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A property of the hypothesis space

Aim : a property of the hypothesis space H that ensures that every
consistent algorithm L that learns a hypothesis H ∈ H is PAC.
L is consistent if given any training sample s, L produces a hypothesis
that is consistent with s.
Let H[s] the set of hypothesis consistent with s.
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Let T be a target concept. The set of ε-bad hypotheses is

Bε = {H ∈ H | P(T ⊕ H) > ε}.

A consistent L produces an output in H[s] starting from s and the PAC
property requires that it is unlikely that H = L[s] is ε-bad.

Prof. Dan A. Simovici (UMB) Probably Approximately Correct Learning - III 3 / 18



Potential Learnability

Definition

A hypothesis space H is potentially learnable if, given real numbers δ and
ε, there is a positive integer m0(δ, ε) such that whenever m > m0(δ, ε)

P(s ∈ S(m,T ) | H[s] ∩ Bε = ∅) > 1 − δ,

for any probability distribution P .
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Theorem

If H is potentially learnable and L is a consistent learning algorithm, then

L is PAC.

Proof: the proof is immediate because if L is consistent, L[s] ∈ H[s].
Thus, the condition H[s] ∩ Bε = ∅ implies that the error of L[s] is less
than ε, as required for PAC learning.
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Theorem

Every finite hypothesis space is potentially learnable.

Proof: Suppose that H is a finite hypothesis space and let δ, ε,C and P

are given. We prove that P(H[s] ∩ Bε 6= ∅) can be made less than δ by
choosing m sufficiently large.
By the definition of Bε it follows that for every H ∈ Bε:

P(x | H(x) = C (x)) 6 1 − ε.

Thus,
P(s | H(xi ) = C (xi ) for 1 6 i 6 m) 6 (1 − ε)m.

This is the probability that one ε-bad hypothesis is in H[s].
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Proof (cont’d)

There is some ε-bad hypothesis in H[s] iff there exists s such that
H[s] ∩ Bε 6= ∅. Therefore, the probability of the existence of such a
hypothesis is P({s | H[s] ∩ Bε) is less than |H|(1 − ε)m.
To have |H|(1 − ε)m < δ we must have

|H|(1 − ε)m < |H|e−εm < |H|e
ln δ

|H|

because δ = |H|e
ln δ

|H| . Thus,

−εm < ln
δ

|H|
,

so m > 1
ε
ln δ

|H| , or

m >

⌈1

ε
ln

δ

|H|

⌉

.
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Observations

the algorithm for learning monomials is PAC (hypothesis space has 3n

elements);
practical limitations exists even for finite spaces; for example, there
are 22n

Boolean functions, so the bound for the sample length is

⌈2n

ε
ln

2

δ

⌉

;

even for applications of moderate size (say n = 50) this is enormous!
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A decision list is a sequence of pairs L = ((f1, c1), . . . , fr ), (fr , cr )) and a
bit c , where fi : {0, 1}n −→ {0, 1} for 1 6 i 6 n and ci ∈ {0, 1}.
The Boolean function defined by L is evaluated as shown below:

if f1(x) = 1 then set f (x) = c1

else if f2(x) = 1 then set f (x) = c2
...

else if fr (x) = 1 then set f (x) = cr

else set f (x) = c .

Given x ∈ {0, 1}n we evaluate f1(x). If f1(x) = 1, f (x) has the value c1.
Otherwise, f2(x) is evaluated, etc.
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If K = (f1, . . . , fr ) is a sequence of Boolean functions we denote by DL(K )
the set of decision lists on K .
The value of the function defined by a decision list ((f1, c1), . . . , (fr , cr )), c
is

f (x) =

{

cj if j = min{i | fi(x) = 1} exists

c otherwise.

