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Abstract. We characterize measures on free Boolean algebras and we examine the relationships
that exists between measures and binary tables in relational databases. It is shown that these
measures are completely defined by their values on positive conjunctions, and a formula that obtains
this value is given by using the method of indicators. We also obtain Bonferroni-type inequalities
that allow approximative evaluations of there measures. Finally we present a measure extending the
notion of support that is well suited for tables with missing values.
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1. Introduction. The focus of this paper is a study of measures on free Boolean
algebras with a finite number of generators (abbreviated as MFBAs) who take their
values in the set N of natural numbers. As we shall see, these measures play an
important role in query optimization in relational databases, and also, in the study
of frequent sets in data mining. We obtain general Bonferroni-type inequalities for
sizes of arbitrary Boolean queries. The origin of our investigation resides in a series of
seminal papers by H. Mannila et al. ([3, 2, 5]) in which the idea of using supports of
attribute sets discovered with a data mining algorithm to obtain the size of a database
query was introduced.

Let B = (B,0,1, ~,V,A) be a Boolean algebra, where 0,1 € B are two distin-
guished elements of B, ~ is a unary operation, and V,A are two binary associative,
commutative, and idempotent operation that satisfy the usual axioms of Boolean al-
gebras (see, for example [7]). Here 0 and 1 are the least and the largest element of
the algebra, respectively.

We define

b z ifb=1
xr =
F ifb=0,

for x € B and b € {0,1}.

It is a well-known fact that a Boolean algebra B = (B,0,1, ~,V,A) defines a
Boolean ring structure, B = (B,0,1,A,®), where A plays the role of the multiplica-
tion, and @ the role of addition, where

toy=(xAy)V(EAY)

for z,y € B. This ring is unitary, commutative, and has characteristic 2 (since
z®x =0 for every ). Also, 1®z = 7.
Let A = {a1,...,an} be a set of n variables. The set pol(A) of Boolean polyno-
mials of the n variables in A is defined inductively by:
1. 0, 1, and each a; belong to pol(A) for 1 <i < n;
2. if p, ¢ belong to pol(A), then p, (p V q), and (p A q) belong to pol(A).
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If p,q € pol(A), then we denote by (p @ ¢) the polynomial ((p A q) V (B A q)).

A Boolean polynomial (- - - ((p1wp2)wps)w - - - wpy) is denoted by (prwpew - - - wpy),
where w € {V,A,®}. Also, we denote by var(p) the set of variables that occur in the
polynomial p.

Let B = (B,0,1, ~,V,A) be a Boolean algebra and let A = {a4,...,a,} be a
set of n attributes. The n-ary function f, : B — B generated by a polynomial
p € pol(A) is defined in the usual way. We write p = ¢ for p, ¢ € pol(A) if f, = f,.

Let b = (b1, .. ,byn) be a sequence of elements of the set {1,0}. An A-minterm
is a Boolean polynomial

py=a A Aal,
The set of A-minterms is denoted by mint(A). Any Boolean polynomial in pol(A)
can be uniquely written as a disjunction of some subset of A-minterms (up to the
order of the disjuncts). This observation implies that the Boolean algebra pol(A) is
isomorphic to the Boolean algebra of collections of subsets of the set A; thus, pol(A)
has 22" elements.

For a set of polynomials M = {p1,...,pn} and J = {j1,... ,jm} C {1,...,n}
we denote by py the conjunction pj, A---Ap; . For the special case, when J = () we
write py = 1.

A measure on a Boolean algebra B = (B,0,1, ~,V,A) is a non-negative, real-
valued function pu : B — R such that p(z V y) = p(z) + p(y) for every z,y € B such
that x Ay = 0.

2. A Representation Result for MFBAs. Let A = {aj,... ,a,} be a set of
variables. In this context, we find convenient to use the relational database terminol-
ogy and we refer to the the members of A as attributes. We attach a set Dom(a;) to
each attribute a; such that |Dom(a;)| > 2. The set Dom(a;) is the domain of a;.

