
Mining Determining Sets for Partially Defined Functions

Dan A. Simovici, Dan Pletea, and Rosanne Vetro

Univ. of Massachusetts Boston, Dept. of Comp. Science, 100 Morrissey Blvd. Boston,
Massachusetts 02125 USA {dsim,dpletea,rvetro} at cs.umb.edu

Abstract. This paper describes an algorithm that determines the minimal sets of
variables that determine the values of a discrete partial function. The Apriori-like
algorithm is based on the dual hereditary property of determining sets. Experi-
mental results are provided that demonstrate the efficiency of the algorithm for
functions with up to 24 variables. The dependency of the number of minimal
determining sets on the size of the specification of the partial function is also
examined.

1 Introduction

Partially defined finite functions are studied by both mathematicians and engineers due
to their many technical applications, particularly in designing switching circuitry. They
model such diverse circuits as logical programmable arrays, or content addressable
memory. The performance of such circuits (including wiring complexity, power dis-
sipation, etc.) is heavily influenced by the number of arguments on which the function
implemented by the circuit depends effectively.

The goal of this paper is to present an algorithm to generate various sets of input
variables on which a partial function depends using an approach inspired by Apriori,
a well-known data mining algorithm developed for determining frequent item sets in
transactional databases [1–3].

The proposed algorithm is based on the fundamental observation that and superset
of a determining set for a partially defined function f is itself a determining set for
f . We use this dual heredity property of determining sets to formulate an Apriori-like
algorithm that computes the determining sets by traversing the lattice of subsets of the
set of variables.

This problem has been addressed in [4] using an algebraic minimization algorithm
that applies to functions that depend on small number of variables. Our approach is dis-
tinct and involves techniques inspired by data mining. Additionally, it has the advantage
of not being linked to any value of the input or output radix of the partial function f .

The rest of the paper is organized as follows. In Section 2 we introduce the notion
of determining set for a partial function and examine a few properties of these sets
that play a role in our algorithm. This algorithm is presented in Section 3. Section 4
discusses experimental work related to the algorithm. In the last section (Section 5) we
present conclusions and future work.

2 Determining Sets for Partially Defined Functions

We denote the finite set {0, 1, . . . , n−1} by n. The partial functions that we study have
as domain a subset of the finite set rn and as range a subset of the finite set p for some
positive natural numbers r and p, referred to as the input radix and the output radix of
the function, respectively. The set of all such partial functions is denoted by PF(rn, p).
If f ∈ PF(rn, p) we denote by Dom(f) the set of all n-tuples (a1, . . . , an) in rn for
which f(a1, . . . , an) is defined.

A partial function f ∈ PF(rn, p) is specified as a table Tf having columns labelled
by the argument variables x1, . . . , xn and by the output variable y. If f(a1, . . . , an) = b
we have in the table Tf the (n + 1)-tuple t = (a1, . . . , an, b). For example, in Table 1
we show a partial function defined on all triplets in 33 that contain at least two non-
zero elements, and ranging in the set 4: The number of rows of the table that represents

Table 1. Tabular Representation of a Partial Function

x1 x2 x3 y

0 1 1 0
0 1 2 1
0 2 1 2
0 2 2 2
1 0 1 3
1 0 2 3
2 0 1 3
2 0 2 3
1 1 0 2
1 2 0 2
2 1 0 1
2 2 0 0

a partial function defined on rn can range between 0 and rn. Usually, the number of
rows of such a function is smaller than rn and, often this number is much smaller.
Tuples (a1, . . . , an) that do not belong to the definition domain of f are considered as
“don’t care” tuples, that is, as input sequences that are unlikely to occur as inputs of the
functions, or the output of the function for such inputs is indifferent to the designer.

For a tuple t in Tf and a set of variables U ⊆ {x1, . . . , xn, y} we denote by t[U]
the projection of t on U , that is, the restriction of t to the set U . If U consists of one
variable we denote the projection t[{z}] just by t[z].

