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Applications:
• Building better classifiers
• Better discretization algorithms
• Stable incremental clustering categorical data
• Metric study of genetic codes
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Metrics
A metricon a setS is a mappingd : S × S −→ R that
satisfies the following:
• d(p, q) = 0 if and only if p = q;
• d(p, q) = d(q, p);
• d(p, q) + d(q, r) ≥ d(p, r),

for everyp, q, r ∈ S.
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Popular Examples ...
• Standard distance on real line:

d(p, q) = |p− q|
• Minkowski distance inRn:

dk(p,q) =

(

n
∑

i=1

|pi − qi|k
)

1

k

for p = (p1, . . . , pn) andq = (q1, . . . , qn) ∈ R
n.
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Examples
In R

2:

d1(p,q) = |p1 − q1|+ |p2 − q2|
(Manhattan distance)

d2(p,q) =
√

|p1 − q1|2 + |p2 − q2|2
(Euclidean distance)

d∞(p,q) = lim
k→∞

dk(p,q)

= max{|p1 − q1|, |p2 − q2|}
(Canberra distance)
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6

p = (p1, p2)

q = (q1, q2)

|p1 − q1|

|p2 − q2|

R2
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Partitions
PART(S): set of partitions of setS
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Let L ⊆ S andπ = {B1, . . . , Bn}. Thetrace of the
partition π onL is:

πL = {Bi ∩ L | 1 ≤ i ≤ k andBi ∩ L 6= ∅}.
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Partitions Partial Order
σ ≤ π if each blockC of σ is included in a block ofπ.
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Tables
A database tableτ
is a tripleτ = (T, H, ρ)

The header:
H = A1 · · ·An

Dom(Ai): domain ofAi

T

A1 A2 · · · An

t1 a11 a12 · · · a1n

t2 a21 a22 · · · a2n

...
...

...
...

...

tm am1 am2 · · · amn

The content of the table:ρ = {t1, . . . , tm} where
ρ ⊆ Dom(A1)× · · · × Dom(An).
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Partitions induced by Attribute
Sets

Every attribute
setK ⊆ H

induces a
partitionπK :
same as:
select K,count(K)
from T
group by K

T

· · · ←− K −→ · · ·
t1 · · · k1 · · ·
t2 · · · k1 · · ·
t3 · · · k1 · · ·
... ... ... ...

tl · · · kp · · ·
tl+1 · · · kp · · ·
tl+2 · · · kp · · ·

... ... ... ...
tn−1 · · · kr · · ·

tn · · · kr · · ·
– p. 13/98






Shannon’s Entropy
For random variables...
The Shannon entropy is introduced for a random
variable distribution

X :

(

x1 · · · xn

p1 · · · pn

)

isH(X) = −∑n
i=1 pi log2 pi.
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Shannon entropy
... for partitions
A partitionπ = {B1, . . . , Bm} on a finite, nonempty
setA generates naturally a random variable:

Xπ :

(

B1 · · · Bm
|B1|
|S| · · ·

|Bm|
|S|

)

We define the Shannon entropy ofπ as the Shannon
entropy ofXπ.
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Measuring concentration of val-
ues
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H1(π1) = 2.3219

H1(π2) = 2.1709

H1(π3) = 2.0464

H1(π4) = 1.9609
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Gini’s Index

H2(π) = 1−
n
∑

i=1

p2
i
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H1(π1) = 0.80

H1(π2) = 0.79

H1(π3) = 0.72

H1(π4) = 0.68
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Generalized Entropy of Parti-
tions
Daróczy’sβ-generalized entropy of
π = {B1, . . . , Bn}:

Hβ(π) =
1

1− 21−β

(

1−
n
∑

i=1

( |Bi|
|S|

)β
)

.

