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Better discretization algorithms

Stable incremental clustering categorical data
Metric study of genetic codes
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Metrics and Partitions
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Metrics

A metricon a setSisa mappingl : S x .S — r that
satisfies the following:

d(p,q) = 0ifand only if p = gq;
d(p,q) = d(q,p);

d(p,q) +d(q,7) = d(p,7),
for everyp,q,r € S.
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Popular Examples ...

Standard distance on real line:

d(p,q) = |p — ¢

Minkowski distance InR":

dr(p,q) = (Z i — %‘k>
i=1

forp=(p1,...,p,) @andq = (q1,...,qn) € R™.
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Examples

In R?:

di(p, q)

d>(p, q)

doo (P> q)

p1— a1 + [p2 — @
(Manhattan distance)

Vit — a2 + [p2 — ¢
(Euclidean distance)

lim di(p, q)

k— 00

max{[p1 — q1], [p2 — qal}
(Canberra distance)
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Partitions
PART(S): set of partitions of sef

Partitionr = { By, ..., By}
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Let L. C Sandn ={By,..., B,}. Thetrace of the
partition = on L Is:

WL:{BiﬂL’1 SlgkandB@ﬂL#w}
Trace of partitiont = { By, ..., B7} on setL

—p. 10/



Partitions Partial Order
o < 7 If each blockC of ¢ Is included in a block of.

Partitionoc = {C1,...,Cp}t <«
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Tables

A database table

is atripler = (T, H, p)
The header: "
H=A---A,

Dom(A4;): domain ofA;

tm

The content of the tables = {1, ..

p C Dom(A;) x --- x Dom(A,).

T
Al A2 An
ail ai2 Aln
a1 a2 a2n
aAm1 am?2 Ammn
., tm} Where
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Partitions induced by Attribute
Sets

T
— K —

Every attribute AT k1

setk C H ty | -+ k1

induces a tg |- ki

partitiony: A :

same as: L Ky

select K,count(K) ¢.,q1|--- k,

from T tiva | -+ k,
group by K :

tp—1 Ky

th k,




Shannon’s Entropy

For random variables...
The Shannon entropy is introduced for a random

variable distribution
X : (:C’l o o o xn>
p]. e o o pn

ISH(X) = — >_i_1 pilog, pis
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Shannon entropy

... for partitions
A partitionm = { By, ..., B,;} on afinite, nonempty
set A generates naturally a random variable:

B, --- B,
X\ Bl ... 1Bul
|5 5]

We define the Shannon entropymofs the Shannon
entropy ofX.
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Measuring concentration of val-
ues

H1 (7T4) — 1.9609

Hi(ms) = 2.0464

. H1(7T2) — 2.1709

. Hl(ﬂ'l) — 2.3219




Gini’s Index

Hi(ms) = 0.68
Hl(ﬂ'g) = 0.72
H1(7T2) — 0.79
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Generalized Entropy of Parti-
tions

Daroczy’s(7-generalized entropy of
T = {Bl,...,Bn}:

Hy(m) =~ (1 By (gf) |

1=1

For 5 = 2 we obtain the Gini index. Also,
limg_,; Hpg(m) is Shannon’s entropy
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Set Purity and Entropy

H(m;) measures the impurity of the sketrelative to
the partitions: the larger the entropy, the mofeis
scattered among the blocksof

If 7,0 € PART(S), the average impurity of the

blocks ofo relative tor Is theconditional entropy of
7 relative too:

H(rm|o) = Z% H(mg, ),

whereo = {Q1,...,Qmn}.
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Generalized Conditional En-
tropy

Form,o € PART(S) such that

r={P,.... P}
o= {Qu ... Qu}

the conditional3-entropyHs(m|o) is:

Hy(rlo) = S, (') Haro)
~ (21—6_11)]S|6 (Zle > i1 1PN Q;1” — D i ’Qj‘ﬁ)
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Metrics on Partitions Sets
Lopez de Mantaras:

d(m,0) = H(w|o) + H(o|m)
Simovici and Jaroszewicz:
dﬁ(ﬂa U) — Hﬁ(W’U) + Hﬁ(O‘W)
— (21—5—11)\S|5 (2 ‘ Zle Z;nﬂ ‘Pz' A Qj\ﬁ
- Z?:l ‘szﬁ T Z;nﬂ ‘Q]’B) :




Special Cases ...

