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General Framework for Linear Classifiers

X ⊆ R
n is the input space and Y is the output domain;

I Y = {−1, 1} for binary classification;
I Y = {1, 2, . . . , m} for m-class classification;
I Y ⊆ R for regression;

A training sequence is a sequence

S =

((

x1

y1

)

, . . . ,

(

x`

y`

))

,

where xi ∈ X are examples or instances, and yi ∈ Y are the labels.
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Points and Hyperplanes

Let w′x + b = 0 be a hyperplane H in R
n. The vector w is orthogonal to

H, so the line that passes through x0 and is orthogonal to the hyperplane is

x− x0 = aw.

The intersection of this line with the hyperplane is w′(x0 + aw) + b = 0, so

a = −w′x0 + b

‖ w ‖2
.
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Points and Hyperplanes
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The projection of x0 on the hyperplane H given by w′x + b = 0 is

z = x0 −
w′x0 + b

‖ w ‖2
w

and the distance from x0 to H is |w′x0+b|
‖w‖ . When ‖ w ‖= 1 this distance is

|w′x0 + b|.
The two half-spaces determined by H are characterized by w′x + b > 0
and by w′x + b < 0.
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Learning using Perceptrons

Perceptrons were introduced in [4] as models of learning in the brain.
A training sequence

S =

((

x1

y1

)

, . . . ,

(

x`

y`

))

is linearly separable if there exists a hyperplane w′x + b = 0 such that
w′xi + b ≥ 0 if yi = 1 and w′xi + b < 0 if yi = −1.
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Linearly Separable vs. Unseparable Data
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Lineraly separable data Lineraly unseparable data

Task of Learning algorithm (perceptron): find a hyperplane for a linearly
separable data set.
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Features of the Learning Algorithm

a hyperplane H defined by f (x) = w′x + b = 0;
w is the weight vector and b is the bias;
if f (x) > 0, x is a positive example; otherwise, it is a negative
example;
the radius of a ball centered in 0 that includes all examples is
R = max{‖ xi ‖ | 1 6 i 6 `};
the functional margin of

(

xi

yi

)

relative to the hyperplane w′x + b = 0

is γi = yi (w
′xi + b); γ = minγi is the margin of the hyperplane H

relative to S ;

if yi and w′xi + b have the same sign, then

(

xi

yi

)

is classified

correctly (γi > 0); otherwise, is incorrectly classified (γi 6 0).
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Algorithm Perceptron(S , η)

Algorithm 1.1: Learning Algorithm for Perceptron
Data: labelled training sequence S and learning rate η

Result: weight vector w and parameter b defining classifier
initialize w = 0, b0 = 0, k = 0;1

R = max{‖ xi ‖ | 1 6 i 6 `};2

repeat3

for i = 1 to ` do4

if yi(w
′
kxi + bk) 6 0 then5

wk+1 = wk + ηyixi ;6

bk+1 = bk + ηyiR
2;7

k = k + 1;8

end9

end10

until no mistakes are made in the for loop ;11

return k, (wk , bk) where k is the number of mistakes;12
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Rosenblatt-Novikoff Theorem

(variant of Cristianini and Shawe-Taylor [1] of Novikoff’s Proof [3])

Theorem

Let S =

((

x1

y1

)

, . . . ,

(

x`

y`

))

be a non-trivial training sequence that is

linearly separable, and let R = max{‖ xi ‖ | 1 6 i 6 `}. Suppose there

exists an optimal weight vector wopt and an optimal bias bopt such that

‖ wopt ‖= 1 and yi (w
′
optxi + bopt) > γ,

for 1 6 i 6 `. The, the number of mistakes made by the algorithm is at

most
(

2R

γ

)2
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Proof
Let

t be the update counter;
and let

ŵ =

(

w
b
R

)

and x̂i =

(

xi

R

)

for 1 6 i 6 `.
The algorithm begins with an augmented vector ŵ0 = 0 and updates it at
each mistake.
Let ŵt−1 be the augmented weight vector prior to the tth mistake. The
tth update is performed when

yi ŵ
′
t−1x̂i = yi(w

′
t−1xi + bt−1) 6 0,

where (xi , yi) is the example incorrectly classified by

ŵt−1 =

(

wt−1
bt−1

R

)

.
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Proof (cont’d)
The update is

ŵt =

(

wt
bt

R

)

=

(

wt−1 + ηyixi

bt−1+ηyiR
2

R

)

=

(

wt−1 + ηyixi
bt−1

R
+ ηyiR

)

=

(

wt−1
bt−1

R

)

+

(

ηyixi

ηyiR

)

= ŵt−1 + ηyi x̂i ,

where we used the fact that bt = bt−1 + ηyiR
2.

By hypothesis, we have

yi ŵ
′
opt x̂i = yi

(

w′
opt

b

R

)(

xi

R

)

= yi (w
′
optxi + b) > γ,

which implies

ŵ′
optŵt = ŵ′

optŵ
′
t−1 + ηyi ŵ

′
opt x̂i > ŵ′

optŵt−1 + ηγ.
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Proof (cont’d)

By repeated application of the inequality ŵ′
optŵt > ηγ we obtain

ŵ′
optwt > tηγ.

