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Trainig Error vs. Generalization Error

Let s = ((x1,)1),---,(Xm,¥m)) be a sample. The training error or
empirical error of a particular hypothesis H is the fraction of training
examples it misclassifies:

err(H) = Z IH(xi)£y:
If (x,y) ~ D, the true error or the generalization error is

err(H) = Plry)nlH(x) # ]

The training error is a proxy for the generalization error.
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A General Analysis of Classifier Errors

Success in learning depends on
o finding a classifier that fits the data well, that is, has low training
error;
o the classifier must be simple;
@ the learner must be provided with a sufficiently large training set.
The analysis does not depend on any probability distribution.
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Trainig Error vs. Generalization Error

@ When working with a single hypothesis H the training error is an
unbiased estimator of the generalization error.

@ With a large hypothesis space the algorithm will be biased towards
hypotheses whose training errors are, by chance much lower than true
errors.
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Estimation of Generalization Error - |

@ CENTRAL QUESTION: How much the training error err(H) can
differ from the true error err(H) as a function of the number of
training examples m?

o FUNDAMENTAL ASSUMPTION: Hypothesis H is selected before
the training set is randomly chosen.
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Estimation of Generalization Error - |l

Equivalent problem: when a training example (x;, y;) is selected at random
the probability P(H(x;) # yi) equals p = err(H) and P(H(x;) = y;) equals
1 — p. This can be restated in an experiment with a biased coin:

head if H(x;) #y; p

tail  if H(x;) =y, 1-p
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The Coin Flipping Analogy

The estimation amounts now to the evaluation that the probability that
the fraction of heads p in a series of m coin flippings will be different from
p.
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Hoeffding's Inequalities

Let X1,..., X, be m independent random variables ranging in the interval
[0,1] and let A, be the random variable

C Xit o+ X
=TT

Am
Then, we have )
P(Am = E[An] +€) < e72m,

and )
P(Am < E[An] — €) < e72m.

Also,

P(|Am — E(Am)| = €) < 272,
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@ X; =1 with the probability p (heads) and X; = 0 with probability
1 — p (tails).

@ Ap, equals to p, the fraction of heads obtained in m flips and
E(An) = p. We have A, < p — € iff p < p — € iff np the number of
heads is such that n, < (p — €)m.

o The probability of at most (p — €)m heads is at most e~2m<"
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The Learning Framework - |

0 otherwise;

X, — {1 if H(x;) # yi,

o E(A,) = err(H);
o E(Ap) is the generalization error;
o P(err(H) > er(H) + €) < e™2m<",

o & = = E 9DaAe
Prof. Dan A. Simovici (UMB) Probably Approximately Correct Learning - Il



The Learning Framework - |l

Let
§ = e—2me

1
c—/Ms
2m

With the probability at least 1 — d we have

9

SO

1
|ng

err(H) < err(H) + | =2

{H) < &r(H) + 1 52
If H has a low training error on a sufficiently large training set, then we
can be confident that the true error of H is also low.
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The Learning Framework - IlI

P(lerr(H) — &r(H)| > ©)
is at most 2e~2m<  or, equivalently,

2

H) — eri(H)| < \[ =%

jerr(H) — &i(H)| < ] 52
with a probability at least 1 — 4.
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Finite Hypothesis Space Analysis

‘H is the space of hypotheses.

Theorem

Let H be a finite space of hypotheses and assume that a random training
set of size m is chosen. Then, for any € > 0,

P((3H € H) : err(H) > err(H) +¢) < ’H‘e—2m52.

Thus, with probability at least 1 — § we have:

| In
er(H) < & H) + \/%.
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Proof

@ Hypothesis H € H is chosen before observing the training set.

o If we fix any single hypothesis H € H,
P(err(H) — err(H) > €) < e=2m".

@ By union bound, the probability that this will happen for any
hypothesis in H can be upper bounded by |H|e_2’"52.
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e-Nets

Let C be a concept class and let C € C.
Definition

The class of error regions of C and C is the collection of sets

R(C,C)={C@&D | Dec}.
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Theorem

Let C be a collection of concepts, C C U. If K € C, then
VCD(R(K,C)) = VCD(C).