Definition 1. A set of variables V = {xi0 , . . . , xip−1} is a determining set for the
partial function f if for every two tuples t and s from Tf , t[V] = s[V] implies t[y] =
s[y].

In other words, V is a determining set for the partial function f if t = (a0, . . . , an−1, b)
and s = (c0, . . . , cn−1, d) in Tf such that aik

= cik
for 1 ≤ k ≤ p implies b = d. The

collection of determining sets for f is denoted by DS(f).

V is a minimal determining set for f if V is a determining set for f and there is no
strict subset of V that is a determining set for f . The set of minimal determining sets of
f is denoted by MDS(f). Our main purpose is to present an algorithm that extracts the
minimal determining sets for a partially specified function.

We introduce a partial order relation “v” on the set of partial PF(rn, p) by defin-
ing f v g if Dom(f) ⊆ Dom(g) and f(a1, . . . , an) = g(a1, . . . , an) for every
(a1, . . . , an). In other words, we have f v g if g is an extension of f .

The following simple statement is crucial to the proposed algorithm.

Theorem 1. Let f and g be two partial functions in PF(rn, p). If V ∈ DS(f) and
V ⊆W , then W ∈ DS(f). Furthermore, if f v g, then DS(g) ⊆ DS(f).

Proof. If V and W are two sets of variables such that V ⊆W and t, s are two tuples in
Tf , then t[W] = s[W] implies t[V] = s[V]. Therefore, if V is a determining set for f
and t[W] = s[W], it follows that t[V] = s[V], which implies t[y] = s[y]. Thus, W is a
determining set for f .

For the second part of the theorem, observe that if f v g and V ∈ DS(g), then
t[V] = s[V] implies t[y] = s[y], for every t, s ∈ Dom(g). Since Dom(f) ⊆ Dom(g),
the same implication holds for any two tuples in Dom(f), so V ∈ DS(f). ut

Note that if f v g and V ∈ MDS(g), then there exists Z ∈ MDS(f) such that
Z ⊆ V .

3 An Apriori-like Algorithm for Mining MDSs

Our algorithm uses Rymon trees (see [5, 6]) also known as set enumeration trees, a
device that is useful for the systematic enumeration of the subsets of a set S. The subsets
of a set S (which constitute the power set of S, P(S)) are listed using a pre-imposed
total order on the underlying set S. The total order on S is specified by an one-to-one
function ind : E −→ N .

For every subset U ⊆ S, define its view as

view(ind, U) = {s ∈ S | ind(s) > max
u∈U

ind(u)}

Definition 2. Let F be a collection of sets closed under inclusion (i.e., if U ∈ F and
U ⊆ V , then V ∈ F).

The labelled tree T is a Rymon tree for F if

(i) the root of T is labelled by the empty set ∅, and
(ii) the children of a node labelled U in T are {U ∪ {e} ∈ F | e ∈ view(ind, U)}.

In Figure 1 we show the Rymon tree for the complete power set of a set S = {1, 2, 3, 4}.
The proposed algorithm takes as input a partially defined function f and outputs a col-
lection of sets with minimum number of variables that f depends on. The algorithm
performs a breadth-first search on the Rymon tree for the power-set of the set of vari-
ables E = {x1, x2, ..., xn} of f . The search stops when all the sets with the minimum
number of variables that functions f depends on are found; these sets are referred to as
determining sets. The minimum number corresponds to the lowest level in the Rymon

t t
t

t t
∅

{1} {2} {3} {4}

t t t t t
A
A
A
A
At

tttt
�
�
�
�
�

t
{1, 2, 3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

Fig. 1. The Rymon tree for the P({1, 2, 3, 4})

tree where the first solution set is found since all the levels below have nodes containing
sets with a higher number of variable than any level above it.