A tableis a triple T = (T, A, p), where T is the name of the table, A = {a1,... ,a,}
is the heading of the table and p = {t1,... ,t,} is a finite set of functions of the form
ti : A — [U,ca Dom(a) such that t;(a) € Dom(a) for every a € A. Following
the relational database terminology we shall refer to these functions as A-tuples, or
simpler, as tuples. If Dom(a;) = {0,1} for 1 <i < n, then 7 is a binary table.

Let 7 = (T, A, p) be a binary table. A query on the table T is a Boolean polynomial
in pol(A). This definition of queries is a formalization of the usual notion of query in
databases.

ExampLE 2.1. To retrieve in SQL all tuples ¢ of 7 such that at least two of
t(a1),t(a2) and t(a3) equal 1 we write the query as
select * from T where (a; =1 and a2 = 1) or

(a2 =1 and a3 =1) or (a; =1 and a3 = 1);
The condition specified in this select corresponds to the polynomial (a1 A az) V (az A
az) V (a1 A a3).

A query p defines a table Q(p, 7) = (T, A, pp), where p,, is defined inductively as
follows:
po =0 and p1 = p;
if p = a;, then p, = {t € p|t(a;) = 1};
if p=g, then pp = p — pg;
if p=(q1 V g2), then p, = p,, Up,, and,
if p= (g1 A g2), then pp = pp, N pp,.
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It is easy to see that for a conjunction
b bom
p=a; N---Na;™,

where b; € {0,1} for 1 < i < m, the set p, consists of those tuples ¢ such that
t(a;,) = by for 1 < £ < m.

THEOREM 2.1. A function p : pol(A) — N is a measure if and only if there
exists o binary table T = (T, A, p) such that u(p) = |pp| for all p € pol(A).

Proof. Suppose that 7 = (T, A, p) is a table. Define the mapping u, : pol(4) —
R by u(p) = |pp| for every p € pol(A). Let p, ¢ be two polynomials such that (pAg) = 0.
Then, p(pV q) = |ppvel = |pp U py|- Since p A g = 0 we have p, N p, = 0, so
wr(PV q) = ur(p) + pr(q). Thus, p, is a measure on pol(A4).

Conversely, let p be a measure on pol(A), where A = {ay,...,a,}. If b=
(biy...,bn) € {0,1}", p; = at* A--- Aabr is a minterm and w(pz) = k consider a set
op, of k tuples t%,... ,tf, where tg.(ai) =b; foreveryi,j,1<j<k and1<i<n.

Define the table 7, = (T, 4, p,,), where p = (J{o}.|p; € mint(A)}.
We claim that p(p) = |pp| for every polynomial p € pol(A). Suppose that p can be

expressed as a disjunction of minterms p = pg, V-V, where 51, e ,Ek € {0,1}".

Then, u(p) = Ele u(pl;j), because p; Ap; = 0 when [ # h. On the other hand,
k k

lpp| = |Uj:1 pp;;j| = Zj:l |pP;;J. |, s0 u(p) = [ppl- o

We shall refer to p, as the measure induced by the table T on pol(A).

In the next section we regard the set of minterms mint(A) as a sample space and
each polynomial p € pol(A) as an event on this sample space. The event p occurs in
pg if p; < p. Thus, if p is a measure on pol(4), then the mapping P, : pol(4) — R

— up)

given by P,(p) = L) s a probability on pol(A).

3. An Exclusion-Inclusion Principle for MFBAs. Let p be a polynomial
in pol(A). It is known that p can be uniquely written as

@
p= Z Clin e yim) N @iy N -2y
(214eeeyim)
&
where the summation Z involves the “exclusive or” operation @ and is extended to all
subsets {i1,...,im} of {1,... ,n}. The coefficients c(;, ... ;,,) belong to the set {0,1}.
Thus, for a measure p on pol(A) it is interesting to evaluate u(p1 ® p2 ® - -+ ® Pm),
where p1,... ,pn are polynomials in pol(A).
The indicator random variable of a polynomial p is the variable I, defined by

1 ifp-<p
L(pz) = b=
P (pb) { 0 otherwise.

for p; € mint(A4).

