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Abstract—In many systems, due to the lack of an adequate po-
sitioning capability or the need for energy saving, it is infeasible to
track the location of a mobile device as it is moving. Its trajectory,
however, may be reconstructed from the real-time fingerprint
data that are obtained by the sensors built in the device. For
this purpose, we investigate a regularization framework aimed
to maximize the localization accuracy by taking into account
the spatiotemporal properties regarding the fingerprint space in
relation to the location space. The viability of this framework is
demonstrated in an evaluation using real-world datasets, which
shows its potential to outperform conventional approaches to
location fingerprinting.

I. INTRODUCTION

Location fingerprinting is a widely adopted approach for
GPS-free localization. In location fingerprinting, a fingerprint
at a specific location is a vector of location-sensitive mea-
surements observed about the mobile device at this particular
location. For indoor environments, such a measurement can be
the received signal strength from a nearby Wi-Fi access point
[1], a FM broadcasting tower [2], or a cellular tower [3]. For
underwater environments, a measurement can be a profile of
echo-sounding signals transmitted from the device (e.g., an
AUV) to the sea floor or ping signals to the surface buoys.
In general, any sensor information that is sensitive to location
change, including light [4] and geomagnetic field [5], can be
included in the fingerprint vector. Combining different sensor
data where they apply can lead to a rich set of discriminative
features for the fingerprint information.

Location fingerprinting works on the basis that if fingerprint
information is obtained for a set of sample locations, then the
device’s location given a new fingerprint during the positioning
phase can be computed by comparing to these samples.
Conventional approaches employ a k-nearest-neighbor (kNN)
algorithm [1] or a model-based learning technique such as
support vector machines [6], [7] and manifold regularization
[8], [9].

This paper is focused the problem of reconstructing the
trajectory of a mobile device after its real-time fingerprints
have been recorded during this trajectory. We assume that a
small portion of these fingerprints are obtained with respective
location information and this is the only training data that we
have. The fingerprints we need to locate are that of a trajectory
and so we conjecture that it is possible to improve over earlier
approaches that are designed for non-trajectory fingerprint
localization. On the other hand, while trajectory reconstruction

is a widely studied problem in the area of computational
geometry, our problem involves fingerprint information in the
optimization, which does not apply to classic geometrical
algorithms.

Our goal is to investigate the effectiveness of a solution
framework based on formulating the fingerprint-based trajec-
tory reconstruction problem as a regularization problem where
the regularizers are to enforce two properties regarding the
fingerprint space in relation to the location space and natural
mobility:
• (P1) spatial smoothness: two fingerprints similar in value

should correspond to nearby locations.
• (P2) temporal smoothness: the trajectory of a moving

device in the real world should exhibit some degree of
position smoothness over time.

The usefulness of these two properties have been substantiated,
for example, property (P1) for non-trajectory fingerprint local-
ization in the work of Pan et al. [9], [10] and property (P2)
for fingerprint-based tracking in our earlier work [11]. The
proposed regularization framework unify both (P1) and (P2)
in a single framework. We derive an optimal solution to this
regularization problem and evaluate its viability in comparison
with earlier fingerprint techniques based on kNN and manifold
regularization.

Also, in many practical scenarios, not every point in the
location space is penetrable. For example, we may not be
able to enter certain areas on a floor inside a building, or
in an outdoor environment it is not always possible to walk
straight from one point to another. Therefore, if a set of
valid locations is given, the reconstructed trajectory should
be restricted to only these locations. We want to investigate
whether the trajectory reconstructed by our algorithm can
serve as a good candidate for further enhancements in the
presence of this penetrability information.

The remainder of the paper is structured as follows. §II
discusses the related work. §III presents the problem formu-
lation. The details of the trajectory reconstruction algorithm
are given in §IV. Evaluation results are provided in §V. The
paper is concluded in §VI.

II. RELATED WORK

GPS-free localization in wireless networks has been a long-
studied problem. A popular approach is to leverage a model
correlating received signal strength (RSS) with distance [12].



Given a number of reference points (RPs), e.g., Wi-Fi access
points [1] or FM broadcasting towers [2], we can locate a
device by estimating its distances to these RPs based on
RSS ranging and then using multi-lateration to compute the
location. RSS ranging, however, is highly inaccurate due
to noise interference [12]. Radio propagates differently in
different directions due to obstacles such as walls, people, and
furniture. Positioning based on LED lighting [4] has also been
proposed with promisingly high accuracy. As visible light does
not penetrate through obstacles, this technique is suitable only
for short-range applications.

