
EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

EFFICIENT COMPUTING THROUGH RANDOM
ALGORITHMS

Prof. Dan A. Simovici

Doctoral Summer School
Iasi, Romania, June 2013

1 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Outline

1 Random Algorithms

2 Algebra of Polynomials

3 Graph Theoretical Problems

4 Logic Applications

5 Random Graphs

6 Matrix Multiplication

7 A Geometrical Problem

2 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Algorithms

Deterministic vs. Randomized Algorithms

The common paradigm in algorithm design is that of deterministic
algorithm.

For a deterministic algorithm the input completely determines the
sequence of computations performed by the algorithm.
The behavior of random algorithms is determined not only on the
input but also on several random choices.
The same randomized algorithm, given the same input multiple times,
may perform different computations in each invocation.
The running time of a randomized algorithm on a given input is a
random variable.

3 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Algorithms

Deterministic vs. Random Algorithms

Algorithm Algorithm✲ ✲✲ ✲

Input InputOutput Output
✻

Random Numbers

Determininstic Algorithm Random Algorithm

4 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Algorithms

Deterministic vs. Random Algorithm Design

for deterministic algorithms, good behavior means that time
requirements are polynomial in the size of the input;
for random algorithms we need proof that it is highly likely that the
behavior of the algorithm will be good on any input.

5 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Algorithms

Probabilistic Analysis of Algorithms

probabilistic Analysis of algorithms is an entirely distinct pursuit;
random inputs having a given probability distributions are applied;
goal is to show that the algorithm requires polynomial time on most
inputs;

6 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Algorithms

Las Vegas vs. Monte Carlo

A Las Vegas algorithm provides a solution with a probability larger
than 1

2 and never gives an incorrect solution
A Monte Carlo algorithm applies in situations when the algorithm
makes a decision or a classification and provides a yes/no answer; if
the answer is yes, then it confirms it with the probability larger than 1

2 ,
but if the answer is no, the algorithm will never give a definite result.
The failure of the algorithm to return yes in a long series of trials
gives evidence that the answer is no.

7 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Algorithms

Example

Let A be an array on n components, where n ≥ 2; suppose that half of the
components of A are 1s and the other half are 0s. Find an 1 in the array.
Consider the algorithms

LV(A,n)
begin

repeat
randomly select one out of n elements;

until 1 is found
end

MC(A,n,k)
begin

i = 1;
repeat
randomly select one out of n elements;
i = i + 1;

until i == k or an 1 is found;
end

8 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Algorithms

The Las Vegas Algorithm

LV(A,n)
begin

repeat
randomly select one out of n elements;

until an 1 is found;
end

the algorithm succeeds with probability 1;
the algorithm always outputs the correct answer;
the running time is a random variable and arbitrarily large but the
expected running time is finite.

9 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Algorithms

The Monte Carlo Algorithm

MC(A,n,k)
begin

i = 1;
repeat
randomly select one out of n elements;
i = i + 1;

until i == k or an 1 is found;
end

no guarantee of success;
run time is fixed.

10 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Algorithms

The Relationship between LV and MC

a LV algorithm can be converted into a MC algorithm by having it
output an arbitrary (possibly erroneous) output if it fails to complete
under a specified time;
a MC can be converted in a LV algorithm if there exists an efficient
checking the correctness of the answer by repeatedly running the MC
until it produces a correct answer.

11 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Algorithms

Alice Bob

a = a1a2 · · · an b = b1b2 · · · bn

✲
p, Fp(a)

compute Fp (b)

Fp (a) = Fp (b) ?
NO

TRUE FALSE

YES

❄❄

❄❍❍❍❍✟✟✟✟❍❍❍❍
✟✟✟✟

12 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Algorithms

Comparing Binary Strings

Let a = a0a1 · · · an−1 and b = b0b1 · · · bn−1 be two binary strings, where a
is the binary representation of some natural number t.
A Monte Carlo algorithm:

Alice choses a uniformly random random prime p, 2 6 p 6 T , where
t 6 T . The fingerprint of a is Fp(a) = a mod p.
Alice sends Fp(a) and p to Bob.
Bob computes Fp(b). If Bob sees Fa(p) = Fb(p), then the algorithm
outputs TRUE; otherwise, the algorithm outputs FALSE.

13 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Algorithms

There are no false negatives, since a = b implies Fp(a) = Fp(b).
If a 6= b, we may still have Fp(a) = Fp(b), which is a false positive.
We claim that the probability of an error is small.

√

√

FALSE

NEGATIVE

FALSE

POSITIVE

TRUE FALSE

ALGORITHM OUTPUT

a = b

a 6= b

✟✟✟✟✟

14 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Algorithms

Let
prime(x) = |{p | p is prime and p 6 x}|.

Theorem

A non-zero n-bit integer has at most n distinct prime divisors.