EM=A{pi,...,pn}tand J ={j1,...,jm} C{1,...,n}, then py = pj, A...Apj,.,
and I, = I, ---I,, .

Note that the expected value E[I,] of I,, equals P,(p).

For a set of polynomials M denote by Sj\‘,[’  the probability that exactly k events
in M hold:

Ship = D {Pulpk) | |K| =k},
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The number of k-subsets K of M such that pg holds is given by the random variable
> {Ip. | |K|=k}. By the previous observation

S = D ABUp) | K| =k} = B [Y {Iy | K] = k)]

Let v be the random variable on mint(A) such that var(py) = [{pi € M | py < pi}|.
Note that vjs gives the number of events in M that hold and, therefore, the random

variable (1/;:1 > gives the number of k-subsets ) of M such that pg holds, which

means that (V;:I) =>{lx | |K| =k}, and

szE[(”;c”)]. (3.1)

The equality (3.1) is the basis of the method of indicators, that is a method
of proving probabilistic identities by taking expectations of their non-probabilistic
counterparts, see [1] for details.

THEOREM 3.1. Let u : pol(A) — N be a measure on the free Boolean algebra
pol(A), where A = {ay,...,an}. If P = {p1,... ,pm} is a set of m polynomials of
pol(A), then

wor @ @ pm) = 3 (=253 {ulpx) | K C{L,...,m},|K| =k} (3.2)

k=1

Proof. Let a € N, note that (—1)® = Y ;_,(—2)* (Z), which yields, after

elementary transformations:
a . .
0 if ais even
—k (%) = (e 1=
z( ) (k> (=1) {1 if a is odd.
This implies

|M|

vMm . .
k-1 ( Vm\ _ Covk—1 (Vm \ _ JO ,if v, iseven
;(_2) <k>_;( 2) <k>_{1 Jif vy is odd.

By taking expectations of both sides, and using equality (3.1) we get

H>ERIED
k=1
Since

e :E{,U'(pK)|Kg{1a-'-=m}=|K|=k}
M,k )

u(1)
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we obtain the desired equality. a0

COROLLARY 3.2. Let p,p' : pol(A) — N be two measures on the free Boolean
algebra pol(A), where A = {a1,... ,a,}. If u(p) = p'(p) for every conjunction p of
the form p=ay N---Na;,, then p=p'.

Proof. The result follows immediately from Theorem 3.1. d

ExAMPLE 3.1. Consider the “majority polynomial” ppe; = (a1 Aaz2)V (a2 Aaz)V
(a1 A a3). For fp .. we have f, .(21,22,73) = 1 if and only if at least two of its
arguments are equal to 1. Note that

Pmaj = (a1 A a2) & (a2 A az) ® (a1 A as).
Theorem 3.1 allows us to write

MPmaj) = plar A az) + p(az A as) + p(ar A as)
—2p((a1 A as) A (as A asz)) —2u((a; A as) A (ay A az))
—2u((az A a3) A (a1 A ag)) +4p((ar Aa2) A (az Aas) A (a1 A ag))
= p(ar A az) + plaz A ag) + p(ar A as) —2u(ar A az A ag).

0
Corollary 3.2 shows that the values of a measure on pol(A) is completely deter-
mined by its values on positive conjunctions of the form ay for I C {1,...,n}. Note

that the contribution of every tuple of a table 7 = (T, A, p) of the form (by,... ,b,)
to the value of p,(I) equals 1 for every set I such that I C {i € {1,...n} | b; =1}.
Next, we obtain Bonferroni type inequalities [1] that give bounds on the value of
u(p1 ® ... ® pm). To this end we need the following technical result:
Define W' for a,b € Nand b < a as

wi =32 (})

k=b

Alternatively, W can be written as

LEMMA 3.3. The signs of the members of the sequence (W, Wiliis--- , W) are
alternating.
THEOREM 3.4. For any r,s € N we have:
27 2s+1
p(1) -3 (=2 < p(pr @ ... B pm) < p(1)- D (—2)F1SE
k=1 k=1

