EFFICIENT COMPUTING THROUGH RANDOM ALGORITHMS

Prof. Dan A. Simovici

Doctoral Summer School lasi, Romania, June 2013

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

1/91

- 1 Random Algorithms
- 2 Algebra of Polynomials
- 3 Graph Theoretical Problems
- 4 Logic Applications
- 5 Random Graphs
- 6 Matrix Multiplication
- 7 A Geometrical Problem

Deterministic vs. Randomized Algorithms

The common paradigm in algorithm design is that of deterministic algorithm.

- For a deterministic algorithm the input completely determines the sequence of computations performed by the algorithm.
- The behavior of random algorithms is determined not only on the input but also on several random choices.
- The same randomized algorithm, given the same input multiple times, may perform different computations in each invocation.
- The running time of a randomized algorithm on a given input is a random variable.

Deterministic vs. Random Algorithms

Deterministic vs. Random Algorithm Design

- for deterministic algorithms, good behavior means that time requirements are polynomial in the size of the input;
- for random algorithms we need proof that it is highly likely that the behavior of the algorithm will be good on any input.

Probabilistic Analysis of Algorithms

- probabilistic Analysis of algorithms is an entirely distinct pursuit;
- random inputs having a given probability distributions are applied;
- goal is to show that the algorithm requires polynomial time on most inputs;

Las Vegas vs. Monte Carlo

- A Las Vegas algorithm provides a solution with a probability larger than ¹/₂ and never gives an incorrect solution
- A Monte Carlo algorithm applies in situations when the algorithm makes a decision or a classification and provides a yes/no answer; if the answer is yes, then it confirms it with the probability larger than ¹/₂, but if the answer is no, the algorithm will never give a definite result.
 The failure of the algorithm to return yes in a long series of trials gives evidence that the answer is no.

Example

Let A be an array on n components, where $n \ge 2$; suppose that half of the components of A are 1^s and the other half are 0^s. Find an 1 in the array. Consider the algorithms

LV(A,n) begin repeat randomly select one out of *n* elements; until 1 is found end $\begin{array}{l} \mathsf{MC}(\mathsf{A},\mathsf{n},\mathsf{k}) \\ \mathsf{begin} \\ i = 1; \\ \mathsf{repeat} \\ \mathsf{randomly select one out of } n \ \mathsf{elements}; \\ i = i+1; \\ \mathsf{until} \ i = = k \ \mathsf{or an 1} \ \mathsf{is found}; \\ \mathsf{end} \end{array}$

The Las Vegas Algorithm

```
LV(A,n)
begin
repeat
randomly select one out of n elements;
until an 1 is found;
end
```

- the algorithm succeeds with probability 1;
- the algorithm always outputs the correct answer;
- the running time is a random variable and arbitrarily large but the expected running time is finite.

The Monte Carlo Algorithm

MC(A,n,k)
begin
 i = 1;
 repeat
 randomly select one out of n elements;
 i = i + 1;
 until i == k or an 1 is found;
end
 no guarantee of success;

(日) (圖) (E) (E) (E)

run time is fixed.

The Relationship between LV and MC

- a LV algorithm can be converted into a MC algorithm by having it output an arbitrary (possibly erroneous) output if it fails to complete under a specified time;
- a MC can be converted in a LV algorithm if there exists an efficient checking the correctness of the answer by repeatedly running the MC until it produces a correct answer.

Comparing Binary Strings

Let $a = a_0 a_1 \cdots a_{n-1}$ and $b = b_0 b_1 \cdots b_{n-1}$ be two binary strings, where a is the binary representation of some natural number t.

A Monte Carlo algorithm:

- Alice choses a uniformly random random prime $p, 2 \le p \le T$, where $t \le T$. The fingerprint of a is $F_p(a) = a \mod p$.
- Alice sends $F_p(a)$ and p to Bob.
- Bob computes F_p(b). If Bob sees F_a(p) = F_b(p), then the algorithm outputs TRUE; otherwise, the algorithm outputs FALSE.

There are no false negatives, since a = b implies $F_p(a) = F_p(b)$.

- If $a \neq b$, we may still have $F_p(a) = F_p(b)$, which is a false positive.
- We claim that the probability of an error is small.

ALGORITHM OUTPUT

Let

$$prime(x) = |\{p \mid p \text{ is prime and } p \leq x\}|.$$

Theorem

A non-zero n-bit integer has at most n distinct prime divisors.

Proof: Each prime divisor is at least 2 and the integer is not larger than $2^n - 1$. By the unique factorization theorem, there are no more than *n* prime divisors.

Since |a - b| is a non-zero *n*-bit integer, there are at most *n* prime numbers that divide |a - b|. Therefore, the probability of an error is not larger than $\frac{n}{\text{prime}(\tau)}$. The prime number theorem states that prime(x) is close to $\frac{x}{\ln x}$ as $x \to \infty$. Thus, the probability of error is less or equal to $n\frac{\ln T}{T}$. To limit error choose $T = cn \ln n$. In this case

$$P(\text{error}) \leq n \frac{\ln(cn \ln n)}{cn \ln n} = \frac{1}{c} \left(1 + \frac{\ln(cn \ln n)}{\ln n} \right)$$

Since $\frac{\ln(cn\ln n)}{\ln n} = o(1)$ we have

$$P(\text{error}) = \frac{1}{c} + o(1).$$

Thus, with c large enough P(error) can be made as small as desired.

.

Pattern Matching Problem

Problem: Given two input strings X = x₀x₁ ··· x_{n-1} and Y = y₀y₁ ··· y_{m-1}, is Y a contiguous substring of X?
Equivalent formulation: Is there a j, 1 ≤ j ≤ n - m such that for X(j, m) = x_jx_{j+1} ··· x_{j+m-1}, X(j, m) = Y?