In Algorithm 2 we denote the breadth first search queue by Q, the array of children
of a node X by Child[X], and the tree level of the determining sets by dLevel. The
algorithm is using the following methods:

ENQUEUE(Q, V) inserts node V in queue Q;
DEQUEUE(Q) removes the first element of queue Q;
LEVEL(V) returns the level of node V in the tree;
IS DSET(v) informs if the set of variables corresponding

to node V is a determining set for the
partially defined function f ;

ADD(D, V) add the set of variables corresponding to node V to D.
The core of the algorithm is the procedure IS DSET(V) that has as an input argu-

ment a set of variables V and returns true if V is a determining set and false, otherwise.
In principle, if Tf is a database table, the implementation of IS DSET could be done
using embedded SQL by running the query

select count(distinct y) from Tf group by V .

It is clear that if all values returned for count(distinct y) equal 1, then V is a deter-
mining set for f . In practice, the overhead entailed by using the database facility impacts
negatively on the performance of the algorithm, which lead us to another solution that
is based on storing Tf as a file and searching that file.

Fig. 2. Computing MDS(f)
Input: A partially defined function f
Result: A collection D of minimal determining variables sets
begin1

dLevel←−∞2
ENQUEUE(Q,∅)3
while Q 6= ∅ do4

X ←− DEQUEUE(Q)5
foreach V ∈ Child[X] do6

ENQUEUE(Q,V)7
if D = ∅ or LEV EL(v) ≤ dLevel then8

if IS DSET[V] then9
ADD(D, V)10
if dLevel =∞ then11

dLevel = LEV EL(V)12

else13
break14

end15

The procedure IS DSET shown in Figure 3 makes use of a hash table MAP, where
the key is determined by the chosen set of variables. The following methods are used:

GET VARIABLES(V): retrieves the set of variables corresponding to node V
GET VALUES(tuple, S): retrieves the values of the variables in S
ELEMENT(MAP, key): returns the object instance stored in MAP
that contains a certain key
GET FVALUE(y): returns the function value of the object instance y
F (tuple): returns the function value of a certain tuple
ADD(MAP, key, F (tuple)): adds an object instance containing
a key and function value to the MAP.

The following variables are used in the IS DSET procedure:
S set of variables
v a node in the tree
File input file containing the tuples of a partially defined function
tuple a row of the input file
key a set with the values of the variables in S
MAP a hash structure that stores objects containing a key and a function value
y an object instance stored in the MAP

4 Experimental Results

We carried out experiments on a Windows Vista 64-bit machine with 8Gb RAM and
2 × Quad Core Xeon Proc E5420, running at 2.50 GHz with a 2×6Mb L2 cache. The
algorithm was written in Java 6.

Fig. 3. Procedure IS DSET(V)
Input: A node containing a subset of the variables set
Output: true if the set is a determining one, false, otherwise
begin1

S ←− GET VARIABLES(V)2
foreach tuple ∈ File do3

key ←− GET VALUES(tuple, S)4
if key ∈ MAP then5

y ←− ELEMENT(MAP, key)6
if F (tuple) 6= GET FVALUE(y) then7

return false8
break9

else10
ADD(MAP,key,F(tuple))11

return true12

end13

We analyze the results in terms of running time, minimum number of variables of
a determining set, and the number of determining sets as a function of the number of
tuples in Tf .

A program that randomly generates comma separated text files representing par-
tially defined functions with 8, 16 or 24 variables was developed. These values were
chosen based on the experiments made in the related work of T. Sasao [4].

One hundred files were randomly generated for each type of partially defined func-
tion (with 8, 16, and 24 variables) using an input radix r = 3 and an output radix p = 5.

Note that a totally defined function with 8 variables and r = 3 has 38 = 6561 tuples.
In our experiments, we randomly generated 1000 tuples for partially defined functions
with 8 variables. For functions that depend on 16 and 24 arguments we generated 5000
tuples because the number of tuples for completely defined functions with 16 or 24
variables is much higher.

In the experiments, we evaluate the performance of the algorithm with a varying
number of tuples. By Theorem 1, if (f1, f2, . . . , fk) is a sequence of functions such that

f1 v f2 v · · · v fk,

we have
DS(fk) ⊆ · · · ⊆ DS(f2) ⊆ DS(f1).