Proof. By equality (3.1) and Lemma 3.3 we get that for any r,s € N

(-2 (1) <o () < 3 (-2t ()

k=1 k=1 k=1

implying
2r s (v | M| s (v 2s5+1 s [ vnr
> (k)_g—z) (k)sg—z) (%)



By applying expectations and using equality (3.1) we get the desired result. d

ExampPLE 3.2. Consider a table 7 given below
[¢5] a2 a3
0

HEEORFEFOROOROO
HFHRORKRKHRRFRPOROOHR
HORR,OORFROODOOO

and the majority polynomial pp,; from Example 3.1. We have p(ai A a2) = 4,
wlar Aag) =3, ulas A as) = 3, giving p(pmq;) < 10. Also p((ar A az) A (a1 Aag)) =
(a1 Aaz) A (a2 Aaz)) = p((ar A ag) A (a2 A as)) =1 giving u(pme;) > 4. The true
value of p(pmaj) is 8. Q

Let V : {0,1} — {0,1} be the bijection defined by V(0) = 0 and V(1) = 1,
where 0,1 € R. Note that

V(aV b) = V(a) + V(b) — V(a)V(b), (3.3)
V(a Ab) = V(a)V(b), (3.4)
V(a) = 1 — V(a), (3.5)

for every a,b € {0,1}.
For a Boolean function f : {0,1}" — {0,1} define the real-valued function
¢f : {Oa 1}n - {0: 1} by

¢, &) = VUV &), , VT (6n)))

for every &,...,&, € {0,1}.
ExaMPLE 3.3. It is easy to verify that if p is the majority polynomial considered
in Example 3.1, then for the numerical function ¢z, we can write:

b1, (€1, 82, 83) = &2 + &3 + &183 — 2616263

for every &1,&,& € {0,1}. Note that the coefficients are the same as the ones in
Example 3.1. i
The remark contained in the above Example is not a coincidence. Next, we prove
that for every polynomial p, the numerical function ¢y, can be expressed as a sum of
monomials multiplied by the coefficients that occur in the expansion of u(p) given in
Theorem 3.1.
THEOREM 3.5. Let A ={ay,...,a,} and p € pol(A). Suppose that

ulp) =Y erp(ar),

Ied
where J is a family of subsets of {1,... ,n}. Then, we have:
b1, (s bn) = > erlr,

Iej

where & is the monomial &1 = &, --- &, .



Proof. Let p,q,r € pol(A) such that r = (p V q). We have:

¢f’r~(£17"' :gn) :V(fr(v 1( 76’"/)))
=V(fp(V &y &) V i (VTH e -, 6n))
ZV(fp(V 1(§1>7€n))+fq(v 1(617 7671.))

VoV e 60)) - V(o (V e -5 60))),s
for (z1,...,2,) € {0,1}", by equality( 3.3). Thus,

¢f’r(€17"' 7€n) = ¢fp(€17"' 7§n)+¢fq(§17"' 7571) _¢fp(§17"' 7£n)¢fq(€17"' 76”)

for (517"' 75’”) € {071}71 Since ¢fp/\q(§17"' Jé-’n) = ¢fp(£17"' 7£H)¢fq(§la"' 7€n)7
p A q = 0 implies

¢f’r(§15"' 7§n) :¢fp(§1"" 7§n) +¢fq(‘£la--- 7§n)

for every (£1,...,&,) € {0,1}". This shows that for a every & = (&1,...,&,), the
mapping p : pol(A) — R defined by pe(p) = ¢y, (£) is a measure on pol(A), so
Theorem 3.1 is applicable and we can write:

¢fp fl; . 7§n chfla

Ied

for every (&1,...,&,) € {0,1}™. 0
4. Applications in Data Mining and Database Query Optimization.

4.1. Accuracy of Inclusion-Exclusion Principle. In database query opti-
mization and in data mining, it is often necessary to estimate the number of rows in a
database table satisfying a given query. Unfortunately, in most cases, the exact num-
ber of rows satisfying a query cannot be computed exactly and has to be estimated
(usually using the assumption of statistical independence between attributes).

