Probably Approximately Correct Learning - III

Prof. Dan A. Simovici

UMB

A property of the hypothesis space

Aim: a property of the hypothesis space $\mathcal H$ that ensures that every consistent algorithm $\mathcal L$ that learns a hypothesis $H \in \mathcal H$ is PAC. $\mathcal L$ is consistent if given any training sample $\mathbf s$, $\mathcal L$ produces a hypothesis that is consistent with $\mathbf s$.

Let $\mathcal{H}[\mathbf{s}]$ the set of hypothesis consistent with \mathbf{s} .

Let T be a target concept. The set of ϵ -bad hypotheses is

$$B_{\epsilon} = \{ H \in \mathcal{H} \mid P(T \oplus H) \geqslant \epsilon \}.$$

A consistent \mathcal{L} produces an output in $\mathcal{H}[\mathbf{s}]$ starting from \mathbf{s} and the PAC property requires that it is unlikely that $H = \mathcal{L}[\mathbf{s}]$ is ϵ -bad.

Potential Learnability

Definition

A hypothesis space \mathcal{H} is potentially learnable if, given real numbers δ and ϵ , there is a positive integer $m_0(\delta, \epsilon)$ such that whenever $m \geqslant m_0(\delta, \epsilon)$

$$P(\mathbf{s} \in S(m, T) \mid H[s] \cap B_{\epsilon} = \emptyset) > 1 - \delta,$$

for any probability distribution P.

Theorem

If $\mathcal H$ is potentially learnable and $\mathcal L$ is a consistent learning algorithm, then $\mathcal L$ is PAC.

Proof: the proof is immediate because if \mathcal{L} is consistent, $\mathcal{L}[\mathbf{s}] \in \mathcal{H}[\mathbf{s}]$. Thus, the condition $\mathcal{H}[\mathbf{s}] \cap B_{\epsilon} = \emptyset$ implies that the error of $\mathcal{L}[\mathbf{s}]$ is less than ϵ , as required for PAC learning.

Theorem

Every finite hypothesis space is potentially learnable.

Proof: Suppose that \mathcal{H} is a finite hypothesis space and let δ, ϵ, C and P are given. We prove that $P(\mathcal{H}[\mathbf{s}] \cap B_{\epsilon} \neq \emptyset)$ can be made less than δ by choosing m sufficiently large.

By the definition of B_{ϵ} it follows that for every $H \in B_{\epsilon}$:

$$P(\mathbf{x} \mid H(\mathbf{x}) = C(\mathbf{x})) \leqslant 1 - \epsilon.$$

Thus,

$$P(\mathbf{s} \mid H(\mathbf{x}_i) = C(\mathbf{x}_i) \text{ for } 1 \leqslant i \leqslant m) \leqslant (1 - \epsilon)^m.$$

This is the probability that one ϵ -bad hypothesis is in $\mathcal{H}[\mathbf{s}]$.

Proof (cont'd)

There is some ϵ -bad hypothesis in $\mathcal{H}[\mathbf{s}]$ iff there exists \mathbf{s} such that $\mathcal{H}[\mathbf{s}] \cap B_{\epsilon} \neq \emptyset$. Therefore, the probability of the existence of such a hypothesis is $P(\{\mathbf{s} \mid \mathcal{H}[\mathbf{s}] \cap B_{\epsilon})$ is less than $|\mathcal{H}|(1-\epsilon)^m$. To have $|\mathcal{H}|(1-\epsilon)^m < \delta$ we must have

$$|\mathcal{H}|(1-\epsilon)^m < |\mathcal{H}|e^{-\epsilon m} < |\mathcal{H}|e^{\ln \frac{\delta}{|\mathcal{H}|}}$$

because $\delta = |\mathcal{H}|e^{\ln \frac{\delta}{|\mathcal{H}|}}$. Thus,

$$-\epsilon m < \ln \frac{\delta}{|\mathcal{H}|},$$

so $m>rac{1}{\epsilon}\lnrac{\delta}{|\mathcal{H}|}$, or

$$m\geqslant \Big\lceil rac{1}{\epsilon} \ln rac{\delta}{|\mathcal{H}|} \Big
ceil.$$

Observations

- the algorithm for learning monomials is PAC (hypothesis space has 3ⁿ elements);
- practical limitations exists even for finite spaces; for example, there
 are 2²ⁿ Boolean functions, so the bound for the sample length is

$$\left\lceil \frac{2^n}{\epsilon} \ln \frac{2}{\delta} \right\rceil$$
;

ullet even for applications of moderate size (say n=50) this is enormous!

A decision list is a sequence of pairs $L = ((f_1, c_1), \ldots, f_r), (f_r, c_r))$ and a bit c, where $f_i : \{0, 1\}^n \longrightarrow \{0, 1\}$ for $1 \le i \le n$ and $c_i \in \{0, 1\}$. The Boolean function defined by L is evaluated as shown below:

if
$$f_1(\mathbf{x}) = 1$$
 then set $f(\mathbf{x}) = c_1$ else if $f_2(\mathbf{x}) = 1$ then set $f(\mathbf{x}) = c_2$ \vdots else if $f_r(\mathbf{x}) = 1$ then set $f(\mathbf{x}) = c_r$ else set $f(\mathbf{x}) = c$.

Given $\mathbf{x} \in \{0,1\}^n$ we evaluate $f_1(\mathbf{x})$. If $f_1(\mathbf{x}) = 1$, $f(\mathbf{x})$ has the value c_1 . Otherwise, $f_2(\mathbf{x})$ is evaluated, etc.

If $K = (f_1, ..., f_r)$ is a sequence of Boolean functions we denote by DL(K) the set of decision lists on K.