De Mantaras’ Metric

%ini dg(m,0) =d(m, o)

Thes = 2 case

dm,0) = = (S PP+ Sl Qi
-2 3, S PN Qi)
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GK Classification Rule

Let X, Y be two discrete random variables.
P(Y =b;|X = a;): the probability of predicting
the valued; for Y whenX = q;
Classification ruleAn event that has the
componentX = q; Is classified in th& -classb,
if j is the number for whictP(Y = b,|X = a;)
has the largest value.

The probabllity of misclassification:

1 — max P(Y =b;|X = a;).
1<j<k
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The Goodman-Kruskal Coeffi-
clent

The Goodman-Kruskal coefficienf X andY Is
defined by

GK(X Y)
= ZP (1 — max P(Y = b;|X = a@-))

= 1-— ZP(X — q;) max P(Y = b;|X = a;).

1<j<k
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GK(X,Y) is the expected probability that in a
randomly chosen case the valueYotwill be
iIncorrectly predicted fronk .

Ay|x IS the relative reduction in the probability of

prediction error:
GK(X,Y)
1 — maXj<j<gk P(Y = b])

Avix =1

Ay|x IS the proportion of the relative error In

predicting the value oY that can be eliminated by
knowledge of theX -value.
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The Goodman-Kruskal Coeffi-
cient for Partitions
Consider two partitions

7 =1{B,...,B}Yands = {C},...,C}}.

The Goodman-Kruskal coefficieoit 7, o
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Interpretation of GK

For a fixed:, the largest error in predicting Is:

v C; N By
1—121]@3}%}7()/—]\)(—2)—1—11%3%}2 Bl

Expected value of the largest error in predictings
GK(X,Y):

l
Z Bil. <1 — max & ﬂBﬂ)

, ‘S’ 1<5<k ‘Bz
1=1
l C; N B;
= 1 - max :
— 1<j<k  |S)]

1=1
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Properties of GK

GK(m,o) =0ifandonly ifr < o.

GK Is monotonic In its first argumer@nddually
monotonic In Its second:

GK satisfies a triangular inequality:

GK(m, o) < GK(m, 1) + GK(T, 0).
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Metric Assoclated toGK

The Goodman-Kruskal coefficient generates a me
on PART(S).
Letdqi : PART(S) x PART(S) — r be

dak(m,0) = GK(m, o) + GK(o, ).

for 7,0 € PART(S).
The functiondqx is ametricon the sePART(.S).
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Goodman-Kruskal Coefficient
for Attribute Sets

Let K, L be two sets of attributes of a table.
DefineGK(K, L) = GK(ng, 7r): the expected error
that occurs when we try to predict the valuetof|
from the value ot | K.

If K1 C Ky, thenng, < 7g,, SO

GK(K,, L) < GK(Kjy, L).

|f L1 C Lo, thenGK(K, LQ) < GK(K, Ll)
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Goodman-Kruskal Metric on
Attribute Sets

dax (K, L) = dag (T, 71)
The new metric can be used for:
constructing classifiers;
discretization of continuous attributes;

attribute clustering, feature selection and data
compression.
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Data Mining Applications




Clustering Generic Codes

Aminoacids in proteins are created according
DNA blueprint, thegenetic cod€¢GC).

Each GC is a function
c:{A G,C, T} — AU {Ter}; thus, each GC

defines a partition on the sétl, G, C, T'}°.

