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The Haar Transform

Values of an analog signal measured at time
values 1, . . . , n are x1, . . . , xn.
The support of the sequence x = (x1, . . . , xn) is
the set {i|xi 6= 0}.
We form two sequences of size n/2:

t1, . . . , tn/2, and f1, . . . , fn/2

tm =
x2m−1 + x2m√

2
and fm =

x2m−1 − x2m√
2

for 1 ≤ m ≤ n
2 .
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Example:

Let

x = (x1, . . . , x8) = (2, 3, 5, 4, 2, 6, 8, 10)

t = (t1, . . . , t4) and f = (f1, . . . , f4):

t1 = 5√
2

= 3.54 f1 = −1√
2

= −0.70

t2 = 9√
2

= 6.36 f2 = 1√
2

= 0.70

t3 = 8√
2

= 5.65 f3 = −4√
2

= −2.80

t4 = 18√
2

= 12.85 f4 = −2√
2

= −1.40
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Original Sequence x1, . . . , x8
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Fluctuations and Trends
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Remarks...

The trend components t1, . . . , t4 approximate
the trends in x.

The fluctuation components f1, . . . , f4

approximate the fluctuations of x.

Conservation of energy:

E(x) =
8∑

i=1

x2
i =

4∑

i=1

t2i +
4∑

i=1

f 2
i ,

Fluctuations are small because x originates
typically in sampling of a continuous signal.
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Haar Transform

The Haar transform is the mapping
H : Seq(R) −→ Seq(R) given by:

H(x1, . . . , xn) = (t1, . . . , tn
2
, f1, . . . , fn

2
)

for (x1, . . . , xn) ∈ Seq(R).
We use the condensed notation H(x) = (t1|f1),
where

t1 = (t1, . . . , tn
2
)

f1 = (f1, . . . , fn
2
)
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The Inverse Haar Transform

If H(x1, . . . , xn) = (t1, . . . , tn
2
, f1, . . . , fn

2
), then

t1 = x1+x2√
2

f1 = x1−x2√
2

... ...
tn

2
= xn−1+xn√

2
fn

2
= xn−1−xn√

2

Then:
x1 = t1+f1√

2
x2 = t1−f1√

2
... ...

xn−1 =
tn
2
+fn

2√
2

xn =
tn
2
−fn

2√
2
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The Inverse Haar Transform (cont)

The inverse Haar transform is the mapping
H

−1 : Seq(R) −→ Seq(R) given by:

H
−1(t1, . . . , tn

2
, f1, . . . , fn

2
) = (x1, . . . , xn)

for (t1, . . . , tn
2
, f1, . . . , fn

2
) ∈ Seq(R).
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Higher-Level Haar Transforms

For x ∈ R
n and k = log2 n:

H
[1](x) = H(x) = (t1|f1),

H
[2](x) = (H(t1)|f1) = (t2|f2|f1),

H
[3](x) = (H(t2)|f2|f1) = (t3|f3|f2|f1),

...
H

[k](x) = (tk|fk|fk−1| · · · |f1)
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The Full Haar Transform

The full Haar transform of a sequence x of length
n is

H(x) = (tk|fk|fk−1| · · · |f1),

where k = log2 n.
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Energy Localization Property

Most of energy is concentrated in the trend
vector. For

x = (2, 3, 5, 4, 2, 6, 8, 10)

we have

E(x) = 22 + 32 + 52 + 42 + 22 + 62 + 82 + 102 = 258

E(t1) = 3.542 + 6.362 + 5.652 + 12.852 ≈ 246

E(f1) = 0.702 + 0.702 + 2.802 + 1.402 ≈ 12
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Haar Wavelets

The 1-level Haar wavelets are the sequences

W1
1 = (

1√
2
,− 1√

2
, 0, 0, . . . , 0, 0)

W1
2 = (0, 0,

1√
2
,− 1√

2
, . . . , 0, 0)

...

W1
n
2

= (0, 0, 0, 0, . . . ,
1√
2
,− 1√

2
)
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-
6

-

-

6

6

...

W
1
1

W
1
2

W
1
n/2

Wavelets and Applications – p.15/56



A Bit of History ...

Weierstrass (1873): a family of functions
constructed by superimposing scaled copies
of a given base function.

Haar (1909): introduced the Haar basis
(compact support).

Gabor (1946): nonorthogonal basis of
functions with unbounded support
(translations of Gaussians).

Ricker (1940): the term wavelet (seismology)
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Properties of Wavelets

If H(x) = (t|f1, . . . , fn
2
), then

fi = xWi for 1 ≤ i ≤ n

2
.