Let 7 = (T, A, p) be a binary table and let K be a set of attributes, K C A. The
support of the set K relative to the table 7 is defined as the number:

supp, (K) ={t€p | t(a) =1for alla € K}.

Thus, supp, (K) = p-(ag, A...Aay,,), where K = {ag,,...,a, }. In other words,
the support of an attribute set K in the table 7 can we viewed as the value of the
measure induced by the table on the Boolean polynomial that describes the attribute
set. By extension, we can regard the number u,(q) as the support of the query ¢ and
we denote this number by supp(g). Indeed, if ¢ € pol(A4) is a query involving a table
7= (T, A, p) such that ¢ can be written as

52
q=C@ZGI,

Iej

where ¢ € {0,1} and J is a collection of subsets of {1,...,n}, then supp(q) can
be obtained from Theorem 3.1 using the numbers supp.(ar). Methods that obtain
approximative estimations of query sizes been proposed [2], including the use of Max-
imum Entropy Principle. An open problem raised was estimating the quality of such
an approximation.



The computation of the size of the query using Theorem 3.1 can be often simplified
if there is a known maximal number of 1 components in the tuples of the table. For
example, in a store that sells 1000 items (corresponding to 1000 attributes in a table
that contains the records of purchases) it is often the case that we can use an empirical
limit of, say, 8 items per tuple. In this case, conjunctions that contain more than 8
conjuncts can be discarded and the estimation is considerably simplified. Even, if such
an upper bound cannot be imposed apriori, it is often the case that we can discard
large conjunctions (which have low support). However, there are some risks when
approximations of this nature are performed due to the the large values of coefficients
that multiply the supports for large conjunctions.

Indeed, consider the tables 774, = (To, A, podd), Toven = (Tes A, Peven), Where

Podd = {t € Dom(A) : ny(t) is 0dd}, peven = {t € Dom(A) : nq(t) is even},

where n; (t) denotes the number of attributes equal to 1 in tuple ¢ and |A| = n.
Note that for proper subset K of A, we have supp, , (K) = supp,  _ (K), while

1 ifnisodd 1 ifniseven
0 otherwise.

supp.» (A) = and supp.. (4)=
PPTO‘“( ) {0 otherwise, PPz, (4)

Thus, from the point of view of the supports of any proper subset of the attribute set
the tables 77, and 77, are indiscernible. However, the support of certain queries
can be vastly different on these tables. For example, consider the polynomial p =
a1 ®az®...Dan. We have pin (p) = |poad| =2" ' and pirn  (p) = |peven| = 0. So,
ignoring the term that corresponds to the support for a single attribute set (note that
this is also the attribute set with the smallest possible support) has a huge impact
on u(p). Note that the result is consistent with Theorem (3.1) which gives the set
of attributes A a coefficient 2"~1. We stress however that the negative result above
does not rule out practical applicability of approximating the values of u, since the
parity function query used above is by no means a typical database query.

4.2. Support in tables with missing values. Many real world datasets con-
tain missing values, and it is important to adequately address this issue. Here we
present a generalization of the notion of support which takes missing values into ac-
count. The idea is related to the hot deck imputation of missing values where each
missing value is replaced by a value randomly drawn from some distribution.

Suppose that 7 = (T, A, p) is a table such that A = {a1,...,an} and Dom(a;) =
{0,u,1} for 1 < i < n. The symbol u represents null values, that is, values that are
missing or undefined.

With every attribute a; € A we associate a real number a; € [0,1]. Intuitively,
this number corresponds to the probability of a; = 1, and can be obtained using the
non-missing values for the attribute or based on background knowledge.

Let ™ : pol(A) — R be defined as follows. For a minterm a%' ...alr let

ptal A Aag)

= Z Ha’gbiaci) - supp.. /\(aj _ bg_cj)) | (c1,...,¢n) €{0,1}" 3,

i=1 j=1
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where

a ,ifb=1andc=0 b Foe 1
a=31-q ,ifb=0andc=0 b= e
u ,ifc=0,
1 Jife=1,

where b € {1,0}, and ¢ € {0,1}.
For an arbitrary boolean polynomial p define

e =Y. 1y

pgEMInt,

where mint, is the set of minterm implicants of p.