Proof: Each prime divisor is at least 2 and the integer is not larger than
2n − 1. By the unique factorization theorem, there are no more than n
prime divisors.

15 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Algorithms

Since |a − b| is a non-zero n-bit integer, there are at most n prime
numbers that divide |a − b|. Therefore, the probability of an error is not
larger than n

prime(T)
.

The prime number theorem states that prime(x) is close to x
ln x as x → ∞.

Thus, the probability of error is less or equal to n lnT
T

.

16 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Algorithms

To limit error choose T = cn ln n. In this case

P(error) 6 n
ln(cn ln n)

cn ln n
=

1

c

(

1 +
ln(cn ln n)

ln n

)

.

Since ln(cn ln n)
ln n = o(1) we have

P(error) =
1

c
+ o(1).

Thus, with c large enough P(error) can be made as small as desired.

17 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Algorithms

Pattern Matching Problem

Problem: Given two input strings X = x0x1 · · · xn−1 and
Y = y0y1 · · · ym−1, is Y a contiguous substring of X?
Equivalent formulation: Is there a j , 1 6 j 6 n −m such that for
X (j ,m) = xjxj+1 · · · xj+m−1, X (j ,m) = Y ?

X

Y

✲✛

✲✛

18 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Algorithms

The Algorithm

regard X and Y as binary integers;
choose a random prime p, where 2 6 p 6 T ;
compute the fingerprints Fp(Y) and Fp(X (j ,m)) for 0 6 j 6 n −m;
if there is some j such that Fp(Y) = Fp(X (j ,m)), then output
MATCH, otherwise output NO MATCH.

19 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Algorithms

there are no false negatives, but there may be false positives, when
strings do not match, but the algorithm returns MATCH;
if X (j ,m) 6= Y for 0 6 j 6 n −m, then, by the union bound,

P(error) 6 n
prime(m)

prime(T)
.

20 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Algorithms

A Tighter Bound

if Fp(X (j ,m)) = Fp(Y), then p divides |X (j)− Y |;
if there is an error, then p divides the product

∏n−m
j=0 |X (j ,m)− Y |.

since |X (j ,m) − Y | is an m bit number and we multiply these,
∏n−m

j=0 |X (j ,m) − Y | is a most an mn-bit integer;
therefore,

P(error) 6
prime(mn)

prime(T)
.

if T = cmn we have P(error) 6
prime(mn)

prime(cmn)
= 1

c

(

1 + ln c
lnmn

)

.

21 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Algorithms

Example

The size of a human chromosome ranges from 50 · 106 to 250 · 106 base
pairs.
If we are looking for a string of length m = 28 in a DNA string of length
n = 227 (within the ballpark of chromosome length), then by choosing
T = 264 (so p is a 64-bit integer) gives

c = T
mn

= 264

235
= 229;

P(error) 6 1
229

(

1 + 29
35

)

, which is minuscule!

22 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Algebra of Polynomials

Polynomial Identity Testing

A polynomial P(x1, . . . , xn) over a field F can be written as a sum of
monomials of the form cxk11 · · · xknn .
For example, for p = (x + y)(2x + z2) we can write

p(x , y , z) = 2x2 + 2xy + xz2 + yz2.

23 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Algebra of Polynomials

Two Problems on Polynomials

The “Evaluates to Zero Everywhere” (EZE) problem: Given a
polynomial D(x1, . . . , xn) over F, decide whether, for every choice of
y1, . . . , yn in F the value of D(y1, · · · , yn) is 0.
The Polynomial Identity Testing (PIT) Problem: Given a polynomial
D(x1, . . . , xn), we can write it as a sum of monomials. If, upon
expanding p to a sum of monomials, each coefficient is 0, then we say
that p is the zero polynomial, or that it is identically zero.

24 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Algebra of Polynomials

if p is identically zero then it evaluates to zero everywhere;
if F is R or C the converse is true;
if F is some finite field the converse is false; for example if
p(x) = x2 + x is a polynomial over GF (2), then p is not identically
zero, but p(x) = 0 for x ∈ {0, 1}.

25 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Algebra of Polynomials

The brute force approach is unfeasible. If we explicitly expand p and
∂(p) = d , then there could by

(

n+d
d

)

monomials (which is exponential in
d).

26 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Algebra of Polynomials

The Degree of a Multivariate Polynomial

A monomial is an expression of the form µ = axb11 · · · xbnn where a ∈ F and
b1, · · · , bn ∈ N.
The degree of µ is

∑n
i=1 bi .

The degree of a polynomial is the largest degree of any of its monomials.

27 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Algebra of Polynomials

Polynomial Representations

Polynomials can be represented explicitly, as sums of monomials.
Other forms are possible. For example, V (x1, . . . , xn) defined by

V (x1, . . . , xn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1
x1 x2 · · · xn
...

... · · · ...

xn−1
1 xn−1

2 · · · xn−1
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∏

i<j

(xi − xj)

is the Vandermonde polynomial of degree n(n−1)
2 .

