PERCEPTRONS

Prof. Dan A. Simovici

UMB

Prof. Dan A. Simovici (UMB)

PERCEPTRONS

Э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Prof. Dan A. Simovici (UMB)

2 / 25

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三里 - のへぐ

General Framework for Linear Classifiers

- $X \subseteq \mathbb{R}^n$ is the input space and Y is the output domain;
- - $Y = \{1, 2, \dots, m\}$ for *m*-class classification;
 - $Y \subseteq \mathbb{R}$ for regression;
- A training sequence is a sequence

$$S = \left(\begin{pmatrix} \mathbf{x}_1 \\ y_1 \end{pmatrix}, \dots, \begin{pmatrix} \mathbf{x}_\ell \\ y_\ell \end{pmatrix}
ight),$$

where $\mathbf{x}_i \in X$ are examples or instances, and $y_i \in Y$ are the labels.

Points and Hyperplanes

Let $\mathbf{w}'\mathbf{x} + b = 0$ be a hyperplane H in \mathbb{R}^n . The vector \mathbf{w} is orthogonal to H, so the line that passes through \mathbf{x}_0 and is orthogonal to the hyperplane is

 $\mathbf{x} - \mathbf{x}_0 = a\mathbf{w}$.

The intersection of this line with the hyperplane is $\mathbf{w}'(\mathbf{x}_0 + a\mathbf{w}) + b = 0$, so

$$\mathsf{a} = -rac{\mathsf{w}' \mathsf{x}_0 + b}{\parallel \mathsf{w} \parallel^2}.$$

ヘロト 人間ト 人間ト 人間ト

Points and Hyperplanes

The projection of \mathbf{x}_0 on the hyperplane H given by $\mathbf{w}'\mathbf{x} + b = 0$ is

$$\mathbf{z} = \mathbf{x}_0 - \frac{\mathbf{w}'\mathbf{x}_0 + b}{\parallel \mathbf{w} \parallel^2} \mathbf{w}$$

and the distance from \mathbf{x}_0 to H is $\frac{|\mathbf{w}'\mathbf{x}_0+b|}{||\mathbf{w}||}$. When $||\mathbf{w}|| = 1$ this distance is $|\mathbf{w}'\mathbf{x}_0 + b|$. The two half-spaces determined by H are characterized by $\mathbf{w}'\mathbf{x} + b > 0$ and by $\mathbf{w}'\mathbf{x} + b < 0$.

Prof. Dan A. Simovici (UMB)

Learning using Perceptrons

Perceptrons were introduced in [4] as models of learning in the brain. A training sequence

$$S = \left(\begin{pmatrix} \mathsf{x}_1 \\ y_1 \end{pmatrix}, \dots, \begin{pmatrix} \mathsf{x}_\ell \\ y_\ell \end{pmatrix}
ight)$$

is linearly separable if there exists a hyperplane $\mathbf{w'x} + b = 0$ such that $\mathbf{w'x}_i + b \ge 0$ if $y_i = 1$ and $\mathbf{w'x}_i + b < 0$ if $y_i = -1$.

イロト 不得 トイヨト イヨト

Linearly Separable vs. Unseparable Data

Task of Learning algorithm (perceptron): find a hyperplane for a linearly separable data set.

Features of the Learning Algorithm

- a hyperplane H defined by $f(\mathbf{x}) = \mathbf{w}'\mathbf{x} + b = 0$;
- w is the weight vector and b is the bias;
- if f(x) ≥ 0, x is a positive example; otherwise, it is a negative example;
- the radius of a ball centered in **0** that includes all examples is $R = \max\{\|\mathbf{x}_i\| \mid 1 \leq i \leq \ell\};$
- the functional margin of $\begin{pmatrix} \mathbf{x}_i \\ y_i \end{pmatrix}$ relative to the hyperplane $\mathbf{w}'\mathbf{x} + b = 0$ is $\gamma_i = y_i(\mathbf{w}'\mathbf{x}_i + b)$; $\gamma = min\gamma_i$ is the margin of the hyperplane Hrelative to S;
- if y_i and $\mathbf{w}'\mathbf{x}_i + b$ have the same sign, then $\begin{pmatrix} \mathbf{x}_i \\ y_i \end{pmatrix}$ is classified correctly $(\gamma_i > 0)$; otherwise, is incorrectly classified $(\gamma_i \leq 0)$.