Location fingerprinting is a widely used range-free localiza-
tion approach. An early adopter of this approach is RADAR
[1], the world’s first Wi-Fi RSS-based indoor positioning
system, which demonstrates the viability of using RSS in-
formation to locate a wireless device without ranging. This
system relies on a radio map, a lookup table that maps building
locations to the corresponding RSS fingerprints empirically
observed at these locations. The reference points are the Wi-Fi
access points within the user’s Wi-Fi range. The radio map is
searched to find the closest RSS reading and its corresponding
location will be used as the estimate for the user’s location.
RADAR represents the fingerprint approach where kNN is
used to determine the location. One can also employ a model-
based learning approach to relate a fingerprint to a location,
for example, probabilistically using Bayesian inference [13]
or non-probabilistically using an Artificial Neural Network
(ANN) [14] or a Support Vector Machine (SVM) [6].

The above fingerprint techniques require a rich training
set for the learning to be effective. When there are only
a small number of sample fingerprints for training, we can
utilize non-training fingerprints (those available but without
known location), also called “unlabeled” fingerprints as in
the area of machine learning. These unlabeled fingerprints
can serve as a supplement to the “labeled” fingerprints (those
with known location) to obtain a better leaning model, by
solving a semi-supervised learning problem. A widely-used
method for semi-supervised learning is via the framework of
manifold regularization originally proposed by Belkin et al. in
[8]. This approach has been applied to location fingerprinting
[9]–[11], [15] to learn the location labels of the unlabeled
fingerprints based on their weighted similarity with the labeled
in a manifold structure. For example, Pan et al. [9] apply
manifold regularization with a Laplacian regularization term
reflecting the intrinsic manifold structure of the fingerprints;
here the manifold is a weighted graph of fingerprints in which
the weight of an edge connecting two fingerprints represents
their similarity.

In contrast to the above works, which are on non-trajectory
localization, our problem is about reconstruction of a trajectory
based on the fingerprints recorded when the mobile device
moved along this trajectory and so temporal smoothness
should be an important factor in the optimization. This is
substantiated in our earlier work [11], which, however, inves-
tigates only the temporal smoothness property. The kNN and
manifold regularization techniques that have been designed for

location fingerprinting take into account only spatial smooth-
ness. We can also apply a curve-fitting algorithm to our prob-
lem, e.g., De Boor’s algorithm [16], in which the trajectory
would be a spline curve constructed from the locations of
the labeled fingerprints serving as control points. However,
this approach is merely geometrical and does not leverage the
characteristics of the fingerprint space.

There are already numerous research works on mobile lo-
calization and tracking, but they make additional assumptions
such that those about special sensors built in the device
(e.g., gyroscope, accelerometer, compass, light sensor) [17],
those about mobility-specific constraints (e.g, speed, prede-
fined map) [18] and those that are network-specific (e.g.,
vehicular or wireless sensor networks) [19]. In contrast, we are
interested in a framework with universal applicability in the
sense that it can work orthogonally with any type of fingerprint
space; i.e., applicable where fingerprint information can be of
radio signals, acoustic, visible light, or geomagnetic, etc and
can contain any other information so long as it is location-
sensitive.

III. PRELIMINARIES

Suppose that a mobile device has completed moving along
a trajectory, during which we obtained a series of fingerprints,
x1,x2, ...,xt; here, time is discretized into time steps 1, 2, ...,
t. Each fingerprint is a m-dimensional point, xi ∈ X ⊂ Rm,
where m is the number of fingerprint features, e.g., RSSI from
different Wi-Fi APs, readings from inertial measurement units
(accelerometer, gyroscope, magnetometer), and/or any other
location-discriminative feature that is obtainable for the device.
For ease of presentation, we assume that the location space is
1D; the case for higher dimensions is a trivial extension (where
each coordinate is computed seperately).

We assume to know the locations of a small portion of the
trajectory fingerprints, which are called “labeled” fingerprints
and our goal is to compute the locations of the other finger-
prints, the “unlabeled”. Let yi denote the location of xi if
known. For unlabeled xi, we simply set yi = 0. We formulate
the trajectory estimator as a function f : X → R so that the
estimated location at time t given will be f(xt) which, ideally,
should equal its ground-truth location.