Average value of a wavelet is 0.

For each wavelet W1
i we have E(W1

i ) = 1.

Each wavelet can be obtained from the first
wavelet by a time-translation of 2.

If x is approximatively constant on supp(W 1
i ),

then fi is approximatively 0.
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The Haar Scaling signals

The 1-level Haar scaling signals are:

V1
1 = (

1√
2
,

1√
2
, 0, 0, . . . , 0, 0)

V1
2 = (0, 0,

1√
2
,

1√
2
, . . . , 0, 0)

...

V1
n
2

= (0, 0, 0, 0, . . . ,
1√
2
,

1√
2
)
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Properties of Scaling Signals

If H(x) = (t1, . . . , tn
2
|f), then

ti = xV1
i for 1 ≤ i ≤ n

2
.

Average value of a scaling signal is not 0.

For each scaling signal V1
i we have E(V1

i ) = 1.

Each scaling signal can be obtained from the
first scaling signal by a time-translation of 2.
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2nd-Level Wavelets

The 2nd-level wavelets are defined by

W2
1 = (

1

2
,
1

2
,−1

2
,−1

2
, 0, . . . , 0)

W2
2 = (0, 0, 0, 0

1

2
,
1

2
,−1

2
,−1

2
, 0, . . . , 0)

...

W2
n
4

= (0, 0, 0, 0, 0, . . . , 0,
1

2
,
1

2
,−1

2
,−1

2
)
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2nd-Level Scaling Signals

The 2nd-level scaling are defined by

V2
1 = (

1

2
,
1

2
,
1

2
,
1

2
, 0, . . . , 0)

V2
2 = (0, 0, 0, 0,

1

2
,
1

2
,
1

2
,
1

2
, 0, . . . , 0)

...

V2
n
4

= (0, 0, 0, 0, 0, . . . , 0,
1

2
,
1

2
,
1

2
,
1

2
)

Wavelets and Applications – p.22/56



2nd-order fluctuations:

f 2
i = xW2

i for 1 ≤ i ≤ n

4

2nd-order trends:

t2i = xV2
i for 1 ≤ i ≤ n

4
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Properties of the 2nd-level wavelets and scaling signals

Average value of wavelets is 0; average value
of scaling signals is non-zero.

E(W2
i ) = E(V2

i ) = 1,

supp(W2
i ) = supp(V2

i ) = 4, for 1 ≤ i ≤ n
4 .
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Computation Tree

• •�

� �

� � � �• • • •

• •

x1 x2 x3 x4 x5 z6 x7 x8

x1+x2√

2
x1−x2√

2
x3+x4√

2
x3−x4√

2
x5+x6√

2
x5−x6√

2
x7+x8√

2
x7−x8√

2

x1+x2+x3+x4

2
x1+x2−x3−x4

2
x5+x6+x7+x8

2
x5+x6−x7−x8

2

∑
8

i=1
xi

2
√

2

∑
4

i=1
xi−

∑
8

i=5
x1

2
√

2
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Full System of Wavelets

For 1 ≤ j ≤ log2 n and 1 ≤ h ≤ n
2j define:

Wj
h = (0, . . . , 0,

(
1√
2

)j

, . . . ,

(
1√
2

)j

,

︸ ︷︷ ︸

2j−1

−
(

1√
2

)j

, . . . ,−
(

1√
2

)j

, 0, . . . , 0)

︸ ︷︷ ︸

2j−1
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Full System of Wavelets for n = 8

W 1

1
=

(
1

√

2
,− 1

√

2
, 0, 0, 0, 0, 0, 0

)

W 1

2
=

(

0, 0, 1
√

2
,− 1

√

2
, 0, 0, 0, 0

)

W 1

3
=

(

0, 0, 0, 0, 1
√

2
,− 1

√

2
, 0, 0

)

W 1

4
=

(

0, 0, 0, 0, 0, 0, 1
√

2
,− 1

√

2

)

W 2

1
=

(
1

2
, 1

2
,− 1

2
,− 1

2
, 0, 0, 0, 0

)
W 2

2
=

(
0, 0, 0, 0, 1

2
, 1

2
,− 1

2
,− 1

2

)

W 3

1 =

((
1
√

2

)
3

,

(
1
√

2

)
3

,

(
1
√

2

)
3

,

(
1
√

2

)
3

,

−

(
1
√

2

)
3

,−

(
1
√

2

)
3

,−

(
1
√

2

)
3

,−

(
1
√

2

)
3
)
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Full System of Wavelets for n = 8