The Algorithm

- regard X and Y as binary integers;
- choose a random prime p, where $2 \leq p \leq T$;
- compute the fingerprints $F_p(Y)$ and $F_p(X(j,m))$ for $0 \leq j \leq n-m$;
- if there is some j such that $F_p(Y) = F_p(X(j, m))$, then output MATCH, otherwise output NO MATCH.

- there are no false negatives, but there may be false positives, when strings do not match, but the algorithm returns MATCH;
- if $X(j,m) \neq Y$ for $0 \leq j \leq n-m$, then, by the union bound,

$$P(\text{error}) \leqslant n \frac{\text{prime}(m)}{\text{prime}(T)}$$

A Tighter Bound

- if $F_p(X(j,m)) = F_p(Y)$, then p divides |X(j) Y|;
- if there is an error, then p divides the product $\prod_{j=0}^{n-m} |X(j,m) Y|$.
- since |X(j,m) − Y| is an m bit number and we multiply these, ∏_{j=0}^{n-m} |X(j,m) − Y| is a most an mn-bit integer;

 therefore.

$$P(\operatorname{error}) \leqslant rac{\operatorname{prime}(mn)}{\operatorname{prime}(T)}.$$

• if
$$T = cmn$$
 we have $P(error) \leq \frac{prime(mn)}{prime(cmn)} = \frac{1}{c} \left(1 + \frac{\ln c}{\ln mn}\right)$

< □ > < @ > < 클 > < 클 > · 클 · 의익은 21/91

Example

The size of a human chromosome ranges from $50\cdot 10^6$ to $250\cdot 10^6$ base pairs.

If we are looking for a string of length $m = 2^8$ in a DNA string of length $n = 2^{27}$ (within the ballpark of chromosome length), then by choosing $T = 2^{64}$ (so p is a 64-bit integer) gives $c = \frac{T}{mn} = \frac{2^{64}}{2^{35}} = 2^{29};$ $P(\text{error}) \leqslant \frac{1}{2^{29}} (1 + \frac{29}{35})$, which is minuscule!

イロト イロト イヨト イヨト 三日

Polynomial Identity Testing

A polynomial $P(x_1, ..., x_n)$ over a field \mathbb{F} can be written as a sum of monomials of the form $cx_1^{k_1} \cdots x_n^{k_n}$. For example, for $p = (x + y)(2x + z^2)$ we can write

$$p(x, y, z) = 2x^2 + 2xy + xz^2 + yz^2.$$

23/91

Two Problems on Polynomials

- The "Evaluates to Zero Everywhere" (EZE) problem: Given a polynomial D(x₁,...,x_n) over F, decide whether, for every choice of y₁,..., y_n in F the value of D(y₁,..., y_n) is 0.
- The Polynomial Identity Testing (PIT) Problem: Given a polynomial D(x₁,...,x_n), we can write it as a sum of monomials. If, upon expanding p to a sum of monomials, each coefficient is 0, then we say that p is the zero polynomial, or that it is identically zero.

- if p is identically zero then it evaluates to zero everywhere;
 if F is R or C the converse is true:
- if \mathbb{F} is some finite field the converse is false; for example if $p(x) = x^2 + x$ is a polynomial over GF(2), then p is not identically zero, but p(x) = 0 for $x \in \{0, 1\}$.

The brute force approach is unfeasible. If we explicitly expand p and $\partial(p) = d$, then there could by $\binom{n+d}{d}$ monomials (which is exponential in d).

The Degree of a Multivariate Polynomial

A monomial is an expression of the form $\mu = ax_1^{b_1} \cdots x_n^{b_n}$ where $a \in \mathbb{F}$ and $b_1, \cdots, b_n \in \mathbb{N}$. The degree of μ is $\sum_{i=1}^n b_i$. The degree of a polynomial is the largest degree of any of its monomials.

Polynomial Representations

Polynomials can be represented explicitly, as sums of monomials.
 Other forms are possible. For example, V(x₁,..., x_n) defined by

$$V(x_1,...,x_n) = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ \vdots & \vdots & \cdots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{i < j} (x_i - x_j)$$

イロト イロト イヨト イヨト 三日

28/91

is the Vandermonde polynomial of degree $\frac{n(n-1)}{2}$.

Given a polynomial $D(x_1, \ldots, x_n)$ of *n* variables and of degree *d* is *D* identical to the 0 polynomial?

Basic assumption: there is an efficient way of computing the values of *D*. Algorithm:

Let $S \subseteq \mathbb{R}$ be a finite set. Pick at random uniformly and independently r_1, \ldots, r_n from S. If $D(r_1, \ldots, r_n) = 0$ return YES; otherwise, return NO.

If $D \equiv 0$, the algorithm returns YES with probability 1, so the possible error is one-sided.

Theorem

The Inequality of Schwartz-Zippel If D is a polynomial of degree d and $D \neq 0$, then

$$P(D(r_1,\ldots,r_n)=0)\leqslant \frac{d}{|S|}$$

(日) (圖) (E) (E) (E)

30/91

Proof

The argument is by induction on n.

The base step n = 1 follows from the fact that there are at most d roots, so $P(D(r_1) = 0) \leq \frac{d}{|S|}$. The inductive step: Note that D can be written as

$$D(x_1,\ldots,x_n)=\sum_{i=1}^k x_1^i Q_i(x_2,\ldots,x_n),$$

where k is the largest power of x_1 in a monomial of D. By our choice of k the polynomial $Q_k(x_2, \ldots, x_n)$ is not identically 0 and its degree is no larger than d - k.

Proof (cont'd)

By the inductive hypothesis

$$P(Q_k(x_2,\ldots,x_n)=0)\leqslant \frac{d-k}{|S|}.$$

Let K be the event " $Q_k(x_2,\ldots,x_n) = 0$ ".