Proof: Let S be a set. Define
f:{SnC| CeC}—A{SND | DeR(K,C)}
as f(SNC)=5SN(Ca® K) for every C € C. Observe that
fSNC)=SN(CaK)=(SNC)® (SNK).
Thus, if £(SN G) = f(SN ), the equality

(SN (SNK)=(SNG)a (SNK)

implies (SN C;) = (SN &), so f is a bijections. Therefore, C shatters the
set S if and only if R(K,C) shatters that set.
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A Further Refinement

For € > 0 define

R(C,C)={C®D | DeC and P(C® D) > ¢},
where P is a fixed probability on P(U).
Definition

A set S is an e-net on for R(C,C) if for every R € R.(C,C) we have
SNR#D.
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Example

Let U = [0,1], P be the uniform distribution on U and assume that C is

C={0}u{lx.y] | x,y €[0,1]}.

If C =0, then R(C,C) =C.
For any interval / included in [0, 1], P(/) is the length of /.

The set of points
1
S= {ne‘lgng {—-‘}
€

is an e-net for R((),C) because the distance between two consecutive
points of S is €, [x,y] € Re(0,C) implies P([x, y]) = € (and thus,
y—x=e€),s0SN|[x,y] #0.
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Theorem

If a sample s forms an e-net for R(C,C), and a learning algorithm produces
a hypothesis H € C that is consistent with s, then this hypothesis must
have an error less than e.

Proof: Note that H® C € R(C,C) because H was not hit by S and S is
a e-net for R(C,C), so we must have H® C ¢ R.(C,C) and therefore,
err(H) < e.
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An NP-Complete Problem

The Graph 3-Coloring Problem: (G3CP) Given an graph G = (V, E),
where V' = {1,...,n} is the vertex set and E C V x V is the edge set,
determine if there exists a function f : V — {c1, &, c3} such that for
every edge (i,j) € E, f(i) # f(j).

This is an NP-complete problem, so a computationally intractable problem.
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An Instance of G3CP

(Kearns and Vazirani)

2
1 3
5§
0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0
5 4 —
Sg
0 0 1 1 1 1
0 1 1 0 1 1
0 1 1 1 0 1
1 0 0 1 1 1
1 0 1 1 1 0
1 1 0 1 1 0
1 1 1 1 0 0
Or B> «=» «=» T Hal
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3DNF Formulas

3DNF formulas are disjunctions of three monomials

¢ =p1Vp2V pus,

where pu; € MON,, for 1 <7 < 3.

The size of a formula ¢ is no larger than 6n.

Claim: The graph G is 3-colorable if and only if Sg = Sg U Sg_1 is
consistent with some 3DNF formula.
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Claim Justification

Suppose that G is 3-colorable and choose a coloring of G.
Let 7 be a monomial that corresponds to the color K: 7k is the
conjunction of the variables that correspond to vertices not colored by K.
Thus,

TR = X2X3X4X5,TB — X1X3X6, TG — X1X2X4X5X6.

2

Every positive example
in 53 satisfies one of
the formulas 7.

5 4 No negative example
in S satisfies any of
the formulas 7.
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Claim Justification (cont’d)

Suppose that 7 VV 757 is consistent with Sg. Define a coloring as
follows: the color of i is K if v(i) satisfies Tk (for K € {R, B, G}) and is
chosen arbitrary if more than one monomial is satisfied among the colors
that correspond to these monomials.
@ This is a legal coloring: if i and j are assigned the same color, say R,
then both v(i), v(j) satisfy 7r. Since the i*" bit of v(i) is 0 and the
i bit of vj is 1 it follows that neither x; not X; can appear in 7g.
o Since v(j) and e(i, ) differ only in their i*® bits, if v(j) satisfies 7,
then so does e(/, ), implying that e(i,j) & S5, so (i,j) € E.
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Structural Risk Minimization

Find a hypothesis H for which one can guarantee the lowest probability of
error for a given training sample

s=((x1,51);- - (Sms ¥Ym))

din2 —1Iné
err(H) < widehaterr(H) + O <%>
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