Forβ = 2 we obtain the Gini index. Also,
limβ→1Hβ(π) is Shannon’s entropy

H(π) = −
n
∑

i=1

|Bi|
|S| log2

|Bi|
|S|
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Set Purity and Entropy
H(πL) measures the impurity of the setL relative to
the partitionπ: the larger the entropy, the moreL is
scattered among the blocks ofπ.
If π, σ ∈ PART(S), the average impurity of the
blocks ofσ relative toπ is theconditional entropy of
π relative toσ:

H(π|σ) =
m
∑

j=1

|Qj|
|S| H(πQj

),

whereσ = {Q1, . . . , Qm}.
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Generalized Conditional En-
tropy
Forπ, σ ∈ PART(S) such that

π = {P1, . . . , Pk}
σ = {Q1, . . . , Qm}

the conditionalβ-entropyHβ(π|σ) is:

Hβ(π|σ) =
∑m

j=1

(

|Qj |
|S|

)β

Hβ(πQj
)

= 1
(21−β−1)|S|β

(

∑k
i=1

∑m
j=1 |Pi ∩Qj|β −

∑m
j=1 |Qj|β

)

.
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Metrics on Partitions Sets
López de Mántaras:

d(π, σ) = H(π|σ) +H(σ|π)

Simovici and Jaroszewicz:

dβ(π, σ) = Hβ(π|σ) +Hβ(σ|π)

= 1
(21−β−1)|S|β

(

2 ·∑k
i=1

∑m
j=1 |Pi ∩Qj|β

−∑n
i=1 |Pi|β −

∑m
j=1 |Qj|β

)

.
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Special Cases ...
De Mántaras’ Metric:

lim
β→1

dβ(π, σ) = d(π, σ)

Theβ = 2 case:

d2(π, σ) = 2√
|S|

(

∑n
i=1 |Pi|2 +

∑m
j=1 |Qj|2

−2 ·∑k
i=1

∑m
j=1 |Pi ∩Qj|2

)
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GK Classification Rule
Let X, Y be two discrete random variables.
• P (Y = bj|X = ai): the probability of predicting

the valuebj for Y whenX = ai

Classification rule:An event that has the
componentX = ai is classified in theY -classbj

if j is the number for whichP (Y = bj|X = ai)
has the largest value.

• The probability of misclassification:

1− max
1≤j≤k

P (Y = bj|X = ai).
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The Goodman-Kruskal Coeffi-
cient
TheGoodman-Kruskal coefficientof X andY is
defined by

GK(X, Y )

=
l
∑

i=1

P (X = ai)

(

1− max
1≤j≤k

P (Y = bj|X = ai)

)

= 1−
l
∑

i=1

P (X = ai) max
1≤j≤k

P (Y = bj|X = ai).
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GK(X, Y ) is the expected probability that in a
randomly chosen case the value ofY will be
incorrectly predicted fromX.
λY |X is the relative reduction in the probability of
prediction error:

λY |X = 1− GK(X, Y )

1−max1≤j≤k P (Y = bj)

λY |X is the proportion of the relative error in
predicting the value ofY that can be eliminated by
knowledge of theX-value.
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The Goodman-Kruskal Coeffi-
cient for Partitions
Consider two partitions

π = {B1, . . . , Bl} andσ = {C1, . . . , Ck}.
The Goodman-Kruskal coefficientof π, σ:

GK(π, σ) = 1−
l
∑

i=1

max
1≤j≤k

|Cj ∩Bi|
|S| .
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Interpretation of GK
For a fixedi, the largest error in predictingY is:

1− max
1≤j≤k

P (Y = j|X = i) = 1− max
1≤j≤k

|Cj ∩Bi|
|Bi|

.

Expected value of the largest error in predictingY is
GK(X, Y ):

l
∑

i=1

|Bi|
|S| ·

(

1− max
1≤j≤k

|Cj ∩Bi|
|Bi|

)

= 1−
l
∑

i=1

max
1≤j≤k

|Cj ∩Bi|
|S| ,
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Properties ofGK
• GK(π, σ) = 0 if and only if π ≤ σ.
• GK is monotonic in its first argumentanddually

monotonic in its second:
• GK satisfies a triangular inequality:

GK(π, σ) ≤ GK(π, τ) + GK(τ, σ).
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Metric Associated toGK
The Goodman-Kruskal coefficient generates a metric
onPART(S).
Let dGK : PART(S)× PART(S) −→ R be

dGK(π, σ) = GK(π, σ) + GK(σ, π).

for π, σ ∈ PART(S).
The functiondGK is ametricon the setPART(S).
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Goodman-Kruskal Coefficient
for Attribute Sets
Let K, L be two sets of attributes of a table.
DefineGK(K, L) = GK(πK , πL): the expected error
that occurs when we try to predict the value oft[L]
from the value oft[K].
• If K1 ⊆ K2, thenπK2