Let us now randomly choose the values of y_2, \ldots, y_n and assume that the event K did not occur. Define $\Delta(x_1)$ to be the univariate polynomial

$$\Delta(x_1) = \sum_{i=1}^k x_1^i Q_i(y_2,\ldots,y_n),$$

Since K did not occur, the degree of Δ is k. Thus,

$$P(\Delta(y_1) = 0 | \bar{K}) \leq \frac{k}{|S|}.$$

Let L be the event "
$$\Delta(y_1) = 0$$
", clearly equivalent to $D(y_1, y_2, \dots, y_n) = 0$.
We have

$$P(L) = P(L \cap K) + P(L|\bar{K})P(\bar{K})$$

$$\leq P(K) + P(L|\bar{K})P(\bar{K})$$

$$\leq \frac{k}{|S|} + \frac{d-k}{|S|} = \frac{d}{|S|}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

33 / 91

Recall

Markov's Inequality:

If X is a non-negative random variable having the expected value E[X], then $P(X \ge a) \le \frac{E[X]}{a}$.

Proof: (for the discrete case). Let $X : \begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ p_1 & p_2 & \cdots & p_n \end{pmatrix}$, where $x_1 > x_2 > \cdots > x_n$, $p_i \ge 0$ for $1 \le i \le n$ and $\sum_{i=1}^n p_i = 1$. If $x_i \ge a > x_{i+1}$, we have

$$P(X \ge a) = P((X = x_1) \cup (X = x_2) \cup \cdots \cup (X = x_i)) = p_1 + \cdots + p_i.$$

On other hand,

$$E[X] = x_1p_1 + \dots + x_ip_i + x_{i+1}p_{i+1} + \dots + x_np_n$$

$$\geqslant x_1p_1 + \dots + x_ip_i$$

$$\geqslant a(p_1 + \dots + p_i) = aP(X \ge a).$$

Maximal Cut

Given a graph $\mathcal{G} = (V, E)$ find a partition $\{S, T\}$ of the set V of vertices (called a cut) such that the number of edges between S and T is maximal. The set of edges that join a vertex in S with a vertex in T is denoted by E(S, T) and the size of the cut is |E(S, T)|.

Theorem

In any graph $\mathcal{G} = (V, E)$ there exists a cut with at least half of the edges crossing it.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □
Proof

Let S be a random subset of V. A vertex belongs to S with probability 0.5. The indicator of an edge e is the random variable X_e , where

$$X_e = egin{cases} 1 & ext{if } e \in E(S,T), \ 0 & ext{otherwise} \end{cases}$$

For X = |E(S, T)| we have $X = \sum_{e \in E} X_e$ and

$$E[X_e] = P(e \in E(S,T)) \cdot 1 + P(e \notin E(S,T)) \cdot 0 = \frac{1}{2}$$

because the probability that an end of *e* is in *S* and the other is not is $\frac{1}{2}$. Therefore $E[X] = \sum_{e \in E} E[X_e] = \frac{|E|}{2}$. There exits an event where *X* takes a value at least E[X], so there is a cut with at least half the edges.

The Random Assignment of Vertices

Suppose that in order to build a cut (S, T) we assign vertices at random to S or T.

Let Y = |E| - X be the number of edges that to not cross from S to T. We have $Y \ge 0$ and $E[Y] = |E| - E[X] = \frac{|E|}{2}$. By Markov's inequality

$$P(Y \geqslant aE[Y]) = P(Y \geqslant \frac{a|E|}{2}) \leqslant \frac{1}{a}$$

For a = 1.5 we have

$$P(Y \ge \frac{3}{4}|E|) \le \frac{2}{3}$$
, or $P(Y < \frac{3}{4}|E|) > \frac{1}{3}$.

Therefore, $P(X > \frac{1}{4}|E|) \ge \frac{1}{3}$, which shows that a random cut will have at least a quarter of the edges with a probability of at least $\frac{1}{3}$.

The 3-SAT Problem

The 3-SAT problem starts with a formula in conjunctive normal form

$$\varphi = C_1 \wedge C_2 \wedge \cdots \wedge C_m,$$

where each clause C_i is disjunction of three distinct literals of the form $C_i = \ell_j \lor \ell_k \lor \ell_h$, and seeks to determine if there exists a truth assignment that satisfies all φ .

Here ℓ is either a propositional variable x_i or its negation \bar{x}_i .

Example

Consider the clause $C = x_1 \lor \bar{x}_2 \lor \bar{x}_3$ and the list of truth assignments on the set of variables of this clause:

One out of every eight truth assignments fails to satisfy the clause!

Example

Let φ be the formula

$$(\bar{x}_1 \lor \bar{x}_2 \lor x_3) \land (x_1 \lor \bar{x}_2 \lor \bar{x}_3) \land (x_1 \lor x_2 \lor x_3).$$

The truth assignment v on $\{x_1, x_2, x_3\}$ given by $v(x_1) = 1$, and $v(x_2) = v(x_3) = 0$ satisfies φ .

Instead of solving SAT let's seek a truth assignment that satisfies the maximum number of clauses.

Theorem

For every formula φ there exists a truth assignment that satisfies $\frac{7m}{8}$ clauses.

Proof

Choose randomly a truth assignment $v : \{x_1, \ldots, x_n\} \longrightarrow \{\mathbf{T}, \mathbf{F}\}$. Define

$$Y_i = egin{cases} 1 & ext{if } C_i ext{ is satisfied}, \ 0 & ext{otherwise}. \end{cases}$$

The number of satisfied clauses is $Y = \sum_{i=1}^{m} Y_i$. Among 8 truth assignments to the variables of C_i only one fails to satisfy C_i . Thus, we have $E[Y_i] = P(C_i \text{ is satisfied}) = \frac{7}{8}$, so $E[Y] = \sum_{i=1}^{m} E[Y_i] = \frac{7m}{8}$. Since there exists an event in the probability space such that Y is greater than E[Y], there exists an assignment that satisfies $\frac{7}{8}$ of the clauses.