28 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Algebra of Polynomials

Given a polynomial D(x1, . . . , xn) of n variables and of degree d is D
identical to the 0 polynomial?
Basic assumption: there is an efficient way of computing the values of D.
Algorithm:

Let S ⊆ R be a finite set. Pick at random uniformly and independently
r1, . . . , rn from S . If D(r1, . . . , rn) = 0 return YES; otherwise, return NO.

29 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Algebra of Polynomials

If D ≡ 0, the algorithm returns YES with probability 1, so the possible
error is one-sided.

Theorem

The Inequality of Schwartz-Zippel If D is a polynomial of degree d and
D 6≡ 0, then

P(D(r1, . . . , rn) = 0) 6
d

|S |

30 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Algebra of Polynomials

Proof

The argument is by induction on n.
The base step n = 1 follows from the fact that there are at most d roots,
so P(D(r1) = 0) 6 d

|S| .
The inductive step: Note that D can be written as

D(x1, . . . , xn) =
k
∑

i=1

x i1Qi(x2, . . . , xn),

where k is the largest power of x1 in a monomial of D.
By our choice of k the polynomial Qk(x2, . . . , xn) is not identically 0 and
its degree is no larger than d − k .

31 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Algebra of Polynomials

Proof (cont’d)

By the inductive hypothesis

P(Qk(x2, . . . , xn) = 0) 6
d − k

|S | .

Let K be the event “Qk(x2, . . . , xn) = 0”.
Let us now randomly choose the values of y2, . . . , yn and assume that the
event K did not occur. Define ∆(x1) to be the univariate polynomial

∆(x1) =

k
∑

i=1

x i1Qi(y2, . . . , yn),

Since K did not occur, the degree of ∆ is k . Thus,

P(∆(y1) = 0|K̄) 6
k

|S | .

32 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Algebra of Polynomials

Let L be the event “∆(y1) = 0”, clearly equivalent to
D(y1, y2, . . . , yn) = 0.
We have

P(L) = P(L ∩ K) + P(L|K̄)P(K̄)

6 P(K) + P(L|K̄)P(K̄)

6
k

|S | +
d − k

|S | =
d

|S | .

33 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Graph Theoretical Problems

Recall

Markov’s Inequality:
If X is a non-negative random variable having the expected value E [X],

then P(X > a) 6 E [X]
a

.

Proof: (for the discrete case). Let X :

(

x1 x2 · · · xn
p1 p2 · · · pn

)

, where

x1 > x2 > · · · > xn, pi > 0 for 1 6 i 6 n and
∑n

i=1 pi = 1. If
xi > a > xi+1, we have

P(X > a) = P((X = x1) ∪ (X = x2) ∪ · · · ∪ (X = xi)) = p1 + · · ·+ pi .

On other hand,

E [X] = x1p1 + · · · + xipi + xi+1pi+1 + · · ·+ xnpn

> x1p1 + · · · + xipi

> a(p1 + · · ·+ pi) = aP(X > a).

34 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Graph Theoretical Problems

Maximal Cut

Given a graph G = (V ,E) find a partition {S ,T} of the set V of vertices
(called a cut) such that the number of edges between S and T is maximal.
The set of edges that join a vertex in S with a vertex in T is denoted by
E (S ,T) and the size of the cut is |E (S ,T)|.

s
s

s
s

s
s

s
s

s✬

✫

✩

✪

✬

✫

✩

✪

S
T

35 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Graph Theoretical Problems

Theorem

In any graph G = (V ,E) there exists a cut with at least half of the edges
crossing it.

36 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Graph Theoretical Problems

Proof

Let S be a random subset of V . A vertex belongs to S with probability
0.5. The indicator of an edge e is the random variable Xe , where

Xe =

{

1 if e ∈ E (S ,T),

0 otherwise

For X = |E (S ,T)| we have X =
∑

e∈E Xe and

E [Xe] = P(e ∈ E (S ,T)) · 1 + P(e 6∈ E (S ,T)) · 0 =
1

2

because the probability that an end of e is in S and the other is not is 1
2 .

Therefore E [X] =
∑

e∈E E [Xe] =
|E |
2 . There exits an event where X takes

a value at least E [X], so there is a cut with at least half the edges.

37 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Graph Theoretical Problems

The Random Assignment of Vertices

Suppose that in order to build a cut (S ,T) we assign vertices at random
to S or T .
Let Y = |E | − X be the number of edges that to not cross from S to T .

We have Y > 0 and E [Y] = |E | − E [X] = |E |
2 . By Markov’s inequality

P(Y > aE [Y]) = P(Y >
a|E |
2

) 6
1

a
.

For a = 1.5 we have

P(Y >
3

4
|E |) 6 2

3
, or P(Y <

3

4
|E |) > 1

3
.

Therefore, P(X > 1
4 |E |) > 1

3 , which shows that a random cut will have at
least a quarter of the edges with a probability of at least 1

3 .