≤ πK1
, so

GK(K2, L) ≤ GK(K1, L).
• If L1 ⊆ L2, thenGK(K, L2) ≤ GK(K, L1).
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Goodman-Kruskal Metric on
Attribute Sets

dGK(K, L) = dGK(πK , πL)

The new metric can be used for:
• constructing classifiers;
• discretization of continuous attributes;
• attribute clustering, feature selection and data

compression.
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Data Mining Applications
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Clustering Generic Codes
A Proof-of-Concept Experiment
• Aminoacids in proteins are created according to a

DNA blueprint, thegenetic code(GC).
• Each GC is a function

c : {A, G, C, T}3 −→ A∪ {Ter}; thus, each GC
defines a partition on the set{A, G, C, T}3.

• The NCBI site lists 16 genetic codes: 6 nuclear
and 10 mitochondrial.
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An Example: The “Universal”
GC
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Visualizing Genetic Codes
Visualization process:
• codes are viewed as partitions on the set of

codons{A, G, C, T}3;
• inter-code distances are computed using the

entropic distanced2;

• codes are represented as points inR
2 using the

“classical multidimensional scaling”.
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Scaling of Genetic Codes
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Incremental Clustering
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Main focus
• Nominal data
• Incremental clustering

Main Feature of IC:Incremental clustering forms
clusterings gradually by a sequential process of
adding objects to clusters or initiating new clusters.
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Incremental Clustering
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The interest in incremental clus-
tering
• Main memory usage is minimal.
• Algorithms are scalable with the size of the set of

objects.
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Valuations and Metrics
• v : PART(S)← R is v(π) =

∑n
i=1 |Bi|2, where

π = {B1, . . . , Bn} is a lower valuation on
PART(S):

v(π ∨ σ) + v(π ∧ σ) ≥ v(π) + v(σ) (1)

for π, σ ∈ PART(S).

• For every lower valuationv, d : (PART(S))2 ← R

defined byd(π, σ) = v(π) + v(σ)− 2v(π ∧ σ) is
a metric onPART(S).
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Clusterings as Partitions
We seek a clusteringκ = {C1, . . . , Cn} ∈ PART(S)
such that the total distance fromκ to the partitions of
the attributes:

D(κ) =
n
∑

i=1

d(κ, πAi)

is minimal.
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Distance between clustering and
attribute partitions

d(κ, πA) =
n
∑

i=1

|Ci|2+
mA
∑

j=1

|BA
aj
|2−2

n
∑

i=1

mA
∑

j=1

|Ci∩BA
aj
|2,
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AMICA
A Metric Incremental Clustering Algorithm)
If t 6∈ S, and letZ = S ∪ {t}. The following may
occur:

1. the objectt is added to an existing clusterCk, or

2. a new cluster,Cn+1 is created that consists only
of t.

Relative toπA, t is added to the blockBA
t[A].
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Object is added to existing clus-
ter

κ(k) = {C1, . . . , Ck−1, Ck ∪ {t}, Ck+1, . . . , Cn}
πA′ = {BA

a1
, . . . , BA

t[A] ∪ {t}, . . . , BA
amA
}

d(κ(k), π
A′)− d(κ, πA)

= (|Ck|+ 1)2 − |Ck|2 + (|BA
t[A]|+ 1)2

−|BA
t[A]|2 − 2(2|Ck ∩BA

t[A]|+ 1)

= 2|Ck|+ 1 + 2|BA
t[A]|+ 1− 4|Ck ∩BA

t[A]| − 2

= 2|Ck ⊕BA
t[A]|.

The minimal increase ofd(κ(k), π
A′) is given by: – p. 45/98






Object forms a new cluster

κ′ = {C1, . . . , . . . , Cn, {t}}
πA′ = {BA

a1
, . . . , BA

t[A] ∪ {t}, . . . , BA
amA
}

d(κ′, πA′)− d(κ, πA) = 2|BA
t[A]|.
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Course of Action

D(κ′)−D(κ) =

{

2 ·∑A |Ck ⊕BA
t[A]| in Case 1

2 ·∑A |BA
t[A]| in Case 2.