How to Get a Good Truth Assignment

Let Z = m - Y be the number of unsatisfied clauses, $Z \ge 0$. We have

$$E[Z] = m - E[Y] = \frac{m}{8}.$$

By Markov's Inequality,

$$P(Z \ge aE[Z]) = P(Z \ge \frac{am}{8}) \le \frac{1}{a},$$

so for a = 2, $P(Z \ge m/4) \le 1/2$, which implies

$$P\left(Y > \frac{3m}{4}\right) > \frac{1}{2}$$

Thus, a randomly chosen assignment satisfies at least three quarters of clauses with at least 0.5 probability!

44/91

Let $\Gamma_{n,p}$ the distribution of random undirected graphs with *n* vertices such that an edge exists with probability *p*. We say that $G \sim \Gamma_{n,p}$ is G = (V, E) belongs to this distribution.

- a graph in $\Gamma_{n,p}$ with a given set of *m* edges has the probability $p^m(1-p)^{\binom{n}{2}-m}$;
- a graph in Γ_{n,p} can be generated by considering each of the ⁽ⁿ⁾₂ edges and then, independently add each edge to the graph with probability p; the expected number of edges is ⁽ⁿ⁾₂p and each vertex has expected degree (n − 1)p.

Studying $\Gamma_{n,p}$ yields interesting a powerful results. For example, for $G \sim \Gamma_{n,p}$ does G contain a clique having four vertices?

Define for every set C of 4 vertices in G, an indicator variable I_C by

$$I_C = egin{cases} 1 & ext{if } C ext{is a clique} \ 0 & ext{otherwise.} \end{cases}$$

There are $\binom{n}{4}$ sets *C*, so there is this number of indicator variables. If X_n is the number of 4-cliques in a graph with *n* vertices, $X_n = \sum \{I_C | C \subseteq V, |C| = 4\}$. There are six edges in a 4-clique, and each is chosen independently, hence

$$E[I_C]=P(I_C=1)=p^6,$$

because each of the six edges are chosen independently. This implies

$$E[X_n] = \binom{n}{4} p^6 = \Theta(n^4 p^6).$$

<ロト < 部 > < 言 > < 言 > こ 2 の Q (C) 47/91 Note that P(X_n > 0) = P(X_n ≥ 1) Thus, if lim_{n→∞} n⁴p⁶ = 0 (written as p ≪ n^{-2/3}), then lim_{n→∞} P(X_n > 0) = 0.
 We claim that if p ≫ n^{-2/3}, then lim_{n→∞} P(X_n > 0) = 1.

Recall

- For a random variable X, the variance is var(X) is $E[(X E[X])^2]$. We also have $var(X) = E[X^2] - (E[X])^2$.
- For any two random variables X and Y, the covariance cov(X, Y) is E[XY] - E[X]E[Y]. If X and Y are independent, then cov(X, Y) = 0.
- Chebyshevs Inequality: P(|X E[X]| ≥ a) ≤ var(X)/a².
 Proof: Let Y = (X E[X])2. Y is a non-negative random variable, so by applying Markov Inequality,

$$P(|X - E[X]| \ge a) = P(Y \ge a^2) \le \frac{E[Y]}{a^2} = \frac{var(X)}{a^2}$$

Proof that $p \gg n^{-\frac{2}{3}}$, implies $\lim_{n\to\infty} P(X_n > 0) = 1$

Note that $X_n = 0$ implies $|X_n - E[X_n]| = |E[X_n]| \ge E[X_n]$. Therefore,

$$P(X_n = 0) \leq P(|X_n - E[X_n]| \geq E[X_n]) \leq \frac{var(X_n)}{E[X_n]^2} = \frac{E[X_n^2] - E[X_n]^2}{E[X_n]^2}.$$

We claim that $E[X_n^2] - E[X_n]^2$ is small compared to $E[X_n]^2$.

Proof (cont'd)

$$var(X_n) = E[X_n^2] - E[X_n]^2 = E\left[\left(\sum_C I_C\right)^2\right] - E\left[\sum_C I_C\right]^2$$
$$= E\left[\sum_C I_C^2 - \sum_{C \neq D} I_C I_D\right] - \left(\sum_C E[I_C]\right)^2$$
$$= \sum_C E[I_C^2] - \sum_{C \neq D} E[I_C I_D] - \sum_C E[I_C]^2 + \sum_{C \neq D} E[I_C]E[I_D]$$
$$= \sum_C var(I_C) + \sum_{C,D} cov(I_C, I_D).$$

Evaluation of $cov(I_C, I_D)$

Cases to consider:

- if $|C \cap D| \leq 1$, no common edges exist, so I_C, I_D are independent, which implies $cov(I_C, I_D) = 0$;
- if |C ∩ D| = 2, one pair of vertices is shared, so we need only 11 edges to be present; thus,

 $cov(I_C, I_D) = E[I_C I_D] - p^{12} = p^{11} - p^{12} \leq p^{11}$; this can happen $\binom{n}{6}$ times, so the total contribution is less than $\binom{n}{6}p^{11} = \Theta(n^6p^{11})$;

if |C ∩ D| = 3, three pairs of vertices are shared, so three fewer edges are needed; thus, cov(I_C, I_D) = E[I_CI_D] - p¹² = p⁹ - p¹² ≤ p⁹; this may happen (ⁿ₅) times, so the total contribution to the sum is (ⁿ₅)p⁹ = Θ(n⁵p⁹);