The NCBI site lists 16 genetic codes: 6 nuclea
and 10 mitochondrial.
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An Example: The “Universal”
GC

Trp Met
TGG ATG

Lys Phe| Pro Ser Ter Thr Tyr Val Ile
TCT
CcCcrT TCC ACT GTT
AAA| |TTT| Ccc TCA %ﬁé ACC TAT GTC ﬁg
AAG TTC| CCA TGG TGA ACA TAC GTA ATA
CCG AGT ACG GTG
AGC
Ala Arg Asn | Asp | Cys | Gln | Glu Gly His Leu
CGT TTA
GCT CcGC GGT TTG
GCC CGA AAT |GAT | TGT |CAA |GAA GGC CAT cTr
GCA CGG AAC|GAC |TGC|CAG |GAG GGA CAC CTC
GCG AGA GGG CTA
AGG CTG
UMASS. i |
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Visualizing Genetic Codes

Visualization process:
codes are viewed as partitions on the set of
codons{A, G, C,T}3;

Inter-code distances are computed using the
entropic distances;

codes are represented as points4mising the
“classical multidimensional scaling”.
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Scaling of Genetic Codes
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Incremental Clustering
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Main focus

Nominal data
Incremental clustering

Main Feature of ICIncremental clustering forms
clusterings gradually by a sequential process of
adding objects to clusters or initiating new clusters
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Incremental Clustering

—p ,,,,,,, — N
Incoming .
object et
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The Interest In INnCremental clus-
tering

Main memory usage is minimal.

Algorithms are scalable with the size of the selt
objects.
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Valuations and Metrics

v: PART(S) « risuv(r) = >, | Bi|*, where
m={bBi,...,B,}is alower valuation on
PART(S):

vimrVo)+v(rAo)>v(r)+v(e) (1)

for 7,0 € PART(S).

For every lower valuation, d : (PART(S))? «— r
defined byd(7,0) = v(7) + v(o) — 2v(w A o) IS
a metric onPART(5).
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Clusterings as Partitions

We seek a clustering = {C,...,C,} € PART(S)
such that the total distance frosto the partitions of
the attributes:

D(k) = Z d(k, 74)

IS minimal.
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Distance between clustering anad
attribute partitions

n ma

n ma
d(k, ) = Z ‘CZ"Q—FZ \ij 72 >: >: \Ciﬂij g
i=1 j=1

i=1 j=1




AMICA

A Metric Incremental Clustering Algorithm)

If t £ S, andlet”Z = S U{t}. The following may
occur:

1. the object is added to an existing clustél., or

2. anew clusterl,.; Is created that consists only
of t.

Relative tor, ¢ is added to the block; ;.
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Object Is added to existing clus-
ter

kg = {Ciy.. oy Cro1, Cr U {t}, Crpy ..., O}

A = {Ba,....Bilyu{t},....B }

d(rigy, ) = d(k, 7)

= (1G] +1)> = |C]* + (|1 Biiy| + 1)
—’BZ?A]‘Q — 2(2|Cy N BZ?A]’ +1)

= 2|Ck| +1+2|Bjy| +1—4|Cy N Bjjy| — 2

= 2|Cy, & By

—p. 45/
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Object forms a new cluster
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Course of Action

(2. > o 4|Ck & B;?A]\ in Case 1

" p—
D(x') — D(k) <\2°2A‘BZ?A]’ " Case 2

If ming >° 4 |Cx ® By | < >4 B}, addt to a
clusterCy, for which >~ , |Cy, @ By | is minimal;
otherwise, create a new one-object cluster.
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Difficulties of IC

Incremental clustering algorithms are affected,
general, by the order in which objects are
processed by the clustering algorithm.