If mink

∑

A |Ck ⊕BA
t[A]| <

∑

A |BA
t[A]| addt to a

clusterCk for which
∑

A |Ck ⊕BA
t[A]| is minimal;

otherwise, create a new one-object cluster.
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Difficulties of IC
• Incremental clustering algorithms are affected, in

general, by the order in which objects are
processed by the clustering algorithm.

• Each such algorithm proceeds typically in a
hill-climbing fashion that yields local minima
rather than global ones.
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Limiting the Effect of Ordering
The “not-yet” technique introduced by Roure and
Talavera:

In our framework : A new cluster is created only
when

r(t) =

∑

A |BA
t[A]|

mink

∑

A |Ck ⊕BA
t[A]|

< α,

is satisfied, that is, only when the effectr(t) of adding
the objectt on the total distance is significant enough.

α ≤ 1 is a parameter provided by the user (no buffer if
α = 1
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The AMICA Algorithm:

Input: data setS and thresholdα
Output: clusteringC1, . . . , Cnc

Method:
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nc = 0; ℓ = 1;

while S 6= ∅ do

select an objectt; S = S − {t};

if
A
|BA

t[A]
| ≤ α min1≤k≤nc A

|Ck ⊕ BA

t[A]
|

then

nc ++; create a new single-object clusterCnc = {t};

else

r(t) =
A
|BA

t[A]
|/ min1≤k≤nc A

|Ck ⊕ BA

t[A]
|

if r(t) > 1

thenk = arg mink A
|Ck ⊕ BA

t[A]
|

addt to clusterCk;

else /* this meansα < r(t) ≤ 1 */

placet in NOT-YET buffer;

end if;

endwhile;

process objects in the NOT-YET buffer as above withα = 1;
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Experiments on Synthetic Data
• Synthetic data sets: produced by an algorithm

that generates clusters of objects having
real-numbered components grouped around a
specified number of centroids.

• Data was discretized using a specified number of
discretization intervals which allowed us to treat
the data as nominal.

• The experiments were applied to several data sets
with an increasing number of tuples and
increased dimensionality and using several
permutations of the set of objects.

• All experiments describe useα = 0.95.
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Cluster Stability
• A data set that consists of 10,000 objects

(grouped by the synthetic data algorithm around
6 centroids)

• A first pass of the algorithm produced 11 clusters.
• Most objects (9895) are concentrated in the top 6

clusters, a good approximation of the “natural”
clusters produced by the synthetic algorithm.
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Insensitivity to Orderings
Initial Run Random Permutation

Cluster Size Cluster Size Distribution

(Original cluster)

1 1548 1 1692 1692 (2)

2 1693 2 1552 1548 (1), 3 (3), 1 (2)

3 1655 3 1672 1672 (5)

4 1711 4 1711 1711 (4)

5 1672 5 1652 1652 (3)

6 1616 6 1616 1616 (6)

7 1 7 85 85 (8)

8 85 8 10 10 (9)

9 10 9 8 8 (10)

10 8 10 1 1 (11)

11 1 11 1 1 (7)

– p. 54/98






Scalability

Number of Time for 3 Average

objects permutations (ms) time (ms)

2000 131 140 154 141.7

5000 410 381 432 407.7

10000 782 761 831 794.7

20000 1103 1148 1061 1104
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The Mushrooms Data Set
• The data set contains 8124 mushroom records

and is typically used as test set for classification
algorithms.

• Classifiers seek to predict the poisonous/edible
character of the mushrooms.

• The class attribute (poisonous/edible) was
removed and AMICA was applied to the
remaining data set.
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Experimental Results

Cl. Poisonous/Edible Total Percentage of

num. dominant group

1 825/2752 3577 76.9%

2 8/1050 1058 99.2%

3 1304/0 1304 100%

4 0/163 163 100%

5 1735/28 1763 98.4%

6 0/7 7 100%

7 0/192 192 100%

8 36/16 52 69%

9 8/0 8 100%
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Cluster Stability
Ci Computed Clusters

First Random Permutation

C′
1 C′

2 C′
3 C′

4 C′
5 C′

6 C′
7 C′

8 C′
9 C′

10

3540 1797 1095 192 1296 8 36 7 137 16

3577 3540 0 37 0 0 0 0 0 0 0

1058 0 0 1058 0 0 0 0 0 0 0

1304 0 8 0 0 1296 0 0 0 0 0

163 0 26 0 0 0 0 0 0 137 0

1763 0 1763 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 7 0 0

192 0 0 0 192 0 0 0 0 0 0

52 0 0 0 0 0 0 36 0 0 16

8 0 0 0 0 0 8 0 0 0 0
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Analysis of Microarray Data
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ǫ-predictors
An ǫ-predictor for a set of attributesY is a set of
attributesK such thatGK(K, Y ) ≤ ǫ.