Evaluation of $cov(I_C, I_D)$ (cont'd)

We have

$$var(I_C) = E[I_C^2] - E[I_C]^2 = p^6 - p^{12} = \Theta(p^6),$$

which implies

$$var(X_n) = \sum_{C} var(I_C) + \sum_{C \neq D} cov(I_C, I_D)$$

$$\leqslant \Theta(n^4 p^6) + \Theta(n^6 p^{11}) + \Theta(n^5 p^9)$$

$$= \Theta(n^4 p^6) + \Theta(n^6 n^{-\frac{22}{3}}) + \Theta(n^5 n^{-6})$$

(taking into account that $p \gg n^{-\frac{2}{3}}$)

$$= \Theta(n^4 p^6)$$

53/91

◆□ → ◆聞 → ◆臣 → ◆臣 → □ 臣

Evaluation of $cov(I_C, I_D)$ (cont'd)

Finally,

$$\frac{\operatorname{var}(X_n)}{(E[X])^2} = \frac{\Theta(n^4 p^6)}{\Theta(n^4 p^6)^2} = \frac{1}{\Theta(n^4 p^6)},$$

so $\lim_{n \to \infty} \frac{\operatorname{var}(X_n)}{(E[X])^2} = 0$ because $p \gg n^{-\frac{2}{3}}$.

<ロト < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Given three matrices $A \in \mathbb{R}^{m \times p}$, $B \in \mathbb{R}^{p \times n}$ and $C \in \mathbb{R}^{m \times n}$ determine if AB = C.

Freivalds' Monte Carlo algorithm:

begin

```
i = 1;
```

repeat

```
choose \mathbf{r} = (r_1, \dots, r_n)' \in \{0, 1\}^n at random;
compute C\mathbf{r} and A(B\mathbf{r});
if C\mathbf{r} \neq A(B\mathbf{r});
return FALSE;
endif;
i = i + 1;
until i = k;
return TRUE
```

Theorem

Freivalds' algorithm is correct with a probability at least equal to $1 - 2^{-k}$.

Proof: We show that if $AB \neq C$, then $P(A(B\mathbf{r}) = C\mathbf{r}) \leq 1/2$. If $AB \neq C$, then $D = AB - C \neq 0$. Without loss of generality we may assume that $d_{11} \neq 0$. Note that $A(B\mathbf{r}) = C\mathbf{r}$ is equivalent to $D\mathbf{r} = \mathbf{0}$ and this implies $\sum_{j=1}^{n} d_{1j}r_j = 0$. Since $d_{11} \neq 0$, we have $r_1 = -\frac{\sum_{j=2}^{n} d_{1j}r_j}{d_{11}}$. This equality holds for at most one of the two choices we have for r_1 , so $P(AB\mathbf{r} = C\mathbf{r}) \leq 0.5$. If C = AB the algorithm is always correct; if $C \neq AB$ the probability of a correct answer is $1 - 0.5^k$ because the loop is run for k times.

Finding the nearest pair of points

This is the first probabilistic algorithm by M. Rabin, published in 1976! Problem Statement: given *n* points $\mathbf{x}_1, \ldots, \mathbf{x}_n$ in the unit square $[0, 1]^2$ in \mathbb{R}^2 find two points that are the closest with respect to Euclidean distance. To simplify the presentation assume that there is a unique closest pair. If there are several with the same minimum distance the algorithm still works. The problem can clearly be solved in $O(n^2)$, but randomness allows a better result!

Outline of Rabin's Algorithm

Let S be a set of points in \mathbb{R}^2 and let

$$\delta(S) = \min\{d(\mathbf{u}, \mathbf{v}) \mid \mathbf{u}, \mathbf{v} \in S \text{ and } \mathbf{u} \neq \mathbf{v}\}$$

Consider a mesh of squares \mathcal{M} having the size δ .

Key remark: Even if $\delta(S) \leq \delta$ we cannot be certain that the nearest pair is in the same square of the mash. However, we are sure that at worst the closest pair lies in squares with a common vertex.

Lemma

If $\delta(S) \leq \delta$, where δ is the mesh size, then there exists a mesh point **y** such that the nearest pair lies in a quadruple of squares situated at the north and east of **y**.

S can be partitioned in a union of sets, $S = S_1 \cup \cdots \cup S_k$ such that each S_i consists of all the points of S within one square of \mathcal{M} . Define $N(\mathcal{M}) = \sum_{i=1}^k \frac{n_i(n_i-1)}{2}$.

- if we know that the nearest pair is within one of the sets S_i, then it can be discovered by performing N(M) computations;
- under the previous assumption, the nearest pair will be discovered after N(M) 1 comparisons between the computed distances;
- thus, we are interested in finding a mesh \mathcal{M} for which $N(\mathcal{M}) = O(n)$.

The effect of increasing the mesh size δ

Lemma

Let \mathcal{M} be a mesh of size δ . Construct a mesh \mathcal{M}_1 by choosing a fixed mesh point **y** of \mathcal{M} as origin and forming a mesh of size 2δ and lines parallel to those of \mathcal{M} . Then, for a fixed set S we have

 $N(\mathcal{M}_1) \leqslant 16N(\mathcal{M}) + 24n.$

Proof

The squares of \mathcal{M}_1 are quadruples of squares of \mathcal{M} and yield the partition $S = T_1 \cup \cdots \cup T_q$. • each T_i is the union of at most four of the sets S_j ; • if $|T_i| = m_i$ and $T_i = S_{j_1} \cup \cdots \cup S_{j_4}$, then $m_i \leq n_{j_1} + \cdots + n_{j_4}$; • if $k_i = \max\{n_{j_1}, \dots, n_{j_4}\}$, then $\frac{m_i(m_i - 1)}{2} \leq \frac{4k_i(4k_i - 1)}{2} = \frac{16k_i(k_i - 1)}{2} + 6k_i$. • since k_1, \dots, k_m are a subset of n_1, \dots, n_k and $\sum n_i \leq 4n$ because

every \mathbf{x}_i in S is in at most four S_j s, the conclusion follows.