Our assumption regarding the obtainability of labeled fin-
gerprints during the trajectory is reasonable because (1) it is
necessary: localization is impossible otherwise, and (2) it is
practically doable: these location labels can be made avail-
able, for example, by placing a number of “device-readable”
location labels (e.g., RFID tags) in different locations in the
area so a mobile device can read when it is traveling nearby.
Labeled fingerprints can also be obtained for an AUV during a
mission when it surfaces to get GPS fixes or for a smartphone
when its GPS is enabled (previously turned off due to energy
saving or signal loss in harsh environments).

A. Optimization Objectives

Ideally, the location estimate f(xi) when applied to a
labeled fingerprint xi should match its given ground-truth



location yi. Therefore, our first objective is to minimize the
estimation error with respect to the labeled fingerprints. This
is quantified by minimizing

min
f

{
E(f) =

t∑
i=1

hi(f(xi)− yi)2
}
. (1)

Here, notation hi represents whether a fingerprint xi is labeled
(hi = 1) or unlabeled (hi = 0).

As aforementioned, similar fingerprints should correspond
to nearby locations. Our second objective is to enforce this
property – which we refer to as the spatial smoothness in
the fingerprint space. We quantify this by, first, organizing
the fingerprints into an undirected weighted graph, where
each vertex is a fingerprint and each edge has a weight
w(xi,xj) = exp

(
− |xi−xj |2

2σ2

)
(for some constant σ) reflecting

the similarity between xi and xj , and, second, minimizing the
Laplacian quadratic form of this graph:

min
f

S(f) =
t∑
i=1

i∑
j=1

w(xi,xj)(f(xi)− f(xj))2
 . (2)

In a study of tracking the trajectory of a single device,
Rallapalli et al. [20] confirmed that real-world mobility often
exhibits moving at a constant velocity for a long period
of time before changing speed. Consequently, the quantity
|(f(xi) − f(xi−1)) − (f(xi−1) − f(xi−2))| = |(f(xi) +
f(xi−2))− 2f(xi−1)| for most i should be close to zero. We
refer to this this temporal stability as the temporal smoothness
in the fingerprint space. Our third objective is to enforce this
property, by minimizing the following quadratic functional:

min
f

{
T (f) =

t∑
i=3

(f(xi) + f(xi−2)− 2f(xi−1))
2

}
. (3)

In practice, other optimization goals may be introduced to
better satisfy the kinetic properties of the deployed application.
In this paper, since we want to devise a general framework,
we focus only on the three objectives above.

B. Regularization Framework

To optimize the above objectives, we combine them into
a single objective function using a regularization framework
[8]. Specifically, we are seeking the trajectory estimator f as a
function in a reproducing kernel Hilbert space (RKHS) whose
inner product is implemented by a positive definite kernel
function K(xi,xj) = exp

(
− |xi−xj |2

2γ2

)
(for some constant

γ, given as a system parameter). The objective is to minimize
the following regularized risk:

min
f

{
J(f) = E(f) + λSS(f) + λTT (f) + λK‖f‖2K

}
, (4)

where there are three regularization terms:
• λSS(f): a regularizer to enforce spatial smoothness
• λTT (f): a regularizer to enforce temporal smoothness
• λK‖f‖2K : a regularizer added to make the minimization

problem well-posed; here, f is preferred to be smooth

with respect to kernel K (‖.‖K denotes the inner product
in the RKHS).

Our regularization framework is a generalized combination
of the manifold regularization framework of Belkin et al.
[8] (by setting λT = 0) and the regularization framework
proposed in our earlier research [11] (by setting λS = 0). The
coefficients λS , λT , λK ∈ [0,∞) are the weights to control the
importance of minimizing the smoothness terms, respectively.
In [11], we showed that temporal smoothness is more effective
than spatial smoothness for trajectory construction but we did
not investigate the combined effect of both of these properties.