(日) (圖) (E) (E) (E)

Algorithm Perceptron(S, η)

Algorithm 1.1: Learning Algorithm for Perceptron **Data**: labelled training sequence S and learning rate η **Result**: weight vector **w** and parameter b defining classifier 1 initialize $\mathbf{w} = \mathbf{0}, \ b_0 = 0, \ k = 0;$ 2 $R = \max\{ \| \mathbf{x}_i \| \mid 1 \leq i \leq \ell \};$ 3 repeat for i = 1 to ℓ do 4 if $y_i(\mathbf{w}'_k\mathbf{x}_i + b_k) \leq 0$ then 5 6 $\mathbf{w}_{k+1} = \mathbf{w}_k + \eta \mathbf{y}_i \mathbf{x}_i;$ $b_{k+1} = b_k + nv_i R^2$: 7 k = k + 1: 8 end 9 end 0 1 **until** no mistakes are made in the for loop ; 2 return k, (\mathbf{w}_k, b_k) where k is the number of mistakes;

< 回 > < 三 > < 三 >

Rosenblatt-Novikoff Theorem

(variant of Cristianini and Shawe-Taylor [1] of Novikoff's Proof [3])

Theorem

Let $S = \left(\begin{pmatrix} \mathbf{x}_1 \\ y_1 \end{pmatrix}, \dots, \begin{pmatrix} \mathbf{x}_\ell \\ y_\ell \end{pmatrix} \right)$ be a non-trivial training sequence that is linearly separable, and let $R = \max\{ \| \mathbf{x}_i \| \mid 1 \leq i \leq \ell \}$. Suppose there exists an optimal weight vector \mathbf{w}_{opt} and an optimal bias b_{opt} such that

$$\parallel \mathbf{w}_{opt} \parallel = 1 \text{ and } y_i(\mathbf{w}_{opt}'\mathbf{x}_i + b_{opt}) \geqslant \gamma,$$

for $1 \leq i \leq \ell$. The, the number of mistakes made by the algorithm is at most

$$\left(\frac{2R}{\gamma}\right)^{2}$$

Proof

Let

• t be the update counter;

and let

$$\hat{\mathbf{w}} = egin{pmatrix} \mathbf{w} \ rac{b}{R} \end{pmatrix}$$
 and $\hat{\mathbf{x}}_i = egin{pmatrix} \mathbf{x}_i \ R \end{pmatrix}$

for $1 \leq i \leq \ell$.

The algorithm begins with an augmented vector $\hat{\bm{w}}_0 = \bm{0}$ and updates it at each mistake.

Let \hat{w}_{t-1} be the augmented weight vector prior to the $t^{\rm th}$ mistake. The $t^{\rm th}$ update is performed when

$$y_i \hat{\mathbf{w}}_{t-1}' \hat{\mathbf{x}}_i = y_i (\mathbf{w}_{t-1}' \mathbf{x}_i + b_{t-1}) \leqslant 0,$$

where (\mathbf{x}_i, y_i) is the example incorrectly classified by

$$\hat{\mathbf{w}}_{t-1} = \begin{pmatrix} \mathbf{w}_{t-1} \\ \frac{b_{t-1}}{R} \end{pmatrix}.$$

< 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The update is

$$\hat{\mathbf{w}}_{t} = \begin{pmatrix} \mathbf{w}_{t} \\ \frac{b_{t}}{R} \end{pmatrix} = \begin{pmatrix} \mathbf{w}_{t-1} + \eta y_{i} \mathbf{x}_{i} \\ \frac{b_{t-1} + \eta y_{i} \mathbf{x}_{i}}{R} \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{w}_{t-1} + \eta y_{i} \mathbf{x}_{i} \\ \frac{b_{t-1}}{R} + \eta y_{i} R \end{pmatrix} = \begin{pmatrix} \mathbf{w}_{t-1} \\ \frac{b_{t-1}}{R} \end{pmatrix} + \begin{pmatrix} \eta y_{i} \mathbf{x}_{i} \\ \eta y_{i} R \end{pmatrix}$$