38 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Logic Applications

The 3-SAT Problem

The 3-SAT problem starts with a formula in conjunctive normal form

ϕ = C1 ∧ C2 ∧ · · · ∧ Cm,

where each clause Ci is disjunction of three distinct literals of the form
Ci = ℓj ∨ ℓk ∨ ℓh, and seeks to determine if there exists a truth assignment
that satisfies all ϕ.
Here ℓ is either a propositional variable xi or its negation x̄i .

39 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Logic Applications

Example

Consider the clause C = x1 ∨ x̄2 ∨ x̄3 and the list of truth assignments on
the set of variables of this clause:

v1 0 0 0
√

v2 0 0 1
√

v3 0 1 0
√

v4 0 1 1 −
v5 1 0 0

√

v6 1 0 1
√

v7 1 1 0
√

v8 1 1 1
√

One out of every eight truth assignments fails to satisfy the clause!

40 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Logic Applications

Example

Let ϕ be the formula

(x̄1 ∨ x̄2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x2 ∨ x3).

The truth assignment v on {x1, x2, x3} given by v(x1) = 1, and
v(x2) = v(x3) = 0 satisfies ϕ.

41 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Logic Applications

Instead of solving SAT let’s seek a truth assignment that satisfies the
maximum number of clauses.

Theorem

For every formula ϕ there exists a truth assignment that satisfies 7m
8

clauses.

42 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Logic Applications

Proof

Choose randomly a truth assignment v : {x1, . . . , xn} −→ {T,F}. Define

Yi =

{

1 if Ci is satisfied,

0 otherwise.

The number of satisfied clauses is Y =
∑m

i=1 Yi .
Among 8 truth assignments to the variables of Ci only one fails to satisfy
Ci . Thus, we have E [Yi] = P(Ci is satisfied) =

7
8 , so

E [Y] =
∑m

i=1 E [Yi] =
7m
8 . Since there exists an event in the probability

space such that Y is greater than E [Y], there exists an assignment that
satisfies 7

8 of the clauses.

43 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Logic Applications

How to Get a Good Truth Assignment

Let Z = m − Y be the number of unsatisfied clauses, Z > 0. We have

E [Z] = m − E [Y] =
m

8
.

By Markov’s Inequality,

P (Z > aE [Z]) = P
(

Z >
am

8

)

6
1

a
,

so for a = 2, P(Z > m/4) 6 1/2, which implies

P

(

Y >
3m

4

)

>
1

2
.

Thus, a randomly chosen assignment satisfies at least three quarters of
clauses with at least 0.5 probability!

44 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Graphs

Let Γn,p the distribution of random undirected graphs with n vertices such
that an edge exists with probability p. We say that G ∼ Γn,p is
G = (V ,E) belongs to this distribution.

a graph in Γn,p with a given set of m edges has the probability

pm(1− p)(
n
2)−m;

a graph in Γn,p can be generated by considering each of the
(

n
2

)

edges
and then, independently add each edge to the graph with probability
p; the expected number of edges is

(

n
2

)

p and each vertex has
expected degree (n − 1)p.

45 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Graphs

Studying Γn,p yields interesting a powerful results. For example, for
G ∼ Γn,p does G contain a clique having four vertices?

t
t

t
t

46 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Graphs

Define for every set C of 4 vertices in G, an indicator variable IC by

IC =

{

1 if C is a clique

0 otherwise.

There are
(

n
4

)

sets C , so there is this number of indicator variables.
If Xn is the number of 4-cliques in a graph with n vertices,
Xn =

∑{IC |C ⊆ V , |C | = 4}. There are six edges in a 4-clique, and each
is chosen independently, hence

E [IC] = P(IC = 1) = p6,

because each of the six edges are chosen independently. This implies

E [Xn] =

(

n

4

)

p6 = Θ(n4p6).

47 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Graphs

Note that P(Xn > 0) = P(Xn > 1) Thus, if limn→∞ n4p6 = 0

(written as p ≪ n−
2
3), then limn→∞ P(Xn > 0) = 0.

We claim that if p ≫ n−
2
3 , then limn→∞ P(Xn > 0) = 1.

48 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Graphs

Recall

For a random variable X , the variance is var(X) is E [(X − E [X])2].
We also have var(X) = E [X 2]− (E [X])2.
For any two random variables X and Y , the covariance cov(X ,Y) is
E [XY]− E [X]E [Y]. If X and Y are independent, then
cov(X ,Y) = 0.

Chebyshevs Inequality: P(|X − E [X]| > a) 6 var(X)
a2

.
Proof: Let Y = (X − E [X])2. Y is a non-negative random variable,
so by applying Markov Inequality,

P(|X − E [X]| > a) = P(Y > a2) 6
E [Y]

a2
=

var(X)

a2
.