IV. TRAJECTORY RECONSTRUCTION ALGORITHM

In this section, we derive a solution for the risk in (4).
First, we will express this risk in matrix form. Let us de-
note the following matrices: f = [f(x1), f(x2), ..., f(xt)]

ᵀ,
y = [y1, y2, ..., yt]

ᵀ (yi is set to zero by default for unla-
beled xi), H = diag(h1, h2, ..., ht), the identity matrix I =
diag(1, 1, ..., 1︸ ︷︷ ︸

t

), the kernel matrix K = [kij = K(xj ,xi)]t×t,

the Laplacian matrix of the fingerprint graph

L =

[
lij =

{
−w(xi,xj) if i 6= j∑t
k=1 w(xi,xk) otherwise

]
t×t

and B = [bij ]t×t = DᵀD where D is the second-order
difference matrix,

D =

dij =
 1 if (i ≥ 3) ∧ (j = i ∨ j = i− 2)
−2 if (i ≥ 3) ∧ (j = i− 1)
0 otherwise


t×t

More specifically, B is the following pentadiagonal matrix

1 −2 1 0 ... ... ... ... 0
−2 5 −4 1 0 ... ... ... 0
1 −4 6 −4 1 0 ... ... 0
0 1 −4 6 −4 1 0 ... 0
0 0 1 −4 6 −4 1 ... 0
... ... ... ... ... ... ... ... ...
0 ... ... 0 1 −4 6 −4 1
0 ... ... ... 0 1 −4 5 −2
0 ... ... ... ... 0 1 −2 1


t×t

Proposition IV.1. The minimizer of risk J(f) admits the
following solution, in matrix form,

f = (λKI+K(H+ λSL+ λTB))
−1

KHy. (5)

Proof. Since f is a function in the reproducing kernel Hilber
space associated with the kernel function K, mimicking the
derivations based on the extended Representer Theorem as in
[8], we are looking for f as a finite linear combination of
kernel products evaluated on the input points x1, x2, ..., xt;
i.e., f(x) =

∑t
i=1 αiK(xi,x). In matrix form, f = Kα,

where α = [α1, α2, ..., αt]
ᵀ (unknown).

Express the functionals in Eqs. (1), (2), and (3) in matrix
form as follows: E(f) = (f − y)ᵀH(f − y), S(f) = fᵀLf ,



T (f) = fᵀBf . In the matrix form, ‖f‖2K = αᵀKα. Thus, the
risk J(f) in Eq. (4) can be expressed in matrix form (note
that K is symmetric; hence, K = Kᵀ):

J(f) = (f − y)ᵀH(f − y) + λSf
ᵀLf + λT f

ᵀBf + λKαᵀKα

= fᵀ(H+ λSL+ λTB)f − 2yᵀHf + yᵀHy + λKαᵀKα

= αᵀK(H+ λSL+ λTB)Kα−
2yᵀHKα+ yᵀHy + λKαᵀKα

= αᵀK (λKI+ (H+ λSL+ λTB)K)α−
2yᵀHKα+ yᵀHy.

Let Q = K (λKI+ (H+ λSL+ λTB)K), we have

J(f) = αᵀQα− 2yᵀHKα+ yᵀHy. (6)

To minimize J , set its derivative with respect to α to zero,
∂J

∂α
= (Q+Qᵀ)α− 2KHy = 0. (7)

Because of the symmetry of matrices I, K, H, B, and L,

Qᵀ = (λKI+K(H+ λSL+ λTB))K

= λKK+K(H+ λSL+ λTB)K

= K (λKI+ (H+ λSL+ λTB)K) = Q

⇒ Q+Qᵀ = 2 (λKI+K(H+ λSL+ λTB))K.

Thus, Eq. (7) becomes

2 (λKI+K(H+ λSL+ λTB))Kα− 2KHy = 0

which leads to the following solution

f = Kα = (λKI+K(H+ λSL+ λTB))
−1

KHy.

A. Choice of Parameters
Our framework is a parametrized framework with the fol-

lowing parameters: λS , λT , λK , σ, γ. How to choose the
values for all parameters is beyond the scope of this paper;
we assume that they are given. In practice, the more often we
see a labeled fingerprint, the less smoothing is needed, hence
smaller values for the smoothing parameters, λS and λT . The
kernel smoothing parameter, λK , should be set to a small value
sufficient to make the regularization problem well-posed.

B. Incorporating Penetrability Constraints
The proposed framework does not factor in any physical

location space constraint and, as such, the trajectory estimator
f may return an estimate that does not correspond to a
penetrable location. In many practical cases, for example
where a floor plan is available, it is not difficult to obtain the
coordinates of penetrable points on the floor; we call these
points the “valid” points. The reconstructed trajectory should
only contain valid points.