Theorem

There exists a constant c_1 so that for every S, M and M_1 as above, if $N(M) \leq cn$, then $N(M_1) \leq c_1 cn$.

This holds (with an appropriate c_1) for any fixed linear blowup of the mesh size of \mathcal{M} .

Theorem

For any set $S \subseteq \mathbb{R}^2$, where |S| = n, there exists a mesh \mathcal{M}_0 so that \mathcal{M}_0 creates a partition $\{S_1, \ldots, S_k\}$ such that $n \leq \mathcal{N}(\mathcal{M}_0) \leq c_1 n$, where c_1 is the previous constant.

Proof

Choose a pair of perpendicular directions ℓ_1, ℓ_2 intersecting at **y** such that $S \cap (\ell_1 \cup \ell_2) = \emptyset$;

- form a mesh *M* using *l*₁, *l*₂ and **y** with a small enough size such that each square contains one point of *S* and no point of *S* is located on the grid lines;
- by successively doubling the mesh size we reach for the first time a mesh M₀ for which n ≤ N(M₀);

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

66 / 91

• when this occurs for the first time we have $N(\mathcal{M}) \leq c_1 n$.

Outline of Probabilistic Algorithm

- randomly select a sample of *m* points, $S_1 = {\mathbf{x}_{i_1}, ..., \mathbf{x}_{i_m}}$ of the set $S = {\mathbf{x}_1, ..., \mathbf{x}_n}$; find $\delta(S_1)$;
- construct a mesh \mathcal{M} with mesh size $\delta_1(S_1)$;
- if m = m(n) is appropriately chosen, then with high probability we have N(M) = O(n);
- since $\delta(S) \leq \delta$, by a previous lemma, the nearest pair in S will be located in a square of one of the meshes of size 2δ .

・ロト ・聞 ト ・ 国ト ・ 国ト 二 国

Success on a Partition

- Let π = {S₁,..., S_k} be a partition of S. If t : {1,..., m} → S is an injection, that is, a choice of m elements of S, then t is an (m, π)-success if there is a block S_i of π that contains at least two elements in the range of t. Otherwise we call t an (m, π)-failure.
 If σ is another partition, σ = {H₁,..., H_ℓ} of S, then we say that π dominates σ if for every m, the probability of an (m, π)-success is at least equal to the probability of an (m, σ) success on σ.
- t is an (m, π) -failure if no block of π contains more than one element in the range of t.

- 日本 - 4 日本 - 4 日本 - 4 日本 - 4 日本

How Many Failures and Successes?

 $t: \{1, \ldots, m\} \longrightarrow S$ is an (m, π) -failure iff the function $T: \{1, \ldots, m\} \longrightarrow S/\pi$ given by T(p) = [t(p)] for $1 \le p \le m$ is an injection. If $|S/\pi| = k$, the number of injections T is

$$\begin{cases} \frac{k!}{(k-m)!} & \text{if } m \leq k, \\ 0 & \text{if } k < m \leq n \end{cases}$$

Therefore, the number of (m, π) -successes is

4

$$\begin{cases} \frac{n!}{(n-m)!} - \frac{k!}{(k-m)!} & \text{if } m \leq k, \\ \frac{n!}{(n-m)!} & \text{if } k < m. \end{cases}$$

The probability of an (m, π) -success is

$$P(m,\pi,k,n) = \begin{cases} 1 - \frac{\frac{k!}{(k-m)!}}{\frac{n!}{(n-m)!}} & \text{if } m \leq k, \\ 1 & \text{if } k \leq m, \text{ for } k \end{cases}$$

Example

 $\tau = \{S_1, S_2\}$ be a partition of a set $S = S_1 \cup S_2$ with $|S_1| = p > 1$ and $|S_2| = q > 1$. Claim: τ dominates the partition σ of S that consists of a block U with

 $|U| = \ell$ and $p + q - \ell$ singletons if and only if

$$\ell(\ell-1)\leqslant p(p-1)+q(q-1)$$

Example (cont'd)

We have

$$P(m, \tau, k, n) = \begin{cases} 1 - \frac{\frac{2!}{(2-m)!}}{\frac{n!}{(n-m)!}} & \text{if } m \leq 2, \\ 1 & \text{if } 2 < m \end{cases} = \begin{cases} 1 - \frac{2}{n} & \text{if } m = 1 \\ 1 & \text{if } m \geq 2, \end{cases}$$

and

$$P(m, \sigma, n) = \begin{cases} 1 - \frac{\frac{(p+q-\ell+1)!}{((p+q-\ell+1)-m)!}}{\frac{n!}{(n-m)!}} & \text{if } m \leq p+q-\ell+1, \\ 1 & \text{if } k < p+q-\ell+1. \end{cases}$$

Therefore, we must justify the inequality $P(m, \tau, n) \ge P(m, \sigma, n)$ only for m = 1 and m = 2.

Example

Any partition π of a set of six elements into three two-element sets dominates any partition σ of the same set into a 3-element set and three singletons.

The probability of a success in the first case is

$${\mathcal P}(3,\pi,6) = egin{cases} 1 - rac{rac{3!}{(3-m)!}}{rac{6!}{(6-m)!}} & ext{if } m \leqslant 3, \ 1 & ext{if } 3 < m. \end{cases}$$

In the second case, the probability is

$$P(4, \sigma, 6) = egin{cases} 1 - rac{4!}{(4-m)!} & ext{if } m \leqslant 4, \ 1 & ext{if } 4 < m. \end{cases}$$

Clearly, $\frac{3!}{(3-m)!} \leq \frac{4!}{(4-m)!}$ if $m \leq 3$. For m = 4, $P(3, \pi, 6) = 1 \geq P(4, \pi, 6)$, so π dominates σ .
Example

Any partition π of a set of six elements into two three-element sets dominates any partition σ of the same set into a 4-element set and two singletons.