49 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Graphs

Proof that p ≫ n−
2
3 , implies limn→∞ P(Xn > 0) = 1

Note that Xn = 0 implies |Xn − E [Xn]| = |E [Xn]| > E [Xn].
Therefore,

P(Xn = 0) 6 P (|Xn − E [Xn]| > E [Xn]) 6
var(Xn)

E [Xn]2
=

E [X 2
n]− E [Xn]

2

E [Xn]2
.

We claim that E [X 2
n]− E [Xn]

2 is small compared to E [Xn]
2.

50 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Graphs

Proof (cont’d)

var(Xn) = E [X 2
n]− E [Xn]

2 = E

(

∑

C

IC

)2

− E

[

∑

C

IC

]2

= E

∑

C

I 2C −
∑

C 6=D

IC ID

−
(

∑

C

E [IC]

)2

=
∑

C

E [I 2C]−
∑

C 6=D

E [IC ID]−
∑

C

E [IC]
2 +

∑

C 6=D

E [IC]E [ID]

=
∑

C

var(IC) +
∑

C ,D

cov(IC , ID).

51 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Graphs

Evaluation of cov(IC , ID)

Cases to consider:
if |C ∩ D| 6 1, no common edges exist, so IC , ID are independent,
which implies cov(IC , ID) = 0;
if |C ∩ D| = 2, one pair of vertices is shared, so we need only 11
edges to be present; thus,
cov(IC , ID) = E [IC ID]− p12 = p11 − p12 6 p11; this can happen

(

n
6

)

times, so the total contribution is less than
(

n
6

)

p11 = Θ(n6p11);
if |C ∩ D| = 3, three pairs of vertices are shared, so three fewer edges
are needed; thus, cov(IC , ID) = E [IC ID]− p12 = p9 − p12 6 p9; this
may happen

(

n
5

)

times, so the total contribution to the sum is
(

n
5

)

p9 = Θ(n5p9);

52 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Graphs

Evaluation of cov(IC , ID) (cont’d)

We have
var(IC) = E [I 2C]− E [IC]

2 = p6 − p12 = Θ(p6),

which implies

var(Xn) =
∑

C

var(IC) +
∑

C 6=D

cov(IC , ID)

6 Θ(n4p6) + Θ(n6p11) + Θ(n5p9)

= Θ(n4p6) + Θ(n6n−
22

3
) + Θ(n5n−6)

(taking into account that p ≫ n−
2
3)

= Θ(n4p6)

53 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Random Graphs

Evaluation of cov(IC , ID) (cont’d)

Finally,
var(Xn)

(E [X])2
=

Θ(n4p6)

Θ(n4p6)2
=

1

Θ(n4p6)
,

so limn→∞
var(Xn)
(E [X])2

= 0 because p ≫ n−
2
3 .

54 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Matrix Multiplication

Given three matrices A ∈ R
m×p, B ∈ R

p×n and C ∈ R
m×n determine if

AB = C .
Freivalds’ Monte Carlo algorithm:
begin

i = 1;
repeat

choose r = (r1, . . . , rn)
′ ∈ {0, 1}n at random;

compute C r and A(Br);
if C r 6= A(Br);
return FALSE;

endif;
i = i + 1;

until i = k ;
return TRUE

end

55 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Matrix Multiplication

Theorem

Freivalds’ algorithm is correct with a probability at least equal to 1− 2−k .

Proof: We show that if AB 6= C , then P(A(Br) = C r) 6 1/2.
If AB 6= C , then D = AB − C 6= 0. Without loss of generality we may
assume that d11 6= 0. Note that A(Br) = C r is equivalent to Dr = 0 and
this implies

∑n
j=1 d1j rj = 0.

Since d11 6= 0, we have r1 = −
∑n

j=2 d1j rj

d11
. This equality holds for at most

one of the two choices we have for r1, so P(ABr = C r) 6 0.5.
If C = AB the algorithm is always correct; if C 6= AB the probability of a
correct answer is 1− 0.5k because the loop is run for k times.

56 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Finding the nearest pair of points

This is the first probabilistic algorithm by M. Rabin, published in 1976!
Problem Statement: given n points x1, . . . , xn in the unit square [0, 1]2 in
R
2 find two points that are the closest with respect to Euclidean distance.

To simplify the presentation assume that there is a unique closest pair. If
there are several with the same minimum distance the algorithm still works.
The problem can clearly be solved in O(n2), but randomness allows a
better result!

57 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Outline of Rabin’s Algorithm

Let S be a set of points in R
2 and let

δ(S) = min{d(u, v) | u, v ∈ S and u 6= v}

Consider a mesh of squares M having the size δ.

✻

❄
δ

s

s

s

y

xp

xq

58 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Key remark: Even if δ(S) 6 δ we cannot be certain that the nearest pair is
in the same square of the mash. However, we are sure that at worst the
closest pair lies in squares with a common vertex.

