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.The Haar Transform

Values of an analog signal measured at time
values 1,...,narezy,...,xz,.

The support of the sequence X = (x1,...,x,) IS
the set {7|z; # 0}.

We form two sequences of size n/2:

t1, ... ,tn/g, and fl; C ,fn/g

Tom—1 T Tom Tom—1 — Tom
— and f,, =

V2
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.Example:

Let
X = (z1,...,28) = (2,3,5,4,2,6,8,10)
t:(tl,...,t4)andf:(fl,...,f4):
t1:7 3.54 f1:7§:—070
tgz%—636 fF%:o.?o
t?,:%_565 f3:7;£:—280
t4:78_—1285 f4zﬁz—140
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.Remarks...

o The trend components t4,...,t, approximate
the trends In X.

» The fluctuation components fi, ..., f4
approximate the fluctuations of x.

8 4 4
EX) =) xi=>Y ti+) [
1=1 1=1 1=1

» Fluctuations are small because x originates
typically in sampling of a continuous signal.
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.Haar Transform

The Haar transform is the mapping
H : Seq(rR) — Seq(r) given by:

J‘C(Qfl,...,ﬂffn) — (tl,...,t%,fl,...,f%)

for (x1,...,x,) € Seq(R).
We use the condensed notation H(x) = (t!|f'),
where

t! (t1,...,tz)
fl — (flaaf%)



.The Inverse Haar Transform

If j‘((ﬂil,...,fn) = (tl,...,t%,fl,...,f%), then

t = T1+T9 f _ X179

V2 V2
- Tp—11TTn n Ln—1—"Tn
h="m T
Then:
ti+J1 _ b=/
T1 — —\@ Lo — /2
'y tly 'y Ty




.The Inverse Haar Transform (cont)

The inverse Haar transform is the mapping
H~1: seq(r) — Seq(r) given by:

g{_l(tl,...,t%,fl,...,f%) — (xl,...,xn)

for (tl, . ,t%,fl, e ,f%) < Seq(R).



.Higher-LeveI Haar Transforms

For x € r” and k£ = log, n:
HU(x) = H(x) = (t'[f"),

= (J(IFY) = (CIF)F),
= (H(E)FF) = (CF|FF),

I &

HO(x) = (]



.The Full Haar Transform

The full Haar transform of a sequence x of length
n 1S
H(x) = (tFFF ),

where k = log, n.



.Energy _ocalization Property

Most of energy Is concentrated in the trend

vector. For

X = (2,3,5,4,2,6,8,10)

we have

E(X) = 2% 4 3% + 5% + 4% + 2% + 6* + 8% 4 10 = 258

E(t!) = 3.542 -

- 6.36% A

E(fY) = 0.70? -

- 5.65% +

- 0.70% +

- 12.852 ~ 246

- 2.80% 4

- 1.40% ~ 12



.Haar Wavelets

The 1-level Haar wavelets are the sequences

1 1
7 ) O, O) [ o ° 7
V2 V2

(0,0 : : 0
o 77\/§7 \/ia"wa

Wi = ( 0,0)

2
|

0)

1 1
W. = (0,0,0,0,...,

; NoRL
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Welerstrass (1873): a family of functions
constructed by superimposing scaled copies
of a given base function.

Haar (1909): introduced the Haar basis
(compact support).

Gabor (1946): nonorthogonal basis of
functions with unbounded support
(translations of Gaussians).

Ricker (1940): the term wavelet (seismology)



.Properties of Wavelets

If H(Xx) = (t| f1,..., f»), then
fi =xW,; for1 <z g

» Average value of a wavelet is 0.

» For each wavelet W, we have &(W;) = 1.

o Each wavelet can be obtained from the first
wavelet by a time-translation of 2.

» If x is approximatively constant on supp(W}),
then f; Is approximatively O.



.The Haar Scaling signals

The 1-level Haar scaling signals are:

1 1
Vi = —.0,0,...,0,0
1 1
Vi = (0,0,—,—.,...,0,0
1 1
V. = (0,0,0,0,..., )
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.Properties of Scaling Signals

If H(X) = (t1,. .., t=][f), then
t; = xV; for1 <i g

o Average value of a scaling signal is not 0.

» For each scaling signal V; we have &(V;) = 1.

» Each scaling signal can be obtained from the
first scaling signal by a time-translation of 2.