$$= \hat{\mathbf{w}}_{t-1} + \eta y_{i} \hat{\mathbf{x}}_{i},$$

where we used the fact that $b_t = b_{t-1} + \eta y_i R^2$. By hypothesis, we have

$$y_i \hat{\mathbf{w}}'_{opt} \hat{\mathbf{x}}_i = y_i \left(\mathbf{w}'_{opt} \ \frac{b}{R} \right) \begin{pmatrix} \mathbf{x}_i \\ R \end{pmatrix} = y_i (\mathbf{w}'_{opt} \mathbf{x}_i + b) \ge \gamma,$$

which implies

$$\hat{\mathbf{w}}_{opt}'\hat{\mathbf{w}}_t = \hat{\mathbf{w}}_{opt}'\hat{\mathbf{w}}_{t-1}' + \eta y_i \hat{\mathbf{w}}_{opt}'\hat{\mathbf{x}}_i \geqslant \hat{\mathbf{w}}_{opt}'\hat{\mathbf{w}}_{t-1} + \eta \gamma.$$

3

(4月) (4日) (4日)

By repeated application of the inequality $\hat{\mathbf{w}}'_{opt}\hat{\mathbf{w}}_t \ge \eta \gamma$ we obtain

 $\hat{\mathbf{w}}_{opt}'\mathbf{w}_t \ge t\eta\gamma.$

Since $\hat{\mathbf{w}}_t = \hat{\mathbf{w}}_{t-1} + \eta y_i \hat{\mathbf{x}}_i$, we have

$$\begin{aligned} \| \, \hat{\mathbf{w}}_t \, \|^2 &= \, \hat{\mathbf{w}}_t' \hat{\mathbf{w}}_t = (\hat{\mathbf{w}}_{t-1}' + \eta y_i \hat{\mathbf{x}}_i') (\hat{\mathbf{w}}_{t-1} + \eta y_i \hat{\mathbf{x}}_i) \\ &= \, \| \, \hat{\mathbf{w}}_{t-1} \, \|^2 + 2\eta y_i \hat{\mathbf{w}}_{t-1}' \hat{\mathbf{x}}_i + \eta^2 \, \| \, \hat{\mathbf{x}}_i \, \|^2 \\ &\quad \text{(because } y_i \hat{\mathbf{w}}_{t-1}' \hat{\mathbf{x}}_i \leqslant 0 \text{ when an update occurs)} \\ &\leqslant \, \| \, \hat{\mathbf{w}}_{t-1} \, \|^2 + \eta^2 \, \| \, \hat{\mathbf{x}}_i \, \|^2 \\ &\leqslant \, \| \, \hat{\mathbf{w}}_{t-1} \, \|^2 + \eta^2 (\| \, \mathbf{x}_i \, \|^2 + R^2) \\ &\leqslant \, \| \, \hat{\mathbf{w}}_{t-1} \, \|^2 + 2\eta^2 R^2, \end{aligned}$$

which implies $\| \hat{\mathbf{w}}_t \|^2 \leq 2t\eta^2 R^2$.

イロト 不得下 イヨト イヨト 二日

By combining the inequalities

$$\hat{\mathbf{w}}'_{opt}\mathbf{w}_t \geqslant t\eta\gamma$$
 and $\parallel \hat{\mathbf{w}}_t \parallel^2 \leqslant 2t\eta^2 R^2$

we have

$$\| \hat{\mathbf{w}}_{opt} \| \sqrt{2t} \eta R \ge \| \hat{\mathbf{w}}_{opt} \| \| \hat{\mathbf{w}}_t \| \ge \hat{\mathbf{w}}_{opt}' \hat{\mathbf{w}}_t \ge t \eta \gamma,$$

which implies

$$t \leqslant 2 \left(rac{R}{\gamma}
ight)^2 \parallel \hat{\mathbf{w}}_{opt} \parallel^2 \leqslant \left(rac{2R}{\gamma}
ight)^2$$

because $b_{opt} \leq R$ for a non-trivial separation of data and hence

$$\parallel \hat{\mathbf{w}}_{opt} \parallel^2 \leq \parallel \mathbf{w}_{opt} \parallel^2 +1 = 2.$$