59 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Lemma

If δ(S) 6 δ, where δ is the mesh size, then there exists a mesh point y
such that the nearest pair lies in a quadruple of squares situated at the
north and east of y.

60 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

S can be partitioned in a union of sets, S = S1 ∪ · · · ∪ Sk such that each
Si consists of all the points of S within one square of M.
Define N(M) =

∑k
i=1

ni (ni−1)
2 .

if we know that the nearest pair is within one of the sets Si , then it
can be discovered by performing N(M) computations;
under the previous assumption, the nearest pair will be discovered
after N(M) − 1 comparisons between the computed distances;
thus, we are interested in finding a mesh M for which N(M) = O(n).

61 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

The effect of increasing the mesh size δ

Lemma

Let M be a mesh of size δ. Construct a mesh M1 by choosing a fixed
mesh point y of M as origin and forming a mesh of size 2δ and lines
parallel to those of M. Then, for a fixed set S we have

N(M1) 6 16N(M) + 24n.

r

y

62 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Proof

The squares of M1 are quadruples of squares of M and yield the partition
S = T1 ∪ · · · ∪ Tq .

each Ti is the union of at most four of the sets Sj ;
if |Ti | = mi and Ti = Sj1 ∪ · · · ∪ Sj4 , then mi 6 nj1 + · · ·+ nj4 ;
if ki = max{nj1 , . . . , nj4}, then

mi (mi − 1)

2
6

4ki (4ki − 1)

2
=

16ki (ki − 1)

2
+ 6ki .

since k1, . . . , km are a subset of n1, . . . , nk and
∑

ni ≤ 4n because
every xi in S is in at most four Sjs, the conclusion follows.

63 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Theorem

There exists a constant c1 so that for every S, M and M1 as above, if
N(M) 6 cn, then N(M1) 6 c1cn.

This holds (with an appropriate c1) for any fixed linear blowup of the mesh
size of M.

64 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Theorem

For any set S ⊆ R
2, where |S | = n, there exists a mesh M0 so that M0

creates a partition {S1, . . . ,Sk} such that n 6 N(M0) 6 c1n, where c1 is
the previous constant.

65 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Proof

Choose a pair of perpendicular directions ℓ1, ℓ2 intersecting at y such that
S ∩ (ℓ1 ∪ ℓ2) = ∅;

form a mesh M using ℓ1, ℓ2 and y with a small enough size such that
each square contains one point of S and no point of S is located on
the grid lines;
by successively doubling the mesh size we reach for the first time a
mesh M0 for which n 6 N(M0);
when this occurs for the first time we have N(M) 6 c1n.

66 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Outline of Probabilistic Algorithm

randomly select a sample of m points, S1 = {xi1, . . . , xim} of the set
S = {x1, . . . , xn}; find δ(S1);
construct a mesh M with mesh size δ1(S1);
if m = m(n) is appropriately chosen, then with high probability we
have N(M) = O(n);
since δ(S) 6 δ, by a previous lemma, the nearest pair in S will be
located in a square of one of the meshes of size 2δ.

67 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Success on a Partition

Let π = {S1, . . . ,Sk} be a partition of S . If t : {1, . . . ,m} −→ S is
an injection, that is, a choice of m elements of S , then t is an
(m, π)-success if there is a block Si of π that contains at least two
elements in the range of t. Otherwise we call t an (m, π)-failure.
If σ is another partition, σ = {H1, . . . ,Hℓ} of S , then we say that π
dominates σ if for every m, the probability of an (m, π)-success is at
least equal to the probability of an (m, σ) success on σ.
t is an (m, π)-failure if no block of π contains more than one element
in the range of t.

68 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

How Many Failures and Successes?

t : {1, . . . ,m} −→ S is an (m, π)-failure iff the function
T : {1, . . . ,m} −→ S/π given by T (p) = [t(p)] for 1 6 p 6 m is an
injection. If |S/π| = k , the number of injections T is

{

k!
(k−m)! if m 6 k ,

0 if k < m 6 n.

Therefore, the number of (m, π)-successes is
{

n!
(n−m)! − k!

(k−m)! if m 6 k ,
n!

(n−m)! if k < m.

The probability of an (m, π)-success is

P(m, π, k , n) =

1−
k!

(k−m)!
n!

(n−m)!

if m 6 k ,

1 if k < m.
69 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Example

τ = {S1,S2} be a partition of a set S = S1 ∪ S2 with |S1| = p > 1 and
|S2| = q > 1.
Claim: τ dominates the partition σ of S that consists of a block U with
|U| = ℓ and p + q − ℓ singletons if and only if

ℓ(ℓ− 1) 6 p(p − 1) + q(q − 1)

✬
✫

✩
✪

✬
✫

✩
✪S1

S2
U

✐
✻

singletons|S1| = p, |S2| = q |U| = ℓ

70 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Example (cont’d)

We have

P(m, τ, k , n) =

1−
2!