There is no loss of generality in assuming that all functions fi are distinct,
so the length of a decision list is at most |K |.
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Example

If K = MON3,2, the set of monomials of length at most 2 in 3 variables,
then the decision list

((u2, 1), (u1ū3, 0), (ū1, 1)), 0

operates as follows:
those examples for which u2 is satisfied are assigned 1:
010, 011, 110, 111;
the examples for which u1ū3 is satisfied are assigned 0: the only
remaining example is 100;
the remaining examples for which ū1 is satisfied are assigned 1:
000, 011; the remaining example, 101 is assigned 0.
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Example

Let K = (f1, f2). The decision list ((f1, 1), (f2, 1)), 0 defines the function
f1 ∨ f2.
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A Consistent Algorithm for Decision Lists

Algorithm 2.1: A Consistent Algorithm for Decision Lists

Data: A sample s = ((x1, b1), . . . , (xm, bm)), a sequence of Boolean
functions K = (g1, . . . , gr ) and a training sample

Result: A decision list
let I = {1, . . . ,m};1

let j = 1;2

repeat3

if for all i ∈ I , gj (xi) = 1 implies bi = c for a fixed bit c then4

select (gj , c) to include in the decision list;5

delete from I all i for which gj (xi ) = 1;6

j = 1;7

else8

j = j+1;9

end10

until I = ∅ ;11

return decision list;12
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Example

K = M5,2 is listed in lexicographic order based on the ordering

u1, ū1, u2, ū2, u3, ū3, u4, ū4, u5, ū5.

The first few entries in the list are

(), (u1), (u1u2), (u1ū2), (u1u3), . . .

Note that (u1ū1) is not included.
Training sample s is:

(x1 = 10000, b1 = 0), (x2 = 01110, b2 = 0), (x3 = 11000, b3 = 0),
(x4 = 10101, b4 = 1), (x5 = 01100, b5 = 1), (x6 = 10111, b6 = 1).
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(x1 = 10000, b1 = 0), (x2 = 01110, b2 = 0), (x3 = 11000, b3 = 0),
(x4 = 10101, b4 = 1), (x5 = 01100, b5 = 1), (x6 = 10111, b6 = 1).

I = {1, 2, 3, 4, 5, 6} () no: all examples satisfy but some have 0 and others 1
(u1, 0) no: both x1 and x4 satisfy it but have distinct bi s
(u1u2, 0) yes: this is satisfied only by x3 , so add (u1u2, 0) and delete 3
(u1ū2) no
(u1u3, 1) yes: delete x4 and x6 and add (u1u3, 1)
(u1ū3) no:

.

.

.

.

.

.
(u1, 0) yes: delete x1 and add (u1, 0)

.

.

.

.

.

.
(ū1u4, 0) yes: delete x3 and add (ū1u4, 0)
((), 1) yes: delete x5 and add 0
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The resulting decision list:

((u1u2), 0), ((u1u3), 1), ((u1), 0), ((ū1u4), 0), ((), 0), 0

Claim: when we are given a sample s for a target concept in DL(K ), then
there is always a pair (g , c) which has the required properties.
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Theorem

Let K be a sequence of Boolean function that contains the constant

function of 1. If f ∈ DL(K ) and S is a finite sample. There exists g ∈ K

and c ∈ {0, 1} such that

the set Sg = {x in S | g(x) = 1} is not empty;

for all x ∈ Sg , f (x) = c.
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Proof: Since f ∈ DL(K ) there is a representation of f as a decision list
((f1, c1), . . . , (fr , cr )), c .
If fi (x) = 0 for all x in S and all i , 1 6 i 6 r , then all examples of S are
negative examples of f . In this case we take g to be the constant function
1 and c = 0.
If there is i such that {x | fi(x) = 1} 6= ∅ let q = min{i | fi(x) = 1}.
Then, f (x) = cq for all x such that fq(x) = 1. Select g = fq and c = cq.
Thus, given a training example for f ∈ DL(K ), there is a suitable choice of
a pair (g , c) for the first term in the decision list.
We followed here the paper [2] and the monograph [1].
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