Suppose that the set of valid points is {v1, v2, ..., vN}. If
this set is known, the algorithm to reconstruct the trajectory
can simply be revised as follows:

1) Compute f = [f1, f2, ..., ft] according to Eq. (5).
2) Location of each unlabeled fingerprint xi will be vi∗

where i∗ = argminj(vj − fi)2.

V. EVALUATION

The evaluation was conducted using the Wi-Fi RSSI data
obtained at our university in three case studies: (1) umbccul:
upper-level floor of the Campus Center (124 locations, average
39 APs per location, Figure 1(a)), (2) umbcs: floor of the
Computer Science department (185 locations, average 24 APs
per location, Figure 1(c)), and (3) umbwheatley: first floor
of the Wheatley building (189 locations, average 39 APs
per location, Figure 1(e)). These three floors demonstrate
different layouts, two with many narrow corridors (umbcs,
umbwheatley) and one with much larger shared open space
(umbccul). The corresponding RSSI from unreachable access
points is set to−100db by default. At each sample location, the
corresponding fingerprint is the average of the RSSIs observed
at this location. RSSI was measured by a person carrying an
Android phone in no particular heading direction.

The evaluation was conducted with three trajectories, one
for each case study; shown in Figures 1(d), 1(f), and 1(b). In
each trajectory under consideration, the availability of finger-
prints with known location is parameterized by a probability,
called the label rate, pl ∈ {0.1, 0.3, 0.5, 0.7}. For example,
if pl = 0.1, roughly 10% of the fingerprints on the trajectory
are labeled and the rest unlabeled. For each choice of pl, the
results are averaged over five random runs. Parameter λK is
set to 10−6, which is small enough to make our minimization
problem solvable in all case studies. After cross-validation for
reasonable accuracy, we chose to set the Gaussian parameters
γ = 1 and σ = 0.1 for the kernel function and weight function,
respectively, and used this choice for all simulation runs. The
range of values for the regularization coefficients is λS , λT ∈
{0, 10−8, 10−7, ..., 10−1, 1}, representing ten different scales.

We compared the proposed regularization approach to the
kNN approach and the manifold regularization approach. The
manifold approach is simply a special case of our approach
where λT is set to zero. The metric for comparison is “recon-
struction error” computed as the average pairwise Euclidean
distance between the location of each fingerprint on the
reconstructed trajectory with the corresponding ground-truth
location.

A. Effect of Spatio-Temporal Smoothness

Figure 2 and Figure 3 show the heatmap of reconstruction
error when the label rate is low (pl = 0.1, 0.3) and higher
(pl = 0.5, 0.7), respectively, for all choices of λS and λT .
Obviously from these figure, the manifold regularization ap-
proach (i.e., by setting λT = 0 to ignore temporal smoothness)
is far from the best. Temporal smoothness is far more dominant
to affect the accuracy; choosing the right value for λT is
crucial to obtain a good accuracy, especially when the label
rate is low. For example, when only 10% of the fingerprints
is labeled, over enforcing the temporal smoothness leads to
worse accuracy (Figure 2(a,b,c)). For all cases, the best λT is
either 10−4 or 10−5.

The importance of temporal smoothness is understandable
because the device’s trajectory should be smooth over time. In
contrast, spatial smoothness only plays a significant role when



(a) umbccul: Floor plan (b) umbccul: Test trajectory

(c) umbcs: Floor plan (d) umbcs: Test trajectory
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(e) umbwheatley: Floor plan
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(f) umbwheatley: Test trajectory

Fig. 1. Floor plans with sample locations (shown as dots) where WiFi RSSI data were obtained and test trajectories (shown in bold red): (a-b) umbccul
dataset (box dimension 185m × 113m, 125 sample locations); (c-d) umbcs dataset (box dimension 68m × 63m, 208 sample locations); and (e-f) umbwheatley
dataset (box dimension 111m × 68m, 189 sample locations)

temporal smoothness is not well-regularized. For example,
with 10% fingerprints labeled in the umbcs dataset (Figure
2(b)), when λT = 1 (which is over-regularizing), increasing
λS from 0 to 1 reduces the error from 8.9m to 7.1m, which
is 20% better. On the other hand, when temporal smoothness
is properly regularized, spatial smoothness can be ignored.