We have

$$P(2, \pi, 6) = \begin{cases} 1 - \frac{\frac{2!}{(2-m)!}}{\frac{n!}{(n-m)!}} & \text{if } m \leq 2, \\ 1 & \text{if } 2 < m. \end{cases}$$

and

$$P(3, \sigma, 6) = \begin{cases} 1 - \frac{\frac{3!}{(3-m)!}}{\frac{n!}{(n-m)!}} & \text{if } m \leq 3, \\ 1 & \text{if } 3 < m. \end{cases}$$

Since $\frac{2!}{(2-m)!} \leqslant \frac{3!}{(3-m)!}$ it follows, as before, that π dominates σ .

Exercise: Prove that if $\pi = \{B_1, B_2\}$ is a partition with $|B_1| = |B_2| = 4$ of a set S with |S| = 8 and $\sigma = \{H_1, H_2, H_3, H_4\}$ with $|H_1| = 5$, $|H_2| = |H_3| = |H_4| = 1$, then π dominates σ .

The Sum of Two Partitions

Definition

Let S, S' be two disjoint sets and let $\pi = \{B_1, \ldots, B_k\}$ be a partition of Sand $\sigma = \{H_1, \ldots, H_\ell\}$ be a partition of S'. The sum of π and σ is the partition $\pi + \sigma$ of $S \cup S'$ given by

$$\pi + \sigma = \{B_1, \ldots, B_k, H_1, \ldots, H_\ell\}.$$

イロト イポト イヨト イヨト 三日

75/91

Note that $N(\pi + \pi') = N(\pi) + N(\pi')$.

Let S, S' be two disjoint sets, π be a partition of S and σ_1, σ_2 be two partitions of S'. If σ_1 dominates σ_2 , then $\pi + \sigma_1$ dominates $\pi + \sigma_2$.

イロト イロト イヨト イヨト 三日

76/91

Proof is left as exercise.

Partition Transformations

- Any pair of blocks B_i , B_j in π such that $|B_i| = |B_j| = 3$ can be replaced with a triplet of blocks H_1 , H_2 , H_3 such that $|H_1| = 4$, $|H_2| = H_3| = 1$ to yield a partition σ such that π dominates σ and $N(\pi) = N(\sigma)$.
- Any triplet of blocks B_i, B_j, B_k in π such that $|B_i| = |B_j| = |B_k| = 2$ can be replaced with a quadruple of sets H_1, H_2, H_3, H_4 with $|H_1| = 3$, $|H_2| = |H_3| = |H_4| = 1$ to yield a partition σ such that π dominates σ and $N(\pi) = N(\sigma)$.

A Special Partition Transformation

Any pair of blocks B_i, B_j in π such that $|B_i| = |B_j| = 4$ can be replaced with a quadruple of blocks H_1, H_2, H_3, H_4 such that $|H_1| = 5, |H_2| = H_3| = |H_4| = 1$ to yield a partition σ such that π dominates σ and $N(\sigma) \ge \frac{5}{6}N(\pi)$.

Indeed, $N(\sigma) = \cdots + 10$, $N(\pi) = \cdots + 12$ and $\frac{T+10}{T+12} \ge \frac{10}{12}$ when T > 0.

・日本 ・西本 ・田本 ・日本

78 / 91

There exists a constant λ , $\lambda > 0$, such that for every partition π of a finite set S there exists another partition σ of S such that

イロン イヨン イヨン イヨン

79/91

- $\blacksquare \pi \text{ dominates } \sigma,$
- $\lambda N(\pi) \leq N(\sigma)$, and
- **a** all blocks of σ , with one exception are singletons.

Let $\pi = \{S_1, \ldots, S_k\}$. We may assume that each block that is not a singleton contains at least five elements. Further, suppose initially that k is even and non-singletons can be arranged in pairs. Let (S_1, S_2) be such a pair with $|S_1| = p \ge 5$ and $|S_2| = q \ge 5$. $\{S_1, S_2\}$ is a partition of $S_1 \cup S_2$ and this partition dominates a partition of $S_1 \cup S_2$ that consists of a block U with $|U| = \ell$ and the remaining blocks being g singletons, where $p + q = \ell + 1 + \cdots + 1$ if and only if

$$\ell(\ell-1)\leqslant p(p-1)+q(q-1)$$

If ℓ is the largest number with this property then

$$\ell(\ell-1)\leqslant p(p-1)+q(q-1)\leqslant (\ell+1)\ell,$$

4 ロト 4 日 ト 4 日 ト 4 日 ト 1 日 9 0 0 0
80 / 91

Proof (cont'd)

The second inequality implies

$$\left(1-rac{2}{\ell+1}
ight)\left[rac{p(p-1)}{2}+rac{q(q-1)}{2}
ight]\leqslantrac{\ell(\ell-1)}{2}$$

