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Trainig Error vs. Generalization Error

Let s = ((x1, y1), . . . , (xm, ym)) be a sample. The training error or
empirical error of a particular hypothesis H is the fraction of training
examples it misclassifies:

êrr(H) =
1

m

m∑

i=1

IH(xi )6=yi

If (x, y) ∼ D, the true error or the generalization error is

err(H) = P(x,y)∼D[H(x) 6= y ].

The training error is a proxy for the generalization error.
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A General Analysis of Classifier Errors

Success in learning depends on
finding a classifier that fits the data well, that is, has low training
error;
the classifier must be simple;
the learner must be provided with a sufficiently large training set.

The analysis does not depend on any probability distribution.
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Trainig Error vs. Generalization Error

When working with a single hypothesis H the training error is an
unbiased estimator of the generalization error.
With a large hypothesis space the algorithm will be biased towards
hypotheses whose training errors are, by chance much lower than true
errors.
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Estimation of Generalization Error - I

CENTRAL QUESTION: How much the training error êrr(H) can
differ from the true error err(H) as a function of the number of
training examples m?
FUNDAMENTAL ASSUMPTION: Hypothesis H is selected before
the training set is randomly chosen.
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Estimation of Generalization Error - II

Equivalent problem: when a training example (xi , yi ) is selected at random
the probability P(H(xi ) 6= yi ) equals p = err(H) and P(H(xi) = yi) equals
1− p. This can be restated in an experiment with a biased coin:

head if H(xi) 6= yi p
tail if H(xi) = yi 1-p
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The Coin Flipping Analogy

The estimation amounts now to the evaluation that the probability that
the fraction of heads p̂ in a series of m coin flippings will be different from
p.
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Hoeffding’s Inequalities

Let X1, . . . ,Xm be m independent random variables ranging in the interval
[0, 1] and let Am be the random variable

Am =
X1 + · · ·+ Xm

m
.

Then, we have
P(Am > E [Am] + ǫ) 6 e−2mǫ2 ,

and
P(Am 6 E [Am]− ǫ) 6 e−2mǫ2 .

Also,
P(|Am − E (Am)| > ǫ) 6 2e−2mǫ2 .
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Xi = 1 with the probability p (heads) and Xi = 0 with probability
1− p (tails).
Am equals to p̂, the fraction of heads obtained in m flips and
E (Am) = p. We have Am ≤ p − ǫ iff p̂ ≤ p − ǫ iff nh the number of
heads is such that nh 6 (p − ǫ)m.
The probability of at most (p − ǫ)m heads is at most e−2mǫ2 .
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The Learning Framework - I

Xi =

{
1 if H(xi ) 6= yi ,

0 otherwise;

E (An) = êrr(H);
E (Am) is the generalization error;
P(err(H) > êrr(H) + ǫ) ≤ e−2mǫ2 .
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The Learning Framework - II

Let
δ = e−2mǫ2 ,

so

ǫ =

√
ln 1

δ

2m

With the probability at least 1− δ we have

err(H) ≤ êrr(H) +

√
ln 1

δ

2m

If H has a low training error on a sufficiently large training set, then we
can be confident that the true error of H is also low.
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The Learning Framework - III

P(|err(H)− êrr(H)| > ǫ)

is at most 2e−2mǫ2 , or, equivalently,

|err(H) − êrr(H)| 6

√
2
δ

2m

with a probability at least 1− δ.
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Finite Hypothesis Space Analysis

H is the space of hypotheses.

Theorem

Let H be a finite space of hypotheses and assume that a random training

set of size m is chosen. Then, for any ǫ > 0,

P ((∃H ∈ H) : err(H) > êrr(H) + ǫ) ≤ |H|e−2mǫ2 .

Thus, with probability at least 1− δ we have:

err(H) ≤ êrr(H) +

√
ln |H|+ ln 1

δ

2m
.
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Proof

Hypothesis H ∈ H is chosen before observing the training set.
If we fix any single hypothesis H ∈ H,
P(err(H) − êrr(H) > ǫ) ≤ e−2mǫ2 .
By union bound, the probability that this will happen for any
hypothesis in H can be upper bounded by |H|e−2mǫ2 .
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ǫ-Nets

Let C be a concept class and let C ∈ C.

Definition

The class of error regions of C and C is the collection of sets

R(C , C) = {C ⊕ D | D ∈ C}.
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Theorem

Let C be a collection of concepts, C ⊆ U. If K ∈ C, then
VCD(R(K , C)) = VCD(C).