THEOREM 4.1. p" is a measure on pol(A).

Proof. Since p™ is clearly non-negative, it remains to be shown that u™(p; Vps) =
w(p1)+pt(p2) for every py, po € pol(A) such that p; Ap, = 0. Note that if py Ap, = 0
then mint,, N mint,, = 0, and

preVp) = Y ptp) A+ Y, #(pg) = #(pr) + H% (p2)-

pd—EmintI,1 pal—Emintp2

O
EXAMPLE 4.1. Let n = 2, we have

p* (a1 @ a2)

= p"(d1 A az) + p" (a1 A dz)

= supp, (a1 =0Aaz =1)+ (1 — a1)supp, (a1 =uAax =1)

+ assupp, (a1 = 0 Aas =u) + (1 — aq)assupp, (a1 = a2 = u)

+ supp, (a1 = 1 Aaz = 0) + aisupp, (a1 = uAas =0)

+ (1 — ag)supp, (a1 =1 Aaz =u) + a1 (1 — as)supp, (a1 = a2 = u).

I

The benefit of using arbitrary measures instead of probabilities or supports in
previous sections is that results on inclusion-exclusion principle automatically apply
to pu'. Also, the fact that u“ is a measure make the proof of the following theorem
straightforward.

THEOREM 4.2. For every table T = (T, A, p) such that A = {a1,...,an} and
Dom(a;) = {0,u,1} for 1 < i < n, and every collection of sets of attributes A =
{ar,,---,ar, | I; C{1,...,n}} there is a probability distribution P over A such that
for every ar, € A, P{A e (a5 = 1)} = (e, (a; = 1))/,

Proof. We will prove the theorem by showing that p"/|p| is a probability distri-
bution. Since p" is a measure, it suffices to show that p"(1) = |p|. For any a; € A
we have

pt(1) = p*(a; V a;) = p*(a;) + p*(a;)
= supp, (a; = 1) + a;supp, (a; = u)
+supp, (a; = 0) + (1 — a;)supp, (a; = u)
= SuPP-,—(ai = 1) + SuPPT(ai = 0) + SuPP-,—(ai = u) = |p|



The importance of the above theorem is that if we use some datamining algorithm
(e.g. Apriori) to find p* for a collection of sets of attributes, then their values of p*
are probabilistically consistent.

The previous approaches to frequent itemset mining can be found in [6, 4]. How-
ever, both these approaches can produce probabilistically inconsistent results. Specif-
ically, the technique used in [6] is to count the support of an itemset only on the
portion of the table where it is valid. For example, consider the table

ajy a9
1 1
1 u
0 u
0| u

Using the method from [6] the support of attribute as is counted only in the
first row, giving supp(az) = 100%. Similarly supp(a;) = 50%, and supp(ajas) =
100%, but this means supp(aijaz) > supp(ai), which is impossible. In the method
proposed in [4] the probability for each attribute is estimated from the part of the
data where the attribute is defined. When computing how much support does a row
with a missing value contribute for an itemset, this probabilities are summed for each
attribute (see [4] for details). In the table above this will give supp(a;) = 50%,
supp(a1) = 100%, and supp(aiaz) =[(0.5-1+0.5-1)+ (0.5-14+0.5-1) +2(0.5-0 +
0.5-1)]/4 = 75%, and supp(aiaz) > supp(az). Using our u" measure gives consistent
values of supp(a;) = 100%, supp(az) = 50%, and supp(aias) = 50%.

5. Conclusions and Open Problems. We studied properties of measures de-
fined on free Boolean algebras arising naturally in the evaluation of sizes of queries
applied to binary tables in relational databases. We intend to investigate Bonferroni-
type inequalities for these measure which will allow evaluations of these measures
when information on supports is available only for certain families of itemsets. An-
other open problem is to ameliorate the bounds already obtained.
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