Full Haar transform of a sequence x:

(xV3
1, xW 3

1 , xW 2
1 , xW 2

2 ,

xW 1
1 , xW 1

2 , xW 1
3 , xW 1

4 )

Example: For x = (2, 3, 5, 4, 2, 6, 8, 10):

H(x) = (14.2,−4.30,−1.99,−5.09,

−0.70, 0.70,−2.80,−1.40)
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Synthesis of Signals

The inverse Haar transform:

x1 =
t1 + f1√

2
, x2 =

t1 − f1√
2

, . . . , xn =
tn

2
− fn

2√
2

x =

(
t1√
2
,

t1√
2
, . . . ,

tn
2√
2
,

tn
2√
2

)

+

(
f1√
2
,− f1√

2
, . . . ,

fn
2√
2
,−

fn
2√
2

)
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The Inverse of the full Haar Transform

• • • • • • • •

• • • •

• •

•

•

+

+ −

+ − + −

+ − + + +− − −
1
√

2

1

(
√

2)2

1

(
√

2)3

1

(
√

2)3

x1 x2 x3 x4 x5 x6 x7 x8

x1−x2√

2
x3−x4√

2
x5−x6√

2
x7−x8√

2

x1+x2−x3−x4

2
x5+x6−x7−x8

2

∑
4

i=1
xi−

∑
8

i=5
xi

2
√

2

∑
4

i=1
xi−

∑
8

i=5
xi

2
√

2

∑
8

i=1
xi

2
√

2
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Multiresolution Analysis

First averaged and first detail signals are:

T1 =

(
t1√
2
,

t1√
2
, . . . ,

tn
2√
2
,

tn
2√
2

)

F1 =

(
f1√
2
,− f1√

2
, . . . ,

fn
2√
2
,−

fn
2√
2

)

x = T1 + F1: sum of a lower resolution signal and

a detail signal.
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Averaged and Detail Signals (cont)

The averaged and detail signals can be written
as

T1 = t1V1
1 + · · · + tn

2
V1

n
2

= (xV1
1)V

1
1 + · · · + (xV1

n
2
)V1

n
2

F1 = f1W1
1 + · · · + fn

2
W1

n
2

= (xW1
1)W

1
1 + · · · + (xW1

n
2
)W1

n
2
.
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Example:

Let x = (2, 3, 5, 4, 2, 6, 8, 10). We have

H(x) = (
5√
2
,

9√
2
,

8√
2
,

18√
2
|

− 1√
2
,

1√
2
,− 4√

2
,− 2√

2
)

The averaged signal:
T1 = (5/2, 5/2, 9/2, 9/2, 4, 4, 9, 9)
The detail signal:

F1 = (−1/2, 1/2, 1/2,−1/2,−2, 2,−1, 1)
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Multiple-level MRA

x = T1 + F1

T1 = T2 + F2

...
Tk−1 = Tk + Fk,

so
x = Tk + Fk + Fk−1 + · · · + F1
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Compression of Signals

Compression: converting a signal into a new
format that requires fewer bits to transmit

Categories of compression
lossless copmpression: error-free
decompression of the original signal
(Huffman compression, LZW compression,
arithmetic compression)
lossy compression: produces inaccuracies
in the decompressed signal

rates of compression (50:1–100:1) for lossy
compr. vs. 2:1 for lossless
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Wavelet Compression Methods

1. Compute a wavelet transform of a signal.

2. Set to 0 all values of components that are
below a threshold value λ.

3. Transmit only the significant, non-zero values.

4. Compute the reverse transform at the
receiving end, using zero values forthe
components that were not transmitted.
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A Relational Database Application

Selectivity Estimation
ORDERS

cust_no cust_name date qty

123 John Doe 2/10/2003 8
... ... ... ...

Find the fraction of ORDERS returned by:
select cust_name from ORDERS

where 1 <= qty and qty <= 3;
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Wavelet-based Histograms (Vitter)

The active domain of A: v1 < v2 < · · · < vn: the
values that appear under an attribute A of a
table.
Frequencies: fi = |{t|t[A] = vi}|, 1 ≤ i =≤ n − 1
Cumulative Frequencies:

ci = |{t|t[A] <= vi}| =
i∑

k=1

fk,

for 1 ≤ i =≤ n − 1
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Cumulative Data Distribution

Data distribution of A:

T(A) = {(v1, f1), . . . , (vn, fn)}

Cumulative data distribution of A:

T
C(A) = {(v1, f1), . . . , (vn, fn)}

Extended cumulative data distribution T
C+(A) is

the extension of T
C obtained by assigning 0 fre-

quencies to all values that do not occur in the ta-

ble.
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Vitters’ Histogram Construction

1. form the extended cummulative distribution
T

C+(A) (preprocessing);

2. compute H(TC+(A));

3. retain only the m most significant wavelet
coefficients for some m that corresponds to
the desired storage usage.