Proof: Let S be a set. Define

f : {S ∩ C | C ∈ C} −→ {S ∩ D | D ∈ R(K , C)}

as f (S ∩ C ) = S ∩ (C ⊕ K ) for every C ∈ C. Observe that

f (S ∩ C ) = S ∩ (C ⊕ K ) = (S ∩ C )⊕ (S ∩ K ).

Thus, if f (S ∩ C1) = f (S ∩ C2), the equality

(S ∩ C1)⊕ (S ∩ K ) = (S ∩ C2)⊕ (S ∩ K )

implies (S ∩ C1) = (S ∩ C2), so f is a bijections. Therefore, C shatters the
set S if and only if R(K , C) shatters that set.
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A Further Refinement

For ǫ > 0 define

Rǫ(C , C) = {C ⊕ D | D ∈ C and P(C ⊕ D) > ǫ},

where P is a fixed probability on P(U).

Definition

A set S is an ǫ-net on for R(C , C) if for every R ∈ Rǫ(C , C) we have
S ∩ R 6= ∅.
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Example

Let U = [0, 1], P be the uniform distribution on U and assume that C is

C = {∅} ∪ {[x , y ] | x , y ∈ [0, 1]}.

If C = ∅, then R(C , C) = C.
For any interval I included in [0, 1], P(I ) is the length of I .
The set of points

S =

{
nǫ
∣∣∣1 6 n 6

⌈1
ǫ

⌉}

is an ǫ-net for R(∅, C) because the distance between two consecutive
points of S is ǫ, [x , y ] ∈ Rǫ(∅, C) implies P([x , y ]) > ǫ (and thus,
y − x > ǫ), so S ∩ [x , y ] 6= ∅.
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Theorem

If a sample s forms an ǫ-net for R(C , C), and a learning algorithm produces

a hypothesis H ∈ C that is consistent with s, then this hypothesis must

have an error less than ǫ.

Proof: Note that H ⊕ C ∈ Rǫ(C , C) because H was not hit by S and S is
a ǫ-net for R(C , C), so we must have H ⊕ C 6∈ Rǫ(C , C) and therefore,
err(H) 6 ǫ.
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An NP-Complete Problem

The Graph 3-Coloring Problem: (G3CP) Given an graph G = (V ,E ),
where V = {1, . . . , n} is the vertex set and E ⊆ V × V is the edge set,
determine if there exists a function f : V −→ {c1, c2, c3} such that for
every edge (i , j) ∈ E , f (i) 6= f (j).
This is an NP-complete problem, so a computationally intractable problem.
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An Instance of G3CP

(Kearns and Vazirani)
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3DNF Formulas

3DNF formulas are disjunctions of three monomials

φ = µ1 ∨ µ2 ∨ µ3,

where µi ∈ MONn for 1 6 i 6 3.
The size of a formula φ is no larger than 6n.
Claim: The graph G is 3-colorable if and only if SG = S+

G ∪ S−1
G is

consistent with some 3DNF formula.
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Claim Justification
Suppose that G is 3-colorable and choose a coloring of G.
Let τK be a monomial that corresponds to the color K : τK is the
conjunction of the variables that correspond to vertices not colored by K .
Thus,

τR = x2x3x4x5, τB = x1x3x6, τG = x1x2x4x5x6.
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Every positive example
in S+

G satisfies one of
the formulas τK .
No negative example
in S−

G satisfies any of
the formulas τK .
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Claim Justification (cont’d)

Suppose that τR ∨ τBτG is consistent with SG . Define a coloring as
follows: the color of i is K if v(i) satisfies TK (for K ∈ {R ,B ,G}) and is
chosen arbitrary if more than one monomial is satisfied among the colors
that correspond to these monomials.

This is a legal coloring: if i and j are assigned the same color, say R,
then both v(i), v(j) satisfy τR . Since the i th bit of v(i) is 0 and the
i th bit of vj is 1 it follows that neither xi not xi can appear in τR .
Since v(j) and e(i , j) differ only in their i th bits, if v(j) satisfies τR ,
then so does e(i , j), implying that e(i , j) 6∈ S−

G , so (i , j) 6∈ E .
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Structural Risk Minimization

Find a hypothesis H for which one can guarantee the lowest probability of
error for a given training sample

s = ((x1, y1), . . . , (sm, ym))

err(H) 6 widehaterr(H) + O

(
d ln n

d
− ln δ

m

)
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You should consult referrences [2] and [3] and [1].
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