(2−m)!
n!

(n−m)!

if m 6 2,

1 if 2 < m
=

{

1− 2
n

if m = 1

1 if m > 2,

and

P(m, σ, n) =

1−
(p+q−ℓ+1)!

((p+q−ℓ+1)−m)!
n!

(n−m)!

if m 6 p + q − ℓ+ 1,

1 if k < p + q − ℓ+ 1.

Therefore, we must justify the inequality P(m, τ, n) > P(m, σ, n) only for
m = 1 and m = 2.

71 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Example

Any partition π of a set of six elements into three two-element sets
dominates any partition σ of the same set into a 3-element set and three
singletons.
The probability of a success in the first case is

P(3, π, 6) =

1−
3!

(3−m)!
6!

(6−m)!

if m 6 3,

1 if 3 < m.

In the second case, the probability is

P(4, σ, 6) =

1−
4!

(4−m)!
6!

(6−m)!

if m 6 4,

1 if 4 < m.

Clearly, 3!
(3−m)! 6

4!
(4−m)! if m 6 3. For m = 4, P(3, π, 6) = 1 > P(4, π, 6),

so π dominates σ. 72 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Example

Any partition π of a set of six elements into two three-element sets
dominates any partition σ of the same set into a 4-element set and two
singletons.
We have

P(2, π, 6) =

1−
2!

(2−m)!
n!

(n−m)!

if m 6 2,

1 if 2 < m.

and

P(3, σ, 6) =

1−
3!

(3−m)!
n!

(n−m)!

if m 6 3,

1 if 3 < m.

Since 2!
(2−m)! 6

3!
(3−m)! it follows, as before, that π dominates σ.

73 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Exercise: Prove that if π = {B1,B2} is a partition with |B1| = |B2| = 4 of
a set S with |S | = 8 and σ = {H1,H2,H3,H4} with |H1| = 5,
|H2| = |H3| = |H4| = 1, then π dominates σ.

74 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

The Sum of Two Partitions

Definition

Let S ,S ′ be two disjoint sets and let π = {B1, . . . ,Bk} be a partition of S
and σ = {H1, . . . ,Hℓ} be a partition of S ′. The sum of π and σ is the
partition π + σ of S ∪ S ′ given by

π + σ = {B1, . . . ,Bk ,H1, . . . ,Hℓ}.

Note that N(π + π′) = N(π) + N(π′).

75 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Theorem

Let S ,S ′ be two disjoint sets, π be a partition of S and σ1, σ2 be two
partitions of S ′. If σ1 dominates σ2, then π + σ1 dominates π + σ2.

Proof is left as exercise.

76 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Partition Transformations

Any pair of blocks Bi ,Bj in π such that |Bi | = |Bj | = 3 can be
replaced with a triplet of blocks H1,H2,H3 such that |H1| = 4,
|H2| = H3| = 1 to yield a partition σ such that π dominates σ and
N(π) = N(σ).
Any triplet of blocks Bi ,Bj ,Bk in π such that
|Bi | = |Bj | = |Bk | = 2can be replaced with a quadruple of sets
H1,H2,H3,H4 with |H1| = 3, |H2| = |H3| = |H4| = 1 to yield a
partition σ such that π dominates σ and N(π) = N(σ).

77 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

A Special Partition Transformation

Any pair of blocks Bi ,Bj in π such that |Bi | = |Bj | = 4 can be
replaced with a quadruple of blocks H1,H2,H3,H4 such that
|H1| = 5, |H2| = H3| = |H4| = 1 to yield a partition σ such that π
dominates σ and N(σ) > 5

6N(π).

Indeed, N(σ) = · · · + 10, N(π) = · · ·+ 12 and T+10
T+12 >

10
12 when T > 0.

78 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Theorem

There exists a constant λ, λ > 0, such that for every partition π of a finite
set S there exists another partition σ of S such that

π dominates σ,
λN(π) 6 N(σ), and
all blocks of σ, with one exception are singletons.

79 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Proof

Let π = {S1, . . . ,Sk}. We may assume that each block that is not a
singleton contains at least five elements. Further, suppose initially that k
is even and non-singletons can be arranged in pairs.
Let (S1,S2) be such a pair with |S1| = p > 5 and |S2| = q > 5. {S1,S2} is
a partition of S1 ∪ S2 and this partition dominates a partition of S1 ∪ S2
that consists of a block U with |U| = ℓ and the remaining blocks being g
singletons, where p + q = ℓ+ 1 + · · ·+ 1 if and only if

ℓ(ℓ− 1) 6 p(p − 1) + q(q − 1)

If ℓ is the largest number with this property then

ℓ(ℓ− 1) 6 p(p − 1) + q(q − 1) 6 (ℓ+ 1)ℓ,

80 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Proof (cont’d)

The second inequality implies

(

1− 2

ℓ+ 1

)[

p(p − 1)

2
+

q(q − 1)

2

]

6
ℓ(ℓ− 1)

2

Let π be a partition of S and let
m(π) = 1 + min{|B | | B ∈ π and |B | > 1}.
If each of the paired sets is replaced in the manner previously described,
using ℓ that satisfies the double inequality, then we obtain a partition π1
that is dominated by π. Since m(π1) 6 ℓ+ 1 holds for each pair in π we
have

(

1− 2

m(π1)

)

N(π) 6 N(π1).

