Probably Approximately Correct Learning - II

Prof. Dan A. Simovici

UMB

Introduction

2 A Polynomial Bound on the Sample Size

Intractability of Learning 3-Term DNF Formulae

Trainig Error vs. Generalization Error

Let $\mathbf{s} = ((\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m))$ be a sample. The *training error* or *empirical error* of a particular hypothesis H is the fraction of training examples it misclassifies:

$$\widehat{\textit{err}}(H) = \frac{1}{m} \sum_{i=1}^{m} I_{H(\mathbf{x}_i) \neq y_i}$$

If $(\mathbf{x}, y) \sim \mathcal{D}$, the *true error* or the *generalization error* is

$$err(H) = P_{(\mathbf{x}, y) \sim \mathcal{D}}[H(\mathbf{x}) \neq y].$$

The training error is a proxy for the generalization error.

A General Analysis of Classifier Errors

Success in learning depends on

- finding a classifier that fits the data well, that is, has low training error;
- the classifier must be simple;
- the learner must be provided with a sufficiently large training set.

The analysis does not depend on any probability distribution.

Trainig Error vs. Generalization Error

- When working with a single hypothesis *H* the training error is an unbiased estimator of the generalization error.
- With a large hypothesis space the algorithm will be biased towards hypotheses whose training errors are, by chance much lower than true errors.

Estimation of Generalization Error - I

- CENTRAL QUESTION: How much the training error $\widehat{err}(H)$ can differ from the true error err(H) as a function of the number of training examples m?
- FUNDAMENTAL ASSUMPTION: Hypothesis *H* is selected before the training set is randomly chosen.

Estimation of Generalization Error - II

Equivalent problem: when a training example (\mathbf{x}_i, y_i) is selected at random the probability $P(H(\mathbf{x}_i) \neq y_i)$ equals p = err(H) and $P(H(\mathbf{x}_i) = y_i)$ equals 1 - p. This can be restated in an experiment with a biased coin:

head if
$$H(\mathbf{x}_i) \neq y_i$$
 p
tail if $H(\mathbf{x}_i) = y_i$ 1-p

The Coin Flipping Analogy

The estimation amounts now to the evaluation that the probability that the fraction of heads \hat{p} in a series of m coin flippings will be different from p.

Hoeffding's Inequalities

Let X_1, \ldots, X_m be m independent random variables ranging in the interval [0,1] and let A_m be the random variable

$$A_m=\frac{X_1+\cdots+X_m}{m}.$$

Then, we have

$$P(A_m \geqslant E[A_m] + \epsilon) \leqslant e^{-2m\epsilon^2},$$

and

$$P(A_m \leqslant E[A_m] - \epsilon) \leqslant e^{-2m\epsilon^2}.$$

Also,

$$P(|A_m - E(A_m)| \geqslant \epsilon) \leqslant 2e^{-2m\epsilon^2}.$$

- $X_i = 1$ with the probability p (heads) and $X_i = 0$ with probability 1 p (tails).
- A_m equals to \hat{p} , the fraction of heads obtained in m flips and $E(A_m) = p$. We have $A_m \leq p \epsilon$ iff $\hat{p} \leq p \epsilon$ iff n_h the number of heads is such that $n_h \leqslant (p \epsilon)m$.
- The probability of at most $(p \epsilon)m$ heads is at most $e^{-2m\epsilon^2}$.

The Learning Framework - I

•

$$X_i = \begin{cases} 1 & \text{if } H(\mathbf{x}_i) \neq y_i, \\ 0 & \text{otherwise;} \end{cases}$$

- $E(A_n) = \widehat{err}(H)$;
- $E(A_m)$ is the generalization error;
- $P(err(H) \geqslant \widehat{err}(H) + \epsilon) \leq e^{-2m\epsilon^2}$.

The Learning Framework - II

Let

$$\delta = e^{-2m\epsilon^2},$$

SO

$$\epsilon = \sqrt{\frac{\ln \frac{1}{\delta}}{2m}}$$

With the probability at least $1 - \delta$ we have

$$err(H) \leq \widehat{err}(H) + \sqrt{\frac{\ln \frac{1}{\delta}}{2m}}$$

If H has a low training error on a sufficiently large training set, then we can be confident that the true error of H is also low.