Each such algorithm proceeds typically in a
hill-climbing fashion that yields local minima
rather than global ones.
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Limiting the Effect of Ordering

The “not-yet” technique introduced by Roure and
Talavera:

is satisfied, that is, only when the effe¢t) of adding
the objectt on the total distance is significant enou

a < 11s a parameter provided by the user (no buffe
a=1
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The AMICA Algorithm:

Input: data setS and thresholdv
Output: clusteringCy, ..., Cnc
Method:
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nc =0;¢=1;
while S # 0 do
select an objeat; S = S — {t};
if 4 |BZ—?A]| <aminj<g<ne 4 |Ck @ BZ?A]'

then
nc ++; create a new single-object clust&f: = {t};
else
r(t) = 4 |Bjjal/minicp<ne 4 |Ck @ Bf
if r(t) > 1
thenk =arg mn, ,|Cr® BZ?AH

addt to clusterC;
else /* this means: < r(t) < 1*/
placet in NOT-YET buffer;
end if;
endwhile;
process objects in the NOT-YET buffer as above with= 1;
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Experiments on Synthetic Data

Synthetic data sets: produced by an algorithm
that generates clusters of objects having
real-numbered components grouped around a
specified number of centroids.

Data was discretized using a specified numbel
discretization intervals which allowed us to tre:
the data as nominal.

The experiments were applied to several data
with an increasing number of tuples and
iIncreased dimensionality and using several
permutations of the set of objects.

All experiments describe uge= 0.95.
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Cluster Stabllity

A data set that consists of 10,000 objects

(grouped by the synthetic data algorithm arour
6 centroids)

A first pass of the algorithm produced 11 cluste

Most objects (9895) are concentrated in the to
clusters, a good approximation of the “natural”
clusters produced by the synthetic algorithm.
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Insensitivity to Orderings

Initial Run Random Permutation
Cluster  Size|| Cluster  Size| Distribution
(Original cluster)
1 1548 1 1692 | 1692 (2)
2 1693 2 1552 | 1548 (1),3(3),1(2)
3 1655 3 1672 | 1672 (5)
4 1711 4 1711 | 1711 (4)
5 1672 5 1652 | 1652 (3)
6 1616 6 1616 | 1616 (6)
7 1 7 85 | 85(8)
8 85 8 10 | 10(9)
9 10 9 8 | 8(10)
10 8 10 1 (11)
11 1 11 1| 1(7)

UMASS. -
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Scalability

Number of Time for 3 Average
objects| permutations (ms)| time (ms)
2000 131 140 154 141.7
5000 410 381 432 407.7
10000, 782 761 831 794.7
20000| 1103 1148 1061 1104

—p. 55/
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The Mushrooms Data Set

The data set contains 8124 mushroom records

and Is typically used as test set for classificatic
algorithms.

Classifiers seek to predict the poisonous/edibl
character of the mushrooms.

The class attribute (poisonous/edible) was
removed and AMICA was applied to the
remaining data set.
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Experimental Results

Cl. Poisonous/Edible Total Percentage of
num. dominant group
1 825/2752| 3577 76.9%
2 8/1050| 1058 99.2%
3 1304/0| 1304 100%
4 0/163| 163 100%
5 1735/28| 1763 98.4%
6 0/7 7 100%
7 0/192| 192 100%
8 36/16| 52 69%
9 8/0 8 100%
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Cluster Stabllity

C; Computed Clusters
First Random Permutation
C, ¢, ¢y O, L G G Gy Gy O
3540 1797 1095 192 1296 8 36 7 137 16
3577 | 3540 0 37 0 0 0 0 0 0
1058 0 0O 1058 0 0 0 0 0 0
1304 0 8 0 0 1296 0 0 0 0
163 0 26 0 0 0 0 0 0 137 0
1763 0 1763 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 7 0 0
192 0 0 0 192 0 0 0 0 0 0
52 0 0 0 0 0 0 36 0 0 16
8 0 0 0 0 0 8 0 0 0 0

UMASS. .58/
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Analysis of Microarray Data
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e-predictors

An e-predictorfor a set of attribute$” is a set of
attributesk such thaGK(K,Y) <.