.an-LeveI Wavelets

The 2nd-level wavelets are defined by

11 1 1
Wi = (=, =, —=, —= 0
1 (2727 27 27 ’ ’ )
11 1 1
W3 = — =, —=,——,0,...,0
2 (07070702727 27 27 ) ) )
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.an-LeveI Scaling Signals

The 2nd-level scaling are defined by

1 1 1 1
Vi = (=,=,=,-,0,...,0
1 (272727277 7)
1 1 11
Vi = — =, =,=,0,...,0
) (07070707272727277 7)
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2nd-order fluctuations:

fA=xWiforl1<i<

2nd-order trends:

t2 =xV:forl<i<
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.Properties of the 2nd-level wavelets anc

» Average value of wavelets is 0; average value
of scaling signals is non-zero.

o E(WH =E&(V7) =1,

» supp(W;) = supp(V;) =4, for1 <i < 2.



.Computation Tree

T1+xo+x3+T4 T1+T2—T3—Ty

2 2

Zle Li
22

2?21 wi_Z?:ss L1

2/2

L7 Xg
\/ .
78 o
V2
o

Ts5+Te—T7
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.Full System of Wavelets

For1l < j <logynand1l <h < 3; define:

W, = (oo<%>3<\%>]




.Full System of Wavelets for n = 8

1 1 | 1 _ 1
(Z5:—25:0,0,0,0,0,0) wi = (0,0,25,-2%,0,0,0,0)
1 1 1 _ 1 _ 1
(0,0,0,0, &, ~25,0,0) wi = (0,0,0,0,0,0, %, - %)
1 1 1 1 1 1 1 1
(2,3,—3,73%:0,0,0,0) wi = (0,0,0,0,3,5,—5,~3)
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.Full System of Wavelets for n = 8

Full Haar transform of a sequence X:

(XVi, XWE, xWE xW3,
XW117 XW217 XW?)l7 XWZLI)

Example: For x = (2,3,5,4,2,6,8,10):

H(X) = (14.2, —4.30, —1.99, —5.09,
—0.70,0.70, —2.80, —1.40)
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.Synthesis of Signals

The inverse Haar transform:

:751+f1 t1 — h

T , Lo = R e
V2T e

N|S
N
NS

L (1t t

)+

/4

(fl J1 f%

V2

)



28 2.i=1%i
C2v2

1

(v2)3 +

I_ ______________________________________

24_1 mi—28_5 T
1
(v2)3

1+T2—T3—T4 Ts5+Te—X7—o8
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.I\/Iultiresolution Analysis

First averaged and first detail signals are:

F1:(f1 J1 f% f";)

x = T' + F: sum of a lower resolution signal and
a detail signal.

NS
NS




.Averaged and Detail Signals (cont)

The averaged and detail signals can be written
as

T = V4 +t2Ve

= (XV)V)+ -+ (XV2)V2
Flo= AW 4+ fa W

= (XWDW; + - + (XWr )W



.Example:

Letx = (2,3,5,4,2,6,8,10). We have

5 9 8 18’
1 1 4 2
The averaged signal:

T' =(5/2,5/2,9/2,9/2,4,4,9,9)
The detall signal:

Fl = (-1/2,1/2,1/2,-1/2,-2,2,—1,1)

H(x) = (

)



.I\/Iultiple-level MRA

_ Tl g
_ T2 4R

1 %
|

SO
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.Compression of Signals

o Compression: converting a signal into a new
format that requires fewer bits to transmit

o Categories of compression

» lossless copmpression: error-free
decompression of the original signal
(Huffman compression, LZW compression,
arithmetic compression)

s lossy compression: produces inaccuracies
In the decompressed signal

o rates of compression (50:1-100:1) for lossy
compr. vs. 2:1 for lossless
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.Wavelet Compression Methods

1. Compute a wavelet transform of a signal.

2. Set to 0 all values of components that are
below a threshold value .

3. Transmit only the significant, non-zero values.

4. Compute the reverse transform at the
receiving end, using zero values forthe
components that were not transmitted.
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.A Relational Database Application

Selectivity Estimation
ORDERS

cust_no | cust_name | date gty

123 John Doe | 2/10/2003 | 8

Find the fraction of ORDERS returned by:
select cust name from ORDERS
where 1 <= gty and qty <= 3;



.Wavelet-based Histograms (Vitter)

The active domain of A: vy < vy, < -+- < v, the
values that appear under an attribute A of a
table.