3

ヘロト 人間 ト 人 ヨ ト 一

Definition

Let $\gamma > 0$. The margin slack variable of an example (\mathbf{x}_i, y_i) with respect to a hyperplane H given by $\mathbf{w}'\mathbf{x} + b = 0$ and the target margin γ is

$$\xi((\mathbf{x}_i, y), H, \gamma) = \xi_i = \max\{0, \gamma - y_i(\mathbf{w}'\mathbf{x}_i + b)\}$$

- ξ_i measures how much a point fails to have a margin of γ from H; in any case, ξ_i ≥ γ − y_i(w'x_i + b), or y_i(w'x_i + b) + ξ_i ≥ γ;
- if $\xi_i > \gamma$, then \mathbf{x}_i is missclassified by H;
- the norm || ξ || measures the amount by which the training sequence fails to have margin γ;
- points that are correctly classfied have their margin slack variable equal to 0.

・ロト ・四ト ・ヨト ・

The size of the margin slack variables for two missclassified examples for a hyperplane.

Remaining points have their slack variable equal to 0 since they have a margin larger than $\gamma.$

Freund-Shapire Theorem

Theorem

Let S be a non-trivial training sequence with no duplicate examples which is included in the ball $B(\mathbf{0}, R)$. If H is a hyperplane $\mathbf{w}'\mathbf{x} + b = 0$ with $\|\mathbf{w}\| = 1$ and $\gamma > 0$, let

$$D = \parallel \xi \parallel = \sqrt{\sum_{i=1}^{n} \xi_i^2}.$$

The number of mistakes in the first execution of the for loop of the perceptron algorithm is bounded by

$$\left(\frac{2(R+D)}{\gamma}\right)^2$$

(4 間) トイヨト イヨト

Proof

Define a set of extended examples \tilde{X} and an extended weight vector:

$$\tilde{\mathbf{x}}_{i} = \begin{pmatrix} \mathbf{x}_{i} \\ \mathbf{e}_{i}\Delta \end{pmatrix} = \begin{pmatrix} \mathbf{x}_{i} \\ 0 \\ \vdots \\ \Delta \\ \vdots \\ 0 \end{pmatrix} \text{ and } \tilde{\mathbf{w}} = \begin{pmatrix} \mathbf{w} \\ \frac{y_{1}\xi_{1}}{\Delta} \\ \vdots \\ \frac{y_{m}\xi_{m}}{\Delta} \end{pmatrix},$$

where Δ is a parameter. Note that for $\tilde{R} = \max\{\| \mathbf{x}_i \| | 1 \leq i \leq m\}$ we have $\tilde{R}^2 = R^2 + \Delta^2$. Also, $\mathbf{\tilde{w}}'\mathbf{\tilde{x}}_i = \mathbf{w}'\mathbf{x}_i + y_i\xi_i$ and therefore,

$$y_i(\tilde{\mathbf{w}}'\tilde{\mathbf{x}}_i + b) = y_i(\mathbf{w}'\mathbf{x}_i + y_i\xi_i + b)$$

= $y_i(\mathbf{w}'\mathbf{x}_i + b) + y_i^2\xi_i = y_i(\mathbf{w}'\mathbf{x}_i + b) + \xi_i \ge \gamma.$

• the inequality $y_i(\tilde{\mathbf{w}}'\tilde{\mathbf{x}}_i + b) \ge \gamma$ can be written as

$$y_i(rac{1}{\parallel ilde{\mathbf{w}} \parallel} ilde{\mathbf{w}}' ilde{\mathbf{x}}_i + rac{1}{\parallel ilde{\mathbf{w}} \parallel} b) \geqslant rac{\gamma}{\parallel ilde{\mathbf{w}} \parallel};$$

•
$$\| \tilde{\mathbf{w}} \| = \sqrt{\sum_{i=1}^{n} w_i^2 + \frac{D^2}{\Delta^2}} = \sqrt{1 + \frac{D^2}{\Delta^2}};$$

Rosenblatt's theorem can be applied if the norm of the optimal weight vector is 1 and this is case for || w w; therefore, we need to replace the margin by

$$ilde{\gamma} = rac{\gamma}{\parallel ilde{\mathbf{w}} \parallel} = rac{\gamma}{\sqrt{1 + rac{D^2}{\Delta^2}}}.$$