If K is ane-predictor forY, then any superset’
of K Is also a-predictor forY’.

An e-predictor such that no of its proper subse:
IS ane-predictor is calleaninimal
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An Algorithm for e-predictors

Input: Set of attributed,
a target attribut@”, Y ¢ H and an error leval.
Output: SetP of all minimal e-predictors fromH.

(1)
(2)
(3)
(4)
(5)

(6)

Cand
P
P
Cand
Cand

goto (3);

{{A}: Ae HY;
0;

PU{K € Cand : GK(K,Y) < ¢};
Cand \ P;

{LC H: forall K C L,

|K| = |L| —1we haveK € Cand};
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If a set is a non-minimal predictor, so are all of
supersets, which can thus be skipped.

Initialize candidate set of predicto@and to
Include one-set attributes.

The set of minimal predictor8 is constructed
starting fromCand.

—p. 62/
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Initialize P to include all singleton predictors
whose error Is below the threshaldRemove
those fromC and the search for minimal
two-attribute predictors makes use of the
remaining candidate attributes, etc.

The stopping condition could be exceeding the
maximum predictor size or finding a predictor
with desired prediction error.

BOSTON
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Experimental Results — KHAN

J. Khan et.al.: Classification and Diagnostic
Prediction of Cancers using gene expression
profiling and artificial neural networks,
Nature Medicine, vol 7., 2001

Differential diagnosis of four small round blue cell
tumors of childhood (SRBCTS) :

NB: neuroblastoma
RMS: rhabdomyosarcoma
BL: Burkitt ymphoma
EWS: Ewing family of sarcomas
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Previous work:

single layer neural networks (Khan)
logistic regression model (Weber)
SVMs (Mukerjee)

combined classifiers (Yeo)
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Khan Data

2308 genes were measured using cDNA
microarrays

Training Data:63 cases (12 NB, 20 RMS, 8 BL,
and 23 EWS)

Test Data25 cases (6 EWS, 5 RMS, 6 NB, 3B
and5 non-SRBCT}

The test cases includecases which do not
belong to any of the predicted SRBCT types.
Such cases are not present in the training set.
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Preprocessing

Replace each class attribute witlbinary attributes,
one for each cancer type.

original attribute

computed attributes

Cancertype | NB | RMS | BL | EWS
NB 1 0 0 0
EWS 0 0 0 1
RMS 0 1 0 0
other 0 0 0 0
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BOSTON

A separate predictor is built for each binary
attribute to allow for handling of cases of type
‘other’ present in the test set, but absent in the
training set.

We expect that for ‘other’ cancer type all of the
predictors will give the value di thus indicated
that none of the cancer types Is present.
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Predictors may contradict each other
(infrequently, because low error rate of individt
classifiers).

If presence of more than one cancer type Is
predicted consider it misclassified.

Small predictors decrease the risk of overfitting
(small number of training cases!)
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Limitations on the Computation

We find all predictors with or 2 attributes,

allowing up to one misclassified instance on th
training set.

The stopping rule: reaching the maximum
prescribed size of the predictor, or obtaining al

error rate less than t@ wheret Is the size of the
training set.

All but 30 most predictive attributes are
discarded.

For each cancer type the first predictor with
minimal training error is manually picked at
random (without looking at its test set
performance to avoid bias in the choice).
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Cancer | selected predictor image ids mtr | mte | 1GP | 2GP

type

BL WAS < 0.69 = BL 236282 0 15 )

EWS FCGRT< 1.59 = EWS 770394 1 2 10

NB MAP1B > 2.17 629896 - 383188| O 2 28
or RCV1> 1.98 = NB

RMS TNNT2 > 0.55 298062 - 796258 O 2 0 25
or SGCA> 0.44 = RMS

Legend:

mte misclassified cases in test set

mtr misclassified cases in training set

1GP number of one-gene predictors

2GP number of two-gene predictors
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A fairly large number {2-30) of very simple
predictors have been found for each cancer ty

Each of those predictors has very good
classification rate on the training set: up to one
misclassified case is allowed.