Frequencies: f; = |{t|t|A] = v;
Cumulative Frequencies:

1 <1=<n-1

— [{tt[A] <= v}] = ka,

forl <i:i=<n-1



.Cumulative Data Distribution

Data distribution of A:
T(A) — {(Ulv fl)v SO (Unv fn)}

Cumulative data distribution of A:
‘TC(A) — {(Ula fl)) s ooy (vna fn)}

Extended cumulative data distribution T¢+(A) is
the extension of T¢ obtained by assigning O fre-

guencies to all values that do not occur In the ta-
ble.



.Vitters’ Histogram Construction

1. form the extended cummulative distribution
T+ (A) (preprocessing);

2. compute H(TCF(A));

3. retain only the m most significant wavelet
coefficients for some m that corresponds to
the desired storage usage.

The number of tuples T'(A),, suchthata < A <b
IS
T(A)gy =TT (A) — T (A),,



.Example:

ORDERS

qty

=

w w wr P WA~ ®

‘T(qty) — {(17 2)7 (37 5)7 (47 2)}
T (aty) = {(1,2),(2,2),(3,7),(4,9)}
H(TH(2,2,7,9)) = (9.99, -5.99,0, —1.91)
HH(TC(9.99, —5.99,0, —1.91)) =
(1.99,1.99,6.99, 8.99)



.Further steps and remarks ...

» The value of the m coefficients together with
their positions serve as histogram.

» To estimate the value of |{t|c > t|A| > d}| we
construct the values for b and ¢ — 1 In In the
extended cumulative distribution function and
then take their difference.

o Effectiveness is increased when we replace
the raw frequencies with T¢+(A).



.Preprocessing

» If the active domain V' is small, an one-pass,
IN-memory computation is sufficient.

o If V Is large, use an external merge-sort and
sum up the frequencies of the records that
are merged.

o If V Is very large use random sampling and
use the sample data distribution as an
approximation.



.Restricting the Coefficients

Thresholding: m out of N coefficients are kept;

the remaining are set to 0. Then, the inverse
Haar transform is computed.

Let s be the size of query ¢ and s’ be the size of
guery ¢ after thresholding.
Error computations for a query g;:

» absolute error: e*(q) = \s — §'| (small fregs.)

» relative error: ¢ (q) =

® combined error:
6comb(q) _ min{aeabs(q), 6€TGZ(Q)}



.Global error for a set of queries

Foraset @ ={q,...,q:} of queries we have an
error vector

e=(e(q1),--.,e(qr))

The overall error iIs

. 7
lell, = (kzeﬁ?)



.Thresholding Techniques

o Choose the largest m wavelet coefficients in
absolute value.

o Choose m coefficients in a greedy way (e.g.
as above), then repeatedly include the
coefficients that decrease the error and
exclude those that increase |It.



.Estimating Selectivity

Vitter’'s Theorem: For a given range query a <
X < b, the cumulative frequencies of ¢« — 1 and b
can be reconstructed from m wavelet coefficients
using O(m) space in time O(min{m,log N}).



.I\/Iining Data Streams

Mining data that arrives and is processed in a
stream: “you look only once”
Examples:

» switches and routers in networks generate
data on

» telephone calls
s |P addresses

o Streams of credit card transactions
» log records in web-based services
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.I\/Iain Challenge:

Data accumulation Is expensive so it IS
iImportant to extract information even at
the cost of obtaining approximative results.
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.The Processing Model

Characteristics of stream processing are
identified:

o each data item Is read and processed as
soon as It arrives;

» no backtracking is allowed on the data
stream;

o explicit access to arbitrary past items is not
allowed.
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.What IS allowed ...

An additional amount of memory Is permitted
subjected to the following conditions:
o the additional memory may be used to store:
s arecent window of items;
s SOome sumary information about the
stream.

» the size of the memory is significantly smaller
than the signal domain size.



.Straddling Coeficients




.Computation of the higest m terms

The highest m terms yields the best
approximation for the error ||e||-.

With the most O(m + log N) stor-
age we can compute the highest m-term approx-
Imation to a signal. Each new data signal item
needs O(m + logn) time to be processed.



.Lower Space Bound

Any streaming algorithm that correctly calculates
the highest wavelet basis coefficient of a signal

requires Q( o) Space.




.Other Applications

» Clustering time series that represent levels of
gene expressions in microarrays as they
appear in the mitosis process (a study of
cellular division of the cells that form the
retina).

» The new image data compression standard
JPEG 2000



.Conclusions

» Wavelet transforms generate simple
algorithms for data compression.

o Computations can be done efficiently, in small
space.

» A large variety of applications exist even for
the simplest Haar wavelets.
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