The Learning Framework - III

$$P(|err(H) - \widehat{err}(H)| \geqslant \epsilon)$$

is at most $2e^{-2m\epsilon^2}$, or, equivalently,

$$|err(H) - \widehat{err}(H)| \leqslant \sqrt{\frac{\frac{2}{\delta}}{2m}}$$

with a probability at least $1 - \delta$.

Finite Hypothesis Space Analysis

 ${\cal H}$ is the space of hypotheses.

Theorem

Let $\mathcal H$ be a finite space of hypotheses and assume that a random training set of size m is chosen. Then, for any $\epsilon>0$,

$$P((\exists H \in \mathcal{H}) : err(H) \geqslant \widehat{err}(H) + \epsilon) \leq |\mathcal{H}|e^{-2m\epsilon^2}.$$

Thus, with probability at least $1 - \delta$ we have:

$$err(H) \leq \widehat{err}(H) + \sqrt{\frac{\ln |\mathcal{H}| + \ln \frac{1}{\delta}}{2m}}.$$

Proof

- Hypothesis $H \in \mathcal{H}$ is chosen before observing the training set.
- If we fix any single hypothesis $H \in \mathcal{H}$, $P(err(H) \widehat{err}(H) \ge \epsilon) \le e^{-2m\epsilon^2}$.
- By union bound, the probability that this will happen for any hypothesis in \mathcal{H} can be upper bounded by $|\mathcal{H}|e^{-2m\epsilon^2}$.

ϵ -Nets

Let C be a concept class and let $C \in C$.

Definition

The class of error regions of $\mathcal C$ and $\mathcal C$ is the collection of sets

$$R(C,C) = \{C \oplus D \mid D \in C\}.$$

Theorem

Let C be a collection of concepts, $C \subseteq U$. If $K \in C$, then VCD(R(K,C)) = VCD(C).

Proof: Let *S* be a set. Define

$$f: \{S \cap C \mid C \in \mathcal{C}\} \longrightarrow \{S \cap D \mid D \in R(K, \mathcal{C})\}$$

as $f(S \cap C) = S \cap (C \oplus K)$ for every $C \in C$. Observe that

$$f(S \cap C) = S \cap (C \oplus K) = (S \cap C) \oplus (S \cap K).$$

Thus, if $f(S \cap C_1) = f(S \cap C_2)$, the equality

$$(S \cap C_1) \oplus (S \cap K) = (S \cap C_2) \oplus (S \cap K)$$

implies $(S \cap C_1) = (S \cap C_2)$, so f is a bijections. Therefore, C shatters the set S if and only if R(K,C) shatters that set.

A Further Refinement

For $\epsilon > 0$ define

$$\mathsf{R}_{\epsilon}(\mathsf{C},\mathcal{C}) = \{\mathsf{C} \oplus \mathsf{D} \mid \mathsf{D} \in \mathcal{C} \text{ and } \mathsf{P}(\mathsf{C} \oplus \mathsf{D}) \geqslant \epsilon\},$$

where P is a fixed probability on $\mathcal{P}(U)$.

Definition

A set S is an ϵ -net on for R(C,C) if for every $R \in R_{\epsilon}(C,C)$ we have $S \cap R \neq \emptyset$.

Example

Let U = [0, 1], P be the uniform distribution on U and assume that C is

$$C = \{\emptyset\} \cup \{[x,y] \mid x,y \in [0,1]\}.$$

If $C = \emptyset$, then R(C, C) = C.

For any interval I included in [0,1], P(I) is the length of I.

The set of points

$$S = \left\{ n\epsilon \middle| 1 \leqslant n \leqslant \left\lceil \frac{1}{\epsilon} \right\rceil \right\}$$

is an ϵ -net for $R(\emptyset, \mathcal{C})$ because the distance between two consecutive points of S is ϵ , $[x,y] \in R_{\epsilon}(\emptyset, \mathcal{C})$ implies $P([x,y]) \geqslant \epsilon$ (and thus, $y-x\geqslant \epsilon$), so $S\cap [x,y]\neq \emptyset$.

Theorem

If a sample \mathbf{s} forms an ϵ -net for $R(\mathcal{C},\mathcal{C})$, and a learning algorithm produces a hypothesis $H \in \mathcal{C}$ that is consistent with \mathbf{s} , then this hypothesis must have an error less than ϵ .