The value of the function defined by a decision list $((f_1, c_1), \dots, (f_r, c_r)), c$ is

$$f(\mathbf{x}) = egin{cases} c_j & ext{if } j = \min\{i \mid f_i(\mathbf{x}) = 1\} \text{ exists} \\ c & ext{otherwise.} \end{cases}$$

There is no loss of generality in assuming that all functions f_i are distinct, so the length of a decision list is at most |K|.

Example

If $K = MON_{3,2}$, the set of monomials of length at most 2 in 3 variables, then the decision list

$$((u_2,1),(u_1\bar{u}_3,0),(\bar{u}_1,1)),0$$

operates as follows:

- those examples for which u_2 is satisfied are assigned 1: 010, 011, 110, 111;
- the examples for which $u_1\bar{u}_3$ is satisfied are assigned 0: the only remaining example is 100;
- the remaining examples for which \bar{u}_1 is satisfied are assigned 1: 000, 011; the remaining example, 101 is assigned 0.

Example

Let $K = (f_1, f_2)$. The decision list $((f_1, 1), (f_2, 1)), 0$ defines the function $f_1 \vee f_2$.

A Consistent Algorithm for Decision Lists

Algorithm 2.1: A Consistent Algorithm for Decision Lists **Data**: A sample $\mathbf{s} = ((\mathbf{x}_1, b_1), \dots, (\mathbf{x}_m, b_m))$, a sequence of Boolean functions $K = (g_1, \dots, g_r)$ and a training sample Result: A decision list 1 let $I = \{1, \ldots, m\}$; 2 let i = 1; 3 repeat if for all $i \in I$, $g_i(\mathbf{x}_i) = 1$ implies $b_i = c$ for a fixed bit c then select (g_i, c) to include in the decision list; delete from I all i for which $g_i(\mathbf{x}_i) = 1$; i = 1; else i = i+1: end 1 until $I=\emptyset$: 2 return decision list;

6

9

Example

 $K = M_{5,2}$ is listed in lexicographic order based on the ordering

$$u_1, \bar{u}_1, u_2, \bar{u}_2, u_3, \bar{u}_3, u_4, \bar{u}_4, u_5, \bar{u}_5.$$

The first few entries in the list are

$$(), (u_1), (u_1u_2), (u_1\bar{u}_2), (u_1u_3), \ldots$$

Note that $(u_1\bar{u}_1)$ is not included.

Training sample **s** is:

$$(\mathbf{x}_1 = 10000, b_1 = 0), (\mathbf{x}_2 = 01110, b_2 = 0), (\mathbf{x}_3 = 11000, b_3 = 0), (\mathbf{x}_4 = 10101, b_4 = 1), (\mathbf{x}_5 = 01100, b_5 = 1), (\mathbf{x}_6 = 10111, b_6 = 1).$$

$$(\mathbf{x}_1 = 10000, b_1 = 0), (\mathbf{x}_2 = 01110, b_2 = 0), (\mathbf{x}_3 = 11000, b_3 = 0), (\mathbf{x}_4 = 10101, b_4 = 1), (\mathbf{x}_5 = 01100, b_5 = 1), (\mathbf{x}_6 = 10111, b_6 = 1).$$

```
I = \{1, 2, 3, 4, 5, 6\} ()
                                 no: all examples satisfy but some have 0 and others 1
(u_1, 0)
                                 no: both x1 and x4 satisfy it but have distinct bis
                                 ves: this is satisfied only by x_3, so add (u_1 u_2, 0) and delete 3
(u_1 u_2, 0)
(u_1 \bar{u}_2)
                                 ves: delete x_4 and x_6 and add (u_1 u_3, 1)
(u_1 u_2, 1)
(u_1 \bar{u}_3)
                                 yes: delete x_1 and add (u_1, 0)
(u_1, 0)
(\overline{u}_1 u_A, 0)
                                 ves: delete x_3 and add (\bar{u}_1 u_A, 0)
((), 1)
                                 ves: delete x and add 0
```

The resulting decision list:

$$((u_1u_2),0),((u_1u_3),1),((u_1),0),((\bar{u}_1u_4),0),((),0),0$$

Claim: when we are given a sample **s** for a target concept in DL(K), then there is always a pair (g, c) which has the required properties.

Theorem

Let K be a sequence of Boolean function that contains the constant function of 1. If $f \in DL(K)$ and S is a finite sample. There exists $g \in K$ and $c \in \{0,1\}$ such that

- the set $S^g = \{ \mathbf{x} \text{ in } S \mid g(\mathbf{x}) = 1 \}$ is not empty;
- for all $\mathbf{x} \in S^g$, $f(\mathbf{x}) = c$.

Proof: Since $f \in DL(K)$ there is a representation of f as a decision list $((f_1, c_1), \ldots, (f_r, c_r)), c.$

If $f_i(\mathbf{x}) = 0$ for all \mathbf{x} in S and all $i, 1 \le i \le r$, then all examples of S are negative examples of f. In this case we take g to be the constant function 1 and c=0.

If there is i such that $\{\mathbf{x} \mid f_i(\mathbf{x}) = 1\} \neq \emptyset$ let $q = \min\{i \mid f_i(\mathbf{x}) = 1\}$.

Then, $f(\mathbf{x}) = c_a$ for all \mathbf{x} such that $f_a(\mathbf{x}) = 1$. Select $g = f_a$ and $c = c_a$.

Thus, given a training example for $f \in DL(K)$, there is a suitable choice of a pair (g, c) for the first term in the decision list.

We followed here the paper [2] and the monograph [1].

M. Anthony and N. Biggs.

Computational Learning Theory.

Cambridge University, Cambridge, 1997.

R. L. Rivest.

Learning decision lists.

Machine Learning, 2:229-246, 1987.