The results show that there are many genes b:
on which a diagnosis can be made for each ca

type.
All genes except for the one that predicts BL
were reported among the 96 selected in Khan.
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If a classifier for only one type of tumor gave a
positive prediction, then the instance was
classified as this type of tumor.

If none of them gave positive prediction we
declared the case as ‘other tumor type’.

If more than one classifier was active the case
was considered a prediction error.

The combined classifier used a totalbajenes
and classified correctly9 out of 25 test cases.

Out of the6 misclassified case8,gave
classifications when the real outcome was ‘oth
3 SRBCT cases were undetected, and therelw
conflict.
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Experimental Results - GOLUB

Training data38 cases (27 acute lymphoblastit
leukemia and 11 acute myelocytic leukemia)
Test data34 cases (20 ALL and 14 AML);

Data involves 6817 genes.

We discretized the gene expression levels usir
Fayyad-Irani

20 genes were retained for which the
Goodman-Kruskal coefficient was below 0.04.
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Five single-genes predictors and 66 two-gene
predictors were identified.

We identified two two-genes predictors (MGST
APLP2 and CD33, CystatinA) for which the
errors on the test set abeand0.0294118,
respectively.

CD33 was among the 50 genes selected by G
et al.
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Voting Mechanism

We retained 19 one-attribute predictors whose
prediction error on the training set did not exce

5.3% (that is, two errors out of the 38 training
cases).

A vote was taken, and the instance was classii
according to the majority vote.

We obtained 3 errors on the test set of 34 case
Namely, the errors occurred on the 57th, 60th
66th cases of the original Golub test set

("unclassifiable" in the original study (Golub)).
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The Goodman-Kruskal dissimilari@K is a
simple, but powerful measure of predictive pov
that can be used to produce robust classifiers.

The small number of training cases makes
reliable construction of more complex models
like Bayesian networks or C4.5 trees very harc
even impossible.

Naive Bayesian classifiers suffer from
Independence assumptions which may not be
satisfied in the microarray setting where most
genes are correlated with each other.
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A New Metric Discretization
Algorithm




From

numerical to nominal

Previous work on discretization:

fixed k-Iinterval discretization (J. Dougherty, R.
Kohavi, M. Sahami, 1995)

fuzzy discretization (Kononenko 1992-1993)

Shannon-entropy discretization (Fayyad and
Irani, 1993)

pro
We

portionalk-interval discretization (Yang and
0, 2001, 2003)

hig

nly dependent attributes (M. Robnik and I.

Kononenko, 1995)
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Basic Results

a generalization of Fayyad-Irani discretization
technique

a geometric criterion for halting the discretizati
process

better results in building
naive Bayes classifiers
decision trees
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Discretization of a numeric at-
tribute B

Set of cutpointsS = {t4,...,%,} inaDom(B), where
b <ty < --- < 1y

t to t

Qv Q Q. Qi

Discretization partitiorof aDom(B):

m ={Qo, .., Qu}
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Boundary Points

t1,...,t,. the list of tuples sorted on the values of ¢
attributeB.

mp.4 IS the partition oaDom(B) that consists of the

longest runs of B-components of the
tuples in this list that belong to the of
the partitionn 4.

Theboundary point®f the partitionrp 4 are the leas
and the largest elements of each of the blocks of tf
partitionmp 4.

We haverp 4. < w4 for any attributes.
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Main Result

Theorem:Let 3 € (1, 2].
If S Is a set of cutpoints such that the distance
dg(ma,m?) is minimal among the set of cutpoints wi

the same number of elements, thegonsists of
boundary points of the partitions 4 of aDom(B).
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To discretizeaDom(B) we seek a set of cutpoints
such that

dg(ma, m2) = Ha(ma|ml) + Ha(w)|7a)

IS minimal.
Seek a set of cutpoint$ such that the partition”
Induced on the set of rows Is as close as possible t

the target partitionry.