• If K is anǫ-predictor forY , then any supersetK ′

of K is also aǫ-predictor forY .
• An ǫ-predictor such that no of its proper subsets

is anǫ-predictor is calledminimal.
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An Algorithm for ǫ-predictors
Input: Set of attributesH,
a target attributeY , Y 6∈ H and an error levelǫ.
Output: SetP of all minimal ǫ-predictors fromH.

(1) Cand = {{A} : A ∈ H};
(2) P = ∅;
(3) P = P ∪ {K ∈ Cand : GK(K,Y ) ≤ ǫ};
(4) Cand = Cand \ P;

(5) Cand = {L ⊆ H : for all K ⊂ L,

|K| = |L| − 1 we haveK ∈ Cand};
(6) goto (3);
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• If a set is a non-minimal predictor, so are all of its
supersets, which can thus be skipped.

• Initialize candidate set of predictorsCand to
include one-set attributes.

• The set of minimal predictorsP is constructed
starting fromCand.
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• Initialize P to include all singleton predictors
whose error is below the thresholdǫ. Remove
those fromC and the search for minimal
two-attribute predictors makes use of the
remaining candidate attributes, etc.

• The stopping condition could be exceeding the
maximum predictor size or finding a predictor
with desired prediction error.
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Experimental Results – KHAN
J. Khan et.al.: Classification and Diagnostic
Prediction of Cancers using gene expression
profiling and artificial neural networks,
Nature Medicine, vol 7., 2001

Differential diagnosis of four small round blue cell
tumors of childhood (SRBCTs) :

NB: neuroblastoma

RMS: rhabdomyosarcoma

BL: Burkitt lymphoma

EWS: Ewing family of sarcomas
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Previous work:

single layer neural networks (Khan)
logistic regression model (Weber)
SVMs (Mukerjee)
combined classifiers (Yeo)
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Khan Data
• 2308 genes were measured using cDNA

microarrays
• Training Data:63 cases (12 NB, 20 RMS, 8 BL,

and 23 EWS)
• Test Data:25 cases (6 EWS, 5 RMS, 6 NB, 3 BL,

and5 non-SRBCTs)
• The test cases include5 cases which do not

belong to any of the predicted SRBCT types.
Such cases are not present in the training set.
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Preprocessing
Replace each class attribute with4 binary attributes,
one for each cancer type.

original attribute computed attributes

Cancer type NB RMS BL EWS
NB 1 0 0 0

EWS 0 0 0 1
RMS 0 1 0 0
other 0 0 0 0
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• A separate predictor is built for each binary
attribute to allow for handling of cases of type
‘other’ present in the test set, but absent in the
training set.

• We expect that for ‘other’ cancer type all of the
predictors will give the value of0 thus indicated
that none of the4 cancer types is present.
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• Predictors may contradict each other
(infrequently, because low error rate of individual
classifiers).

• If presence of more than one cancer type is
predicted consider it misclassified.

• Small predictors decrease the risk of overfitting
(small number of training cases!)
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Limitations on the Computation
• We find all predictors with1 or 2 attributes,

allowing up to one misclassified instance on the
training set.

• The stopping rule: reaching the maximum
prescribed size of the predictor, or obtaining an
error rate less than to1

t
, wheret is the size of the

training set.
• All but 30 most predictive attributes are

discarded.
• For each cancer type the first predictor with

minimal training error is manually picked at
random (without looking at its test set
performance to avoid bias in the choice).
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Cancer selected predictor image ids mtr mte 1GP 2GP

type

BL WAS ≤ 0.69 ⇒ BL 236282 0 1 15 5

EWS FCGRT≤ 1.59 ⇒ EWS 770394 1 3 2 10

NB MAP1B > 2.17 629896 - 383188 0 0 2 28

or RCV1> 1.98 ⇒ NB

RMS TNNT2 > 0.55 298062 - 796258 0 2 0 25

or SGCA> 0.44 ⇒ RMS

Legend:
mte misclassified cases in test set
mtr misclassified cases in training set
1GP number of one-gene predictors
2GP number of two-gene predictors
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• A fairly large number (12–30) of very simple
predictors have been found for each cancer type.