Let π be a partition of S and let

 $m(\pi) = 1 + \min\{|B| \mid B \in \pi \text{ and } |B| > 1\}.$

If each of the paired sets is replaced in the manner previously described, using ℓ that satisfies the double inequality, then we obtain a partition π_1 that is dominated by π . Since $m(\pi_1) \leq \ell + 1$ holds for each pair in π we have

$$\left(1-\frac{2}{m(\pi_1)}\right)N(\pi)\leqslant N(\pi_1).$$

< □ > < @ > < 글 > < 글 > < 글 > ⊇ < ♡ < @ 81/91

Proof (cont'd): Estimation of a lower bound for $m(\pi_1)$

• if $p \leq q$, then the inequality $p(p-1) + q(q-1) \leq (\ell+1)\ell$ implies $(p+1)^2 \frac{2p(p-1)}{(p+1)^2} \leq (\ell+1)^2;$

since for $p \ge 5$, we have

$$\sqrt{\frac{40}{36}} \leqslant \sqrt{\frac{2p(p-1)}{(p+1)^2}} \leqslant \sqrt{2},$$

it follows that $s(p+1)\leqslant \ell+1$ where $\sqrt{rac{40}{36}}\leqslant s;$

- from σ_1 we can obtain a partition σ_2 using the same process that allowed us to obtain σ_1 from σ ;
- repeating this sufficiently many times (about $\log_{\sqrt{2}} k$ times, where $k = |\pi|$ we obtain a partition σ' of S which is dominated by π , and all the blocks of σ' except 1 are singletons.

Proof (cont'd)

For the constant λ we have

$$\lambda = \frac{5}{6} \left(1 - \frac{2}{6s} \right) \left(1 - \frac{2}{6s^2} \right) \cdots$$
 (1)

Since the series $\frac{2}{6s} + \frac{2}{6s^2} + \cdots$ converges we have $\lambda > 0$ and $N(\pi) \leq N(\pi')$.

Let π be a partition of the set S, |S| = n such that $n \leq N(\pi)$. If $n^{\frac{4}{3}}$ pairwise distinct points are drawn at random from S, then the probability of success, i.e., the probability that two elements will be chosen from the same block of π is at least $\mu(n) = 1 - 2e^{-cn^{\frac{1}{6}}}$, where $c = \sqrt{2\lambda}$ for λ defined in Equality (1).

By Theorem given on slide 79, π dominates a partition $\sigma = \{H_1, \ldots, H_m\}$, where $|H_i| = 1$ for $2 \le i \le m$ and $\lambda n \le N(\sigma)$. Thus, for $p = |H_1|$, we have $2\lambda n \le p(p-1)$ so that $c\sqrt{n} \le p$ for $c \approx \sqrt{2\lambda}$.

• the probability that in one choice from S we miss H_1 is $1 - \frac{p}{n}$, so smaller than $1 - \frac{c}{\sqrt{n}}$;

• for $n^{\frac{2}{3}}$ choices the probability of all missing H_1 is smaller than

$$\left(1-\frac{c}{\sqrt{n}}\right)^{\sqrt{n}\cdot n^{\frac{1}{6}}}\approx e^{-cn^{\frac{1}{6}}};$$

• the probability of success (at least two hits in H_1) is greater than $1 - 2e^{-cn^{\frac{1}{6}}}$.

There exists a constant c_2 so that if we choose at random $S_1 = \{\mathbf{x}_{i_1}, \dots, \mathbf{x}_{i_m}\}, m = n^{\frac{2}{3}}, \text{ out of } S = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ and draw any mesh \mathcal{M} of size $\delta(S_1)$, then the probability that $N(\mathcal{M}) \leq c_2 n$ is greater than $\mu(n)$, where $\mu(n)$ was defined in the Theorem given on slide 84.

For the set S consider the mesh \mathcal{M}_0 of size δ_0 given in the Theorem of slide 65, by which S is partitioned so that $n \leq \mathcal{N}(\mathcal{M}_0) \leq c_1 n$. Since $|S_1| = n^{\frac{2}{3}}$, the probability that two points of S_1 fall with one square of \mathcal{M}_0 is greater than $\mu(m)$.

- there are 16 meshes M₁,..., M₁₆ derived from M₀ by quadrupling the mesh size δ₀; the basic square of each consists of 16 basic squares of M₀;
- if $\delta(S_1) \leq \delta_0 \sqrt{2}$, then for any square mesh with mesh size δ_1 each of its squares will be a subset of a square of one of the \mathcal{M}_i , $1 \leq i \leq 16$; thus, $N(\mathcal{M}) \leq \sum_{i=1}^{16} N(\mathcal{M}_i)$;
- since $N(\mathcal{M}_0) \leq c_1 n$, by the Theorem on slide 64, $N(\mathcal{M}_i) \leq c_1^3 n$ for $1 \leq i \leq 16$.

Thus, with probability greater than $\mu(n)$, $N(\mathcal{M}) \leq 16c_1^3 n$.

◆□ → ◆聞 → ◆臣 → ◆臣 → □ 臣

For any set S, |S| = n, if S_1 is a subset of S such that $|S| = n^{\frac{2}{3}}$ is chosen at random and a mesh \mathcal{M} of size $\delta(S_1)$ is formed, then the expected value of $N(\mathcal{M})$ is smaller than c_2n .

By the Theorem on slide 86

$$P(S_1 \mid c_2 n \leq N(\mathcal{M})) \leq 1 - mu(n) = 2e^{-cn^{\frac{1}{6}}}$$

Since $N(\mathcal{M}) \leq n(n-1)$, the expected contribution from the choices of S_1 for which mesh size $\delta(S_1)$ leads to a mesh \mathcal{M} with $c_2n \leq N(\mathcal{M})$, is smaller than $n(n-1)e^{-cn^{\frac{1}{6}}}$, which tends to 0 when *n* grows. Hence, the expected value of $N(\mathcal{M})$ is smaller than $(c_2 + \epsilon)n$ for $\epsilon > 0$ and *n* sufficiently large.

- The main benefits of random algorithms: simplicity and speed.
- A wide variety of applications.
- Beautiful mathematics!

Thank you for your attention!

Sildes are available at www.dsim at cs.umb.edu

イロト イポト イヨト イヨト 三日

91/91