In other words, when we start with a partial function f1 with a small specification table
Tfk

and we expend sequentially the specification of the functions, the number of de-
termining sets will decrease. The experiments compare the results for files with 8, 16
and 24 variables and they contain averages of the values corresponding to time, mini-
mum number of variables the function depends on, and number of sets with minimum
number of elements the function depends on as a function of the number of tuples. In
our case, k ∈ {10, 15, 20, 30, 40, 50, 75, 90, 100, 200}. The averages are evaluated over
100 functions within each group of generated functions (8, 16 and 24 variables).

As shown in Fig. 4, the running time of the algorithm to find a solution increases
with the number of tuples because in most cases, the algorithm needs to search deeper
in the Rymon tree. Also, the time increases exponentially with the number of variables.
The algorithm performs a breadth-first search and functions with more variables will
have trees with a larger branching factor.

Time(ms)

1

10

100

1000

10000

100000

1000000

10 15 20 30 40 50 75 90 100 200

T
im

e
(m

s)

24 Variables

16 Variables

8 Variables

Fig. 4. Dependency of average time on number of tuples

Fig 5 shows that the minimum number of variables the function depends on is re-
lated to the number of tuples k. As k increases, the constraints imposed on the problem
become more extensive, and the minimum number of variables that determine the value
of the function increases.

No of Determining Variables

0

1

2

3

4

5

6

7

8

9

10 15 20 30 40 50 75 90 100 200

N
D

V 24 Variables

16 Variables

8 Variables

Fig. 5. Average size of minimal determining set for 8, 16 and 24 variables, as a function of the
number of tuples.

Finally, the experiments also show that the average number of minimal determining
sets decreases as we extend the partial functions by introducing more tuples. Fig 6
illustrates this decrease for functions with 8 and 16 variables. The decrease is not as
noticeable for functions with 24 variables because these functions have a large number
of possible tuples and this behavior can only be observed for a much higher value of k
than the maximum used in experiments presented here.

No of Determining Sets

1

10

100

1000

10000

10 15 20 30 40 50 75 90 100 200

S
D

S 24 Variables

16 Variables

8 Variables

Fig. 6. Average size of MDS(f) for 8, 16 and 24 variables, as a function of the number of tuples.

5 Concluding Remarks

This paper introduces an algorithm to determine the minimum number of variables on
which a partially defined function depends on, as well as determine all sets of variables
with minimum number of elements that define the function. The algorithm is based on
traversing Rymon trees using a breadth-first search technique. We believe that the algo-
rithm will be helpful for digital circuit design since it allows to determine the possible
sets of variables on which a partial function depends starting from a tabular specification
of the function

We intend to approach the same problem using a clustering technique for discrete
functions starting from a semi-metric that measures the discrepancy between the kernel
partitions of these functions.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items
in large databases. In Buneman, P., Jajodia, S., eds.: Proceedings of the 1993 International
Conference on Management of Data, Washington, D.C., ACM, New York (1993) 207–216

2. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery.
Technical Report C-1997-8, University of Helsinki (1997)

3. Zaki, M.J., Hsiao, C.: Efficient algorithms for mining closed itemsets and their lattice struc-
ture. IEEE Transactions on Knowledge and Data Engineering 17 (2005) 462–478

4. Sasao, T.: On the number of variables to represent sparse logic functions. In: 17th International
Workshop on Logic and Synthesis (IWLS-2008), Lake Tahoe, California, USA, IEEE-CS
(2008) 233–239

5. Rymon, R.: Search through systematic set enumeration. In Nebel, B., Rich, C., Swartout,
W.R., eds.: Proceedings of the 3rd International Conference on Principles of Knowledge Rep-
resentation and Reasoning, Cambridge, MA, Morgan Kaufmann, San Mateo, CA (1992) 539–
550

6. Simovici, D.A., Djeraba, C.: Mathematical Tools for Data Mining – Set Theory, Partial Or-
ders, Combinatorics. Springer-Verlag, London (2008)