—p. 84/
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Discretization Algorithm

Input: A table T, a class attribute /
and a real -valued attribute B.
Output: A discretized attribute B.

BP Is the set of boundary points of partitiai; 4.
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Method:

sort 1" on B;
comput e BP;
S =10;d= o0;
whi | e BP # () do

| et ¢t = arg mintedeﬁ(m,wa{t});

1 f d> dﬁ(ﬁA,WfU{t}) t hen

begi n
S =SU{t}, BP =BP — {t};
d = dg(ma, )

end
el se exit while | oop;
end whil e

for 70 ={Qy,...,Q/} replace
every value Iin @Q; by 2+ for 0<:<V/.
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dg(m 4, w2) as a function of | S|

\ dﬁ TrA?ﬂ_f)

N

-@

©CO0000000
RPNWAOOIOON0 O

rveeesseeeaes S|

5 10 15 20 25 30
78% of the total time is spent on decreasing the
distance by the last%
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dg(ma, m2) = Hg(ma

If S C S thent® > 75 ano

Ho(malm?) >
Ha(ml|ma) <

72) + Hg(m|ma)

/

Ha(malmy )
Ha(m? |7a).

Process starts with = 0, sor> = w.

Practical halting criterion:

d — dg(my, 72| > 0.01d.
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Experimental Results

Accuracy measured in stratified 10-fold
cross-validation

UCI datasets witht € {1.5,1.8.1.9, 2}
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Experimental Results - |

Method | Size| Leaves| Accuracy
| =15] 20 14 77.36
heartc: |, _1s| 28/ 18 77.36
=19 35 22 76.01
=201 54 32 76.01
g=15132|24|71.02
glass:. | /=18 |56|50/|77.10
=19 | 64|58|67.57
5 =20 19282 66.35
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Experimental Results - |l

lonosphere:

IrS:
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O © 00 Ot
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15
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95.44
88.31
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90.02
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O © 00 Ot

~N N NN

o1 O1 O1 O1

96
96
96
96
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Experimental Results - [l

=18 | 5| 3|/75.78
. 75.39
=2.0 14| 10| 76.30
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BOSTON
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100 92 100
o : o :
7 ] = 7
0t7 g5 04 10- 58 =
60- Z 60- 50 Z
50- - 50- =
404 | 32 Z 4080 Z
304 = 30 24 =
it 2 it 2
- s — ]
0 = 0 =
Tree size Number of leaves
Accuracy 188

stanFIard a0l 1 77 57 o

p— d_.5 70'57
, 60- Z
= 1.8 50- =
40- Z
= 1.9 30- =
_ 20+ -
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Nalve Bayes Classifiers

Error Rate

Discretization| Diabetes Glass| lonosphere Iris
Method

= 1.5 34.9 25.2 | 4.8 2.7

= 1.8 24.2 22.4 | 8.3 4

=1.9 24.9 23.4 | 8.5 4
8 =2.0 25.4 24.3 |1 9.1 4.7
weighted prop 25.5 38.4 | 10.3 6.9
prop. 26.3 33.6 | 10.4 7.5
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An appropriate choice of that defines the metric
used in discretization, yields better classifiers
(decision trees and naive Bayes)

Open issues:

identifying simple parameters of data sets that
Inform the best choice of;

metric discretization for data with missing valu

BOSTON
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Future Directions of Work
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BOSTON

The metric space of attributes can be used to
cluster attributes.

Similar attribute are grouped in clusters, the
may have biological significance.

Retaining one attribute per cluster (e.g., the
centroid) allows for data compression and f
simplification of decision techniques.

Study dynamic properties of clusterings.

Classification of complex objects (that include
graphs, histograms as components).

Using wavelet transforms for studying total
orderings on archeological data.
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