Proof: Note that $H \oplus C \in \mathsf{R}_{\epsilon}(C,\mathcal{C})$ because H was not hit by S and S is a ϵ -net for $\mathsf{R}(C,\mathcal{C})$, so we must have $H \oplus C \not\in \mathsf{R}_{\epsilon}(C,\mathcal{C})$ and therefore, $err(H) \leqslant \epsilon$.

An NP-Complete Problem

The Graph 3-Coloring Problem: (G3CP) Given an graph $\mathcal{G}=(V,E)$, where $V=\{1,\ldots,n\}$ is the vertex set and $E\subseteq V\times V$ is the edge set, determine if there exists a function $f:V\longrightarrow \{c_1,c_2,c_3\}$ such that for every edge $(i,j)\in E$, $f(i)\neq f(j)$.

This is an NP-complete problem, so a computationally intractable problem.

An Instance of G3CP

(Kearns and Vazirani)

		_	+		
		5	+ G		
0	1	1	1	1	1
1	0	1 0	1	1	1
1 1 1 1	0 1 1 1	0	1	1	1 1 1 1 0
1	1	1	0	1	1
1	1	1	1 1	0	1
1	1	1 1	1	1	0
$\mathcal{S}_{\mathcal{G}}^{-}$					
0	0	1	1	1	1
0		1	1 0	1	1
0	1	1	1	0	1
1	0	1 0	1	1	1
1	0	1	1	1	0
0 1 1 1 1	1 0 0 1	1 0	1 1	1 0	1 1 1 0 0
1	1	1	1	0	0

3DNF Formulas

3DNF formulas are disjunctions of three monomials

$$\phi = \mu_1 \vee \mu_2 \vee \mu_3,$$

where $\mu_i \in MON_n$ for $1 \leq i \leq 3$.

The size of a formula ϕ is no larger than 6n.

Claim: The graph \mathcal{G} is 3-colorable if and only if $S_{\mathcal{G}} = S_{\mathcal{G}}^+ \cup S_{\mathcal{G}}^{-1}$ is consistent with some 3DNF formula.

Claim Justification

Suppose that \mathcal{G} is 3-colorable and choose a coloring of \mathcal{G} . Let τ_K be a monomial that corresponds to the color K: τ_K is the conjunction of the variables that correspond to vertices not colored by K. Thus.

Every positive example in S_G^+ satisfies one of the formulas τ_K . No negative example in S_G^- satisfies any of the formulas τ_K .

Claim Justification (cont'd)

Suppose that $\tau_R \vee \tau_B \tau_G$ is consistent with $S_{\mathcal{G}}$. Define a coloring as follows: the color of i is K if v(i) satisfies T_K (for $K \in \{R, B, G\}$) and is chosen arbitrary if more than one monomial is satisfied among the colors that correspond to these monomials.

- This is a *legal coloring*: if i and j are assigned the same color, say R, then both v(i), v(j) satisfy τ_R . Since the i^{th} bit of v(i) is 0 and the i^{th} bit of v_j is 1 it follows that neither x_i not $\overline{x_i}$ can appear in τ_R .
- Since v(j) and e(i,j) differ only in their i^{th} bits, if v(j) satisfies τ_R , then so does e(i,j), implying that $e(i,j) \notin S_{\mathcal{G}}^-$, so $(i,j) \notin E$.

Structural Risk Minimization

Find a hypothesis H for which one can guarantee the lowest probability of error for a given training sample

$$\mathbf{s}=((\mathbf{x}_1,y_1),\ldots,(\mathbf{s}_m,y_m))$$

$$err(H) \leqslant widehaterr(H) + O\left(\frac{d \ln \frac{n}{d} - \ln \delta}{m}\right)$$

You should consult referrences [2] and [3] and [1].

- A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM, 36:929–965, 1989.
- M. J. Kearns and U. V. Vazirani.

 An Introduction to Computational Leaning Theory.

 MIT Press, Cambridge, MA, 1997.
- R. E. Schapire and Y. Freund.

 Boosting Foundations and Algorithms.

 MIT Press, Cambridge, MA, 2012.