81 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Proof (cont’d): Estimation of a lower bound for m(π1)

if p 6 q, then the inequality p(p − 1) + q(q − 1) 6 (ℓ+ 1)ℓ implies

(p + 1)2
2p(p − 1)

(p + 1)2
6 (ℓ+ 1)2;

since for p > 5, we have
√

40

36
6

√

2p(p − 1)

(p + 1)2
6

√
2,

it follows that s(p + 1) 6 ℓ+ 1 where
√

40
36 6 s;

from σ1 we can obtain a partition σ2 using the same process that
allowed us to obtain σ1 from σ;
repeating this sufficiently many times (about log√2 k times, where
k = |π| we obtain a partition σ′ of S which is dominated by π, and all
the blocks of σ′ except 1 are singletons.

82 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Proof (cont’d)

For the constant λ we have

λ =
5

6

(

1− 2

6s

)(

1− 2

6s2

)

· · · (1)

Since the series 2
6s +

2
6s2

+ · · · converges we have λ > 0 and
N(π) 6 N(π′).

83 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Theorem

Let π be a partition of the set S, |S | = n such that n 6 N(π). If n
2
3

pairwise distinct points are drawn at random from S, then the probability
of success, i.e., the probability that two elements will be chosen from the

same block of π is at least µ(n) = 1− 2e−cn
1
6 , where c =

√
2λ for λ

defined in Equality (1).

84 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Proof

By Theorem given on slide 79, π dominates a partition σ = {H1, . . . ,Hm},
where |Hi | = 1 for 2 6 i 6 m and λn 6 N(σ). Thus, for p = |H1|, we
have 2λn 6 p(p − 1) so that c

√
n 6 p for c ≈

√
2λ.

the probability that in one choice from S we miss H1 is 1− p
n
, so

smaller than 1− c√
n
;

for n
2
3 choices the probability of all missing H1 is smaller than

(

1− c√
n

)

√
n·n

1
6

≈ e−cn
1
6 ;

the probability of success (at least two hits in H1) is greater than

1− 2e−cn
1
6 .

85 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Theorem

There exists a constant c2 so that if we choose at random
S1 = {xi1 , . . . , xim}, m = n

2
3 , out of S = {x1, . . . , xn} and draw any mesh

M of size δ(S1), then the probability that N(M) 6 c2n is greater than
µ(n), where µ(n) was defined in the Theorem given on slide 84.

86 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Proof

For the set S consider the mesh M0 of size δ0 given in the Theorem of
slide 65, by which S is partitioned so that n 6 N(M0) 6 c1n. Since

|S1| = n
2
3 , the probability that two points of S1 fall with one square of M0

is greater than µ(m).

there are 16 meshes M1, . . . ,M16 derived from M0 by quadrupling
the mesh size δ0; the basic square of each consists of 16 basic squares
of M0;
if δ(S1) 6 δ0

√
2, then for any square mesh with mesh size δ1 each of

its squares will be a subset of a square of one of the Mi , 1 6 i 6 16;
thus, N(M) 6

∑16
i=1N(Mi);

since N(M0) 6 c1n, by the Theorem on slide 64, N(Mi) 6 c31n for
1 6 i 6 16.

Thus, with probability greater than µ(n), N(M) 6 16c31n.

87 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Theorem

For any set S, |S | = n, if S1 is a subset of S such that |S | = n
2
3 is chosen

at random and a mesh M of size δ(S1) is formed, then the expected value
of N(M) is smaller than c2n.

88 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Proof

By the Theorem on slide 86

P(S1 | c2n 6 N(M)) 6 1−mu(n) = 2e−cn
1
6 .

Since N(M) 6 n(n − 1), the expected contribution from the choices of S1
for which mesh size δ(S1) leads to a mesh M with c2n 6 N(M), is smaller

than n(n− 1)e−cn
1
6 , which tends to 0 when n grows. Hence, the expected

value of N(M) is smaller than (c2 + ǫ)n for ǫ > 0 and n sufficiently large.

89 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Conclusions

The main benefits of random algorithms: simplicity and speed.
A wide variety of applications.
Beautiful mathematics!

90 / 91

EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

A Geometrical Problem

Thank you for your attention!

Sildes are available at www.dsim at cs.umb.edu

91 / 91

	Random Algorithms
	Algebra of Polynomials
	Graph Theoretical Problems
	Logic Applications
	Random Graphs
	Matrix Multiplication
	A Geometrical Problem