The number of tuples T (A)a,b such that a ≤ A ≤ b
is

T (A)a,b = T
C+(A)b − T

C+(A)a−1

Wavelets and Applications – p.40/56



Example:

ORDERS

· · · qty

1

3

4

3

1

4

3

3

3

T(qty) = {(1, 2), (3, 5), (4, 2)}
T

C+(qty) = {(1, 2), (2, 2), (3, 7), (4, 9)}
H(TC+(2, 2, 7, 9)) = (9.99,−5.99, 0,−1.91)

H
−1(TC+(9.99,−5.99, 0,−1.91)) =

(1.99, 1.99, 6.99, 8.99)
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Further steps and remarks ...

The value of the m coefficients together with
their positions serve as histogram.

To estimate the value of |{t|c ≥ t[A] ≥ d}| we
construct the values for b and a − 1 in in the
extended cumulative distribution function and
then take their difference.

Effectiveness is increased when we replace
the raw frequencies with T

C+(A).
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Preprocessing

If the active domain V is small, an one-pass,
in-memory computation is sufficient.

If V is large, use an external merge-sort and
sum up the frequencies of the records that
are merged.

If V is very large use random sampling and
use the sample data distribution as an
approximation.
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Restricting the Coefficients

Thresholding: m out of N coefficients are kept;
the remaining are set to 0. Then, the inverse
Haar transform is computed.
Let s be the size of query q and s′ be the size of
query q after thresholding.
Error computations for a query qi:

absolute error: eabs(q) = |s − s′| (small freqs.)

relative error: erel(q) = eabs

s (large freqs.)

combined error:
ecomb(q) = min{αeabs(q), βerel(q)}
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Global error for a set of queries

For a set Q = {q1, . . . , qk} of queries we have an
error vector

e = (e(q1), . . . , e(qk))

The overall error is

||e||p =

(

1

k

k∑

i=1

ep
i

) 1
p
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Thresholding Techniques

Choose the largest m wavelet coefficients in
absolute value.

Choose m coefficients in a greedy way (e.g.
as above), then repeatedly include the
coefficients that decrease the error and
exclude those that increase it.
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Estimating Selectivity

Vitter’s Theorem: For a given range query a ≤
X ≤ b, the cumulative frequencies of a − 1 and b

can be reconstructed from m wavelet coefficients

using O(m) space in time O(min{m, log N}).
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Mining Data Streams

Mining data that arrives and is processed in a
stream: “you look only once”
Examples:

switches and routers in networks generate
data on

telephone calls
IP addresses

streams of credit card transactions

log records in web-based services
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Main Challenge:

Data accumulation is expensive so it is
important to extract information even at
the cost of obtaining approximative results.
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The Processing Model

Characteristics of stream processing are
identified:

each data item is read and processed as
soon as it arrives;

no backtracking is allowed on the data
stream;

explicit access to arbitrary past items is not
allowed.
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What is allowed ...

An additional amount of memory is permitted
subjected to the following conditions:

the additional memory may be used to store:
a recent window of items;
some sumary information about the
stream.

the size of the memory is significantly smaller
than the signal domain size.

Wavelets and Applications – p.51/56



Straddling Coeficients

�I

x1 x2 x3 x4 x5 x6 x7 x8

?

?

?

?
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Computation of the higest m terms

The highest m terms yields the best
approximation for the error ||e||2.
Gilbert’s result: With the most O(m + log N) stor-

age we can compute the highest m-term approx-

imation to a signal. Each new data signal item

needs O(m + log n) time to be processed.

Wavelets and Applications – p.53/56



Lower Space Bound

Any streaming algorithm that correctly calculates

the highest wavelet basis coefficient of a signal

requires Ω( N
log log N ) space.
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Other Applications

Clustering time series that represent levels of
gene expressions in microarrays as they
appear in the mitosis process (a study of
cellular division of the cells that form the
retina).

The new image data compression standard
JPEG 2000
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Conclusions

Wavelet transforms generate simple
algorithms for data compression.

Computations can be done efficiently, in small
space.

A large variety of applications exist even for
the simplest Haar wavelets.
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