イロト イポト イヨト イヨト

Since he training examples have non-zero entries in different coordinates, running the perceptron algorithm for the first **for** loop on \tilde{X} has the same effect as running it on X, so the number of mistakes is bounded by

$$egin{aligned} &\left(rac{2 ilde{R}}{ ilde{\gamma}}
ight)^2 &= rac{4(R^2+\Delta^2)(1+rac{D^2}{\Delta^2})}{\gamma^2} \ &= rac{4}{\gamma}\left(R^2+D^2+\Delta^2+rac{R^2D^2}{\Delta^2}
ight). \end{aligned}$$

The optimal value is obtained when $\Delta = \sqrt{RD}$, which equals

$$\left(\frac{2(R+D)}{\gamma}\right)^2$$

ヘロト 人間ト 人間ト 人目ト

Remark

- since *D* can be defined for every hyperplane, the Freund-Shapire bound does not assume that the data is linearly separable;
- the perceptron algorithm works by adding missclassified positive examples and by subtracting missclassified negative examples to an initially arbitrary weight vector;
- if the initial weight vector is ${\bf 0}$ the final weight vector is a linear combination of the examples

$$\mathbf{w} = \sum_{i=1}^{\ell} a_i y_i \mathbf{x}_i;$$

a_i are positive values proportional to the number of times missclassifiation of *x_i* triggered updates; *a_i* is the embedding strength of *x_i*.

< ロ > < 同 > < 回 > < 回 > < 回 > <

The decision function is

$$h(\mathbf{x}) = sign(\mathbf{w}'\mathbf{x} + b)$$

= sign $\left(\left(\sum_{i=1}^{\ell} a_i y_i \mathbf{x}_i \right)' \mathbf{x} + b \right)$
= sign $\left(\sum_{i=1}^{\ell} a_i y_i (\mathbf{x}'_i \mathbf{x}) + b \right)$

which allows the expression of the perceptron algorithm in the dual form. Note that the learning rate does not appear in the dual form.

- 4 同 6 4 日 6 4 日 6

The Dual Perceptron Algorithm

Algorithm 1.2: Dual Learning Algorithm for Perceptron **Data**: labelled training sequence S **Result**: vector **a** and parameter b 1 initialize $\mathbf{a} = \mathbf{0}$. b = 0: 2 $R = \max\{ \| \mathbf{x}_i \| \mid 1 \leq i \leq \ell \};$ 3 repeat for i = 1 to ℓ do 4 if $y_i\left(\sum_{j=1}^{\ell}a_jy_j\mathbf{x}_j\mathbf{x}_i+b\right)\leqslant 0$ then 5 6 $a_i = a_i + 1;$ $b = b + v_i R^2$; 7 8 end end 9 0 until no mistakes are made in the for loop ; return **a**, b to define h; 1

- the fact that points that are harder to learn have larger α_is can be used to rank the data according to their information content;
- since the number of updates equals the number of mistakes and each update causes 1 to be added to exactly one of its components, the 1-norm of α satisfies the inequality

$$\| \alpha \|_{1} \leqslant \left(\frac{2R}{\gamma}\right)^{2};$$

this norm can be viewed as a measure of complexity of the target concept;

 the training data enter the algorithm through the matrix G = (x'_ix_j), known as the Gram matrix.

イロト 不得 トイヨト イヨト

Basic papers for perceptrons are [4] and [2]. Recommended references are [1] and [5].

3

イロト イポト イヨト イヨト

 N. Cristianini and J. Shawe-Taylor. Support Vector Machines.
 Cambridge, Cambridge, UK, 2000.

Y. Freund and R. E. Shapire. Large margin classification using the perceptron algorithm. *Machine Learning*, 37:277–296, 1999.

A. B. J. Novikoff.

On convergence proofs on perceptrons. In Proceedings of the Symposium on Mathematical Theory of Automata.

F. Rosenblatt.

The perceptron: A probabilistic model for information storage and organization in the brain.

Psychological Review, 65:386-407, 1958.

J. Shawe-Taylor and N. Cristianini. *Kernel Methods for Pattern Analysis.* Cambridge, Cambridge, UK, 2004.

イロト イポト イヨト イヨト