Since ŵt = ŵt−1 + ηyi x̂i , we have

‖ ŵt ‖2 = ŵ′
tŵt = (ŵ′

t−1 + ηyi x̂
′
i )(ŵt−1 + ηyi x̂i )

= ‖ ŵt−1 ‖2 +2ηyi ŵ
′
t−1x̂i + η2 ‖ x̂i ‖2

(because yi ŵ
′
t−1x̂i 6 0 when an update occurs)

6 ‖ ŵt−1 ‖2 +η2 ‖ x̂i ‖2

6 ‖ ŵt−1 ‖2 +η2(‖ xi ‖2 +R2)

6 ‖ ŵt−1 ‖2 +2η2R2,

which implies ‖ ŵt ‖26 2tη2R2.
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Proof (cont’d)

By combining the inequalities

ŵ′
optwt > tηγ and ‖ ŵt ‖2

6 2tη2R2

we have

‖ ŵopt ‖
√

2tηR >‖ ŵopt ‖‖ ŵt ‖> ŵ′
optŵt > tηγ,

which implies

t 6 2

(

R

γ

)2

‖ ŵopt ‖2
6

(

2R

γ

)2

because bopt 6 R for a non-trivial separation of data and hence

‖ ŵopt ‖2
6‖ wopt ‖2 +1 = 2.
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Definition

Let γ > 0. The margin slack variable of an example (xi , yi ) with respect to
a hyperplane H given by w′x + b = 0 and the target margin γ is

ξ((xi , y),H, γ) = ξi = max{0, γ − yi (w
′xi + b)}

ξi measures how much a point fails to have a margin of γ from H; in
any case, ξi > γ − yi (w

′xi + b), or yi (w
′xi + b) + ξi > γ;

if ξi > γ, then xi is missclassified by H;
the norm ‖ ξ ‖ measures the amount by which the training sequence
fails to have margin γ;
points that are correctly classfied have their margin slack variable
equal to 0.
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The size of the margin slack variables for two missclassified examples for a
hyperplane.
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Remaining points have their slack variable equal to 0 since they have a
margin larger than γ.
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Freund-Shapire Theorem

Theorem

Let S be a non-trivial training sequence with no duplicate examples which

is included in the ball B(0,R). If H is a hyperplane w′x + b = 0 with

‖ w ‖= 1 and γ > 0, let

D =‖ ξ ‖=

√

√

√

√

n
∑

i=1

ξ2
i .

The number of mistakes in the first execution of the for loop of the

perceptron algorithm is bounded by

(

2(R + D)

γ

)2
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Proof

Define a set of extended examples X̃ and an extended weight vector:

x̃i =

(

xi

ei∆

)

=





















xi

0
...
∆
...
0





















and w̃ =











w
y1ξ1

∆
...

ymξm

∆











,

where ∆ is a parameter. Note that for R̃ = max{‖ x̃i ‖ | 1 6 i 6 m} we
have R̃2 = R2 + ∆2. Also, w̃′x̃i = w′xi + yiξi and therefore,

yi(w̃
′x̃i + b) = yi(w

′xi + yiξi + b)

= yi(w
′xi + b) + y2

i ξi = yi(w
′xi + b) + ξi > γ.

Prof. Dan A. Simovici (UMB) PERCEPTRONS 18 / 25



Proof (cont’d)

the inequality yi(w̃
′x̃i + b) > γ can be written as

yi (
1

‖ w̃ ‖w̃′x̃i +
1

‖ w̃ ‖b) >
γ

‖ w̃ ‖ ;

‖ w̃ ‖=
√

∑n
i=1 w2

i + D2

∆2 =
√

1 + D2

∆2 ;

Rosenblatt’s theorem can be applied if the norm of the optimal
weight vector is 1 and this is case for ‖ w̃ ‖ w̃; therefore, we need to
replace the margin by

γ̃ =
γ

‖ w̃ ‖ =
γ

√

1 + D2

∆2

.
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Proof (cont’d)

Since he training examples have non-zero entries in different coordinates,
running the perceptron algorithm for the first for loop on X̃ has the same
effect as running it on X , so the number of mistakes is bounded by

(

2R̃

γ̃

)2

=
4(R2 + ∆2)(1 + D2

∆2 )

γ2

=
4

γ

(

R2 + D2 + ∆2 +
R2D2

∆2

)

.

The optimal value is obtained when ∆ =
√

RD, which equals

(

2(R + D)

γ

)2

.
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Remark

since D can be defined for every hyperplane, the Freund-Shapire
bound does not assume that the data is linearly separable;
the perceptron algorithm works by adding missclassified positive
examples and by subtracting missclassified negative examples to an
initially arbitrary weight vector;
if the initial weight vector is 0 the final weight vector is a linear
combination of the examples

w =
∑̀

i=1

aiyixi ;

ai are positive values proportional to the number of times
missclassifiation of xi triggered updates; ai is the embedding strength
of xi .
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The decision function is

h(x) = sign(w′x + b)

= sign





(

∑̀

i=1

aiyixi

)′

x + b





= sign

(

∑̀

i=1

aiyi(x
′
ix) + b

)

which allows the expression of the perceptron algorithm in the dual form.
Note that the learning rate does not appear in the dual form.
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The Dual Perceptron Algorithm

Algorithm 1.2: Dual Learning Algorithm for Perceptron
Data: labelled training sequence S

Result: vector a and parameter b

initialize a = 0, b = 0;1

R = max{‖ xi ‖ | 1 6 i 6 `};2

repeat3

for i = 1 to ` do4

if yi

(

∑`
j=1 ajyjx

′
jxi + b

)

6 0 then5

ai = ai + 1;6

b = b + yiR
2;7

end8

end9

until no mistakes are made in the for loop ;10

return a, b to define h;11
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the fact that points that are harder to learn have larger αis can be
used to rank the data according to their information content;
since the number of updates equals the number of mistakes and each
update causes 1 to be added to exactly one of its components, the
1-norm of α satisfies the inequality

‖ α ‖16

(

2R

γ

)2

;

this norm can be viewed as a measure of complexity of the target
concept;
the training data enter the algorithm through the matrix G = (x′ixj),
known as the Gram matrix.
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Basic papers for perceptrons are [4] and [2].
Recommended references are [1] and [5].
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