \ldots, t_\ell\}$ in aDom(B), where $t_1 < t_2 < \cdots < t_\ell$.

Discretization partition of aDom(B):

 $\pi^S = \{Q_0, \dots, Q_\ell\}$

Boundary Points

 t_1, \ldots, t_n : the list of tuples sorted on the values of an attribute B.

 $\pi_{B,A}$ is the partition of aDom(B) that consists of the longest runs of *consecutive* B-components of the tuples in this list that belong to the *same block* K of the partition π_A .

The *boundary points* of the partition $\pi_{B,A}$ are the least and the largest elements of each of the blocks of the partition $\pi_{B,A}$.

We have $\pi_{B,A*} \leq \pi_A$ for any attribute *B*.

Main Result

Theorem: Let $\beta \in (1, 2]$. If S is a set of cutpoints such that the distance $d_{\beta}(\pi_A, \pi_*^S)$ is minimal among the set of cutpoints with the same number of elements, then S consists of boundary points of the partition $\pi_{B,A}$ of aDom(B). To discretize aDom(B) we seek a set of cutpoints such that

$$d_{\beta}(\pi_A, \pi^S_*) = \mathcal{H}_{\beta}(\pi_A | \pi^S_*) + \mathcal{H}_{\beta}(\pi^S_* | \pi_A)$$

is minimal.

Seek a set of cutpoints S such that the partition π_*^S induced on the set of rows is as close as possible to the target partition π_A .

Discretization Algorithm

Input: A table T, a class attribute Aand a real-valued attribute B. **Output:** A discretized attribute B.

BP is the set of boundary points of partition $\pi_{B,A*}$

Method:

sort T on B; compute **BP**; $S = \emptyset; d = \infty;$ while $\mathsf{BP} \neq \emptyset$ do let $t = \arg \min_{t \in \mathsf{BP}} d_\beta(\pi_A, \pi^{S \cup \{t\}}_*);$ if $d \geq d_{\beta}(\pi_A, \pi_*^{S \cup \bar{\{t\}}})$ then begin $S = S \cup \{t\}; BP = BP - \{t\};$ $d = d_{\beta}(\pi_A, \pi^S_*)$ end else exit while loop; end while for $\pi^S_* = \{Q_0, \dots, Q_\ell\}$ replace every value in Q_i by i for $0 \le i \le \ell$.

78% of the total time is spent on decreasing the distance by the last 1%

 $d_{\beta}(\pi_{A}, \pi_{*}^{S}) = \mathcal{H}_{\beta}(\pi_{A} | \pi_{*}^{S}) + \mathcal{H}_{\beta}(\pi_{*}^{S} | \pi_{A})$ If $S \subseteq S'$ then $\pi^{S} \ge \pi^{S'}$ and $\mathcal{H}_{\beta}(\pi_{A} | \pi_{*}^{S}) \ge \mathcal{H}_{\beta}(\pi_{A} | \pi_{*}^{S'})$ $\mathcal{H}_{\beta}(\pi_{*}^{S} | \pi_{A}) \le \mathcal{H}_{\beta}(\pi_{*}^{S'} | \pi_{A}).$ Process starts with $S = \emptyset$, so $\pi_{*}^{S} = \omega$.

Practical halting criterion:

$$|d - d_{\beta}(\pi_A, \pi_*^{S \cup \{t\}})| > 0.01d.$$

Experimental Results

- Accuracy measured in stratified 10-fold cross-validation
- UCI datasets with $\beta \in \{1.5, 1.8.1.9, 2\}$

Experimental Results - I

Method	Size	Leaves	Accuracy
standard	51	30	79.20
$\beta = 1.5$	20	14	77.36
$\beta = 1.8$	28	18	77.36
$\beta = 1.9$	35	22	76.01
$\beta = 2.0$	54	32	76.01

standard	57	30	57.28
$\beta = 1.5$	32	24	71.02
$\beta = 1.8$	56	50	77.10
$\beta = 1.9$	64	58	67.57
$\beta = 2.0$	92	82	66.35

glass:

Experimental Results - II

ionosphere:

standard	35	18	90.88
$\beta = 1.5$	15	8	95.44
$\beta = 1.8$	19	12	88.31
$\beta = 1.9$	15	10	90.02
$\beta = 2.0$	15	10	90.02

iris:

standard	9	5	95.33
$\beta = 1.5$	7	5	96
$\beta = 1.8$	7	5	96
$\beta = 1.9$	7	5	96
$\beta = 2.0$	7	5	96

Experimental Results - III

standard432274.08diabetes: $\beta = 1.8$ 5375.78 $\beta = 1.9$ 7475.39 $\beta = 2.0$ 141076.30

Heart-c

Tree size

Number of leaves

Error Rate

Discretization	Diabetes	Glass	Ionosphere	Iris
Method				
$\beta = 1.5$	34.9	25.2	4.8	2.7
$\beta = 1.8$	24.2	22.4	8.3	4
$\beta = 1.9$	24.9	23.4	8.5	4
$\beta = 2.0$	25.4	24.3	9.1	4.7
weighted prop	25.5	38.4	10.3	6.9
prop.	26.3	33.6	10.4	7.5

An appropriate choice of β that defines the metric used in discretization, yields better classifiers (decision trees and naive Bayes)

Open issues:

- identifying simple parameters of data sets that inform the best choice of β ;
- metric discretization for data with missing values.

Future Directions of Work

- The metric space of attributes can be used to cluster attributes.
 - Similar attribute are grouped in clusters, that may have biological significance.
 - Retaining one attribute per cluster (e.g., the centroid) allows for data compression and for simplification of decision techniques.
- Study dynamic properties of clusterings.
- Classification of complex objects (that include graphs, histograms as components).
- Using wavelet transforms for studying total orderings on archeological data.