The above study validates (1) the importance of the regu-
larization on temporal smoothness and (2) the superiority of
the proposed framework to the original manifold regularization
framework. Regarding spatial smoothness, although it is shown
less influential, we do not suggest that it be removed from the
regularization. We believe that its low influence is due to the
particularly high fingerprint sampling rate on the trajectory in
our datasets. For trajectories with lower fingerprint sampling
rate, temporal smoothness should be less relevant and so
spatial smoothness will play a larger role. Evaluation with

more datasets will be part of our future work.

B. Comparison to kNN

We now compare the proposed regularization framework
with the best choice of λS and λT with kNN. For the kNN
approach, after trying with different k, we found 1NN to be
the most accurate for the three datasets in the evaluation. In
1NN, the location estimate of each unlabeled fingerprint is
the known location of the nearest fingerprint. The comparison
results are plotted in Figure 4 for all three datasets and various
label rates. It is consistently shown that our framework offers
better trajectory reconstruction quality. When the label rate is
low, 10% or 30%, the error is roughly 4m less for the umbccul
dataset, 2m less for the umbcs dataset, and 1m less for the
umbwheatley dataset. When the label rate is higher, although
the error reduction in meter is less, but the reduction as a
percentage is larger (more 50% improved). A visualization of



(a) Best λS , λT = (10−3, 10−4) (b) Best λS , λT = (10−4, 10−5) (c) Best λS , λT = (10−3, 10−5)

(d) Best λS , λT = (0, 10−5) (e) Best λS , λT = (10−3, 10−5) (f) Best λS , λT = (10−4, 10−5)

Fig. 2. Low label availability (10%, 30% labeled): reconstruction error for various degrees of spatial smoothness (λS ) and temporal smoothness (λT ).

the trajectory, for the case of 10% label rate, reconstructed
by 1NN is provided in Figure 6(a, b, c) and by the proposed
framework in Figure 6(d, e, f).

C. Usefulness of Penetrability Information

When the set of valid locations is known, as we discussed
in §IV-B, the trajectory reconstruction algorithm is revised to
take an addition step in which the estimated location of each
fingerprint on the trajectory will be rounded to the nearest
valid location. Figure 5 plots the reconstruction error of the
revised algorithm in comparison to the original algorithm.
Here, both algorithms use the best choice of λS and λT for
the regularization. As shown in this figure, there is indeed
an improvement on the error, which is not surprising. This
improvement in terms of percentage is summarized in Table I.
The improvement is 6% or less when the label rate is 10%, but
more significant gain is achieved when more fingerprints are
labeled. A visualization of the trajectory reconstructed by the
revised algorithm is provided in Figure 6(g, h, i) for the case of
10% label rate. This study implies that the proposed algorithm
can offer a good trajectory candidate for further enhancement
if information about penetrability is available.

TABLE I
PERCENTAGE IMPROVEMENT IF VALID LOCATIONS ARE KNOWN

label rate: 10% 30% 50% 70%
umbccul 6% 13% 28% 39%
umbcs 2% 8% 15% 24%

umbwheatley 4% 14% 29% 46%

VI. CONCLUSIONS

We have investigated a regularization framework for
fingerprint-based reconstruction of mobile trajectories. Its reg-
ularization enforces two important properties involving the
fingerprint space and location space: spatial smoothness and
temporal smoothness. This framework with a proper choice of
regularization coefficients should offer better reconstruction
quality compared to kNN and manifold regularization if they
are applied to reconstruct the trajectory. The trajectory recon-
structed by our algorithm can serve as a good starting point
for further improvement if a set of valid locations is known.
That said, our work remains merely theoretical and there exist
challenges when applying it in practice, one of which is how to
find these best coefficients. However, the proposed framework



(a) Best λS , λT = (0, 10−5) (b) Best λS , λT = (10−3, 10−4) (c) Best λS , λT = (0, 10−5)

(d) Best λS , λT = (0, 10−4) (e) Best λS , λT = (0, 10−5) (f) Best λS , λT = (10−3, 10−4)

Fig. 3. High label availability (50%, 70% labeled): reconstruction error for various degrees of spatial smoothness (λS ) and temporal smoothness (λT ).

can be used as a good benchmark to evaluate algorithms for
fingerprint-based trajectory reconstruction. In our future work,
we will conduction more in-depth experiments in larger time
and space scales.
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Fig. 6. 1NN vs. Proposed Algorithm vs. Proposed Algorithm with Valid Locations: Visualization of the reconstructed trajectory for the case of 10% label
rate.