• Each of those predictors has very good
classification rate on the training set: up to one
misclassified case is allowed.

• The results show that there are many genes based
on which a diagnosis can be made for each cancer
type.

• All genes except for the one that predicts BL
were reported among the 96 selected in Khan.
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• If a classifier for only one type of tumor gave a
positive prediction, then the instance was
classified as this type of tumor.

• If none of them gave positive prediction we
declared the case as ‘other tumor type’.

• If more than one classifier was active the case
was considered a prediction error.

• The combined classifier used a total of6 genes
and classified correctly19 out of25 test cases.

• Out of the6 misclassified cases,2 gave
classifications when the real outcome was ‘other’,
3 SRBCT cases were undetected, and there was1
conflict.
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Experimental Results - GOLUB
• Training data:38 cases (27 acute lymphoblastic

leukemia and 11 acute myelocytic leukemia)
Test data:34 cases (20 ALL and 14 AML);

• Data involves 6817 genes.
• We discretized the gene expression levels using

Fayyad-Irani
• 20 genes were retained for which the

Goodman-Kruskal coefficient was below 0.04.
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• Five single-genes predictors and 66 two-gene
predictors were identified.

• We identified two two-genes predictors (MGST1,
APLP2 and CD33, CystatinA) for which the
errors on the test set are0 and0.0294118,
respectively.

• CD33 was among the 50 genes selected by Golub
et al.
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Voting Mechanism
• We retained 19 one-attribute predictors whose

prediction error on the training set did not exceed
5.3% (that is, two errors out of the 38 training
cases).

• A vote was taken, and the instance was classified
according to the majority vote.

• We obtained 3 errors on the test set of 34 cases.
Namely, the errors occurred on the 57th, 60th and
66th cases of the original Golub test set
("unclassifiable" in the original study (Golub)).
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• The Goodman-Kruskal dissimilarityGK is a
simple, but powerful measure of predictive power
that can be used to produce robust classifiers.

• The small number of training cases makes
reliable construction of more complex models
like Bayesian networks or C4.5 trees very hard or
even impossible.

• Naive Bayesian classifiers suffer from
independence assumptions which may not be
satisfied in the microarray setting where most
genes are correlated with each other.
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A New Metric Discretization
Algorithm
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From numerical to nominal
Previous work on discretization:
• fixedk-interval discretization (J. Dougherty, R.

Kohavi, M. Sahami, 1995)
• fuzzy discretization (Kononenko 1992-1993)
• Shannon-entropy discretization (Fayyad and

Irani, 1993)
• proportionalk-interval discretization (Yang and

Web, 2001, 2003)
• highly dependent attributes (M. Robnik and I.

Kononenko, 1995)
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Basic Results
• a generalization of Fayyad-Irani discretization

technique
• a geometric criterion for halting the discretization

process
• better results in building

• naive Bayes classifiers
• decision trees
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Discretization of a numeric at-
tribute B
Set of cutpoints:S = {t1, . . . , tℓ} in aDom(B), where
t1 < t2 < · · · < tℓ.

-
t1 t2 · · · tℓ

Q0 Q1 · · · Ql+1Qℓ

Discretization partitionof aDom(B):

πS = {Q0, . . . , Qℓ}

– p. 81/98






Boundary Points
t1, . . . , tn: the list of tuples sorted on the values of an
attributeB.
πB,A is the partition ofaDom(B) that consists of the
longest runs ofconsecutiveB-components of the
tuples in this list that belong to thesame blockK of
the partitionπA.
Theboundary pointsof the partitionπB,A are the least
and the largest elements of each of the blocks of the
partitionπB,A.
We haveπB,A∗ ≤ πA for any attributeB.
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Main Result
Theorem:Let β ∈ (1, 2].
If S is a set of cutpoints such that the distance
dβ(πA, πS

∗ ) is minimal among the set of cutpoints with
the same number of elements, thenS consists of
boundary points of the partitionπB,A of aDom(B).
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To discretizeaDom(B) we seek a set of cutpoints
such that

dβ(πA, πS
∗ ) = Hβ(πA|πS

∗ ) +Hβ(π
S
∗ |πA)

is minimal.
Seek a set of cutpointsS such that the partitionπS

∗
induced on the set of rows is as close as possible to
the target partitionπA.

– p. 84/98






Discretization Algorithm
Input: A table T, a class attribute A

and a real-valued attribute B.
Output: A discretized attribute B.

BP is the set of boundary points of partitionπB,A∗
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Method:
sort T on B;
compute BP;
S = ∅; d =∞;
while BP 6= ∅ do

let t = arg mint∈BPdβ(πA, π
S∪{t}
∗ );

if d ≥ dβ(πA, π
S∪{t}
∗ ) then

begin
S = S ∪ {t}; BP = BP− {t};
d = dβ(πA, πS

∗ )
end

else exit while loop;
end while
for πS

∗ = {Q0, . . . , Qℓ} replace
every value in Qi by i for 0 ≤ i ≤ ℓ.
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dβ(πA, πS
∗ ) as a function of|S|

-

6
dβ(πA, πS

∗ )

|S|0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

5 10 15 20 25 30

r

r

r

r

r r r r r r r r r r r r r r r r r r r

78% of the total time is spent on decreasing the
distance by the last1%

– p. 87/98






dβ(πA, πS
∗ ) = Hβ(πA|πS

∗ ) +Hβ(π
S
∗ |πA)

If S ⊆ S ′ thenπS ≥ πS′

and

Hβ(πA|πS
∗ ) ≥ Hβ(πA|πS′

∗ )

Hβ(π
S
∗ |πA) ≤ Hβ(π

S′

∗ |πA).

Process starts withS = ∅, soπS
∗ = ω.

Practical halting criterion:

|d− dβ(πA, πS∪{t}
∗ )| > 0.01d.
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Experimental Results

• Accuracy measured in stratified 10-fold
cross-validation

• UCI datasets withβ ∈ {1.5, 1.8.1.9, 2}
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Experimental Results - I

heart-c:

Method Size Leaves Accuracy
standard 51 30 79.20
β = 1.5 20 14 77.36
β = 1.8 28 18 77.36
β = 1.9 35 22 76.01
β = 2.0 54 32 76.01

glass:

standard 57 30 57.28
β = 1.5 32 24 71.02
β = 1.8 56 50 77.10
β = 1.9 64 58 67.57
β = 2.0 92 82 66.35
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Experimental Results - II

ionosphere:

standard 35 18 90.88
β = 1.5 15 8 95.44
β = 1.8 19 12 88.31
β = 1.9 15 10 90.02
β = 2.0 15 10 90.02

iris:

standard 9 5 95.33
β = 1.5 7 5 96
β = 1.8 7 5 96
β = 1.9 7 5 96
β = 2.0 7 5 96
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Experimental Results - III

diabetes:

standard 43 22 74.08
β = 1.8 5 3 75.78
β = 1.9 7 4 75.39
β = 2.0 14 10 76.30
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Glass
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Naive Bayes Classifiers
Error Rate

Discretization Diabetes Glass Ionosphere Iris
Method
β = 1.5 34.9 25.2 4.8 2.7
β = 1.8 24.2 22.4 8.3 4
β = 1.9 24.9 23.4 8.5 4
β = 2.0 25.4 24.3 9.1 4.7
weighted prop 25.5 38.4 10.3 6.9
prop. 26.3 33.6 10.4 7.5
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An appropriate choice ofβ that defines the metric
used in discretization, yields better classifiers
(decision trees and naive Bayes)

Open issues:
• identifying simple parameters of data sets that

inform the best choice ofβ;
• metric discretization for data with missing values.
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Future Directions of Work
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• The metric space of attributes can be used to
cluster attributes.
• Similar attribute are grouped in clusters, that

may have biological significance.
• Retaining one attribute per cluster (e.g., the

centroid) allows for data compression and for
simplification of decision techniques.

• Study dynamic properties of clusterings.
• Classification of complex objects (that include

graphs, histograms as components).
• Using wavelet transforms for studying total

orderings on archeological data.
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