
An Online Algorithm for Fingerprint-based
Location Tracking

Duc A. Tran Ting Zhang
Computer Science Department,

University of Massachusetts, Boston
Email: {duc.tran, ting.zhang001}@umb.edu

Abstract—We address the problem of fingerprint-based track-
ing of a moving device where training fingerprints are not
available all at once but arrive sporadically in a stream manner.
As such the only information that may be used to locate the device
is its current fingerprint and the set of fingerprints obtained
earlier impromptu. The challenge is to devise a localization
algorithm that can scale with the fingerprint stream as this
stream can grow limitlessly with time. We propose an online
algorithm framework that requires storage of and computation
based on only a constant-size sliding buffer of fingerprints, not
all the fingerprints in the past. Our algorithm, therefore, is fast
and efficient. In terms of localization error, it offers a good
approximation when compared to the expensive batch algorithm
that assumes access to the entire history of fingerprints.

I. INTRODUCTION

Location information is valuable to a myriad of applications
of wireless networks. GPS is the most effective way to get
location information but does not work indoors. Even outdoors
where this service is available, it is not energy-efficient to
have to turn it on continuously all the time. Consequently, nu-
merous efforts have been made towards GPS-free localization
solutions, most adopting the fingerprint approach.

Location fingerprinting usually consists of two phases:
training (offline) and positioning (online). In the offline phase,
a number of sample locations are surveyed to build a map cor-
responding each location to a “fingerprint” which is a vector
of measurements observed between the mobile device at this
location and a set of “reference points” (RPs). For example,
these RPs can be Wi-Fi access points [1], FM broadcasting
towers [2], or cellular towers [3], and measurements can be
the received signal strength observed between them and the
device. In the online phase, when we need to compute a loca-
tion in real time, the device’s current fingerprint is compared
to the training map to find the best location match. Recently, as
smartphones are often shipped with various built-in sensors,
fingerprint modalities other than radio have been suggested,
such as sound [4] and geomagnetic field [5]. Combining these
different features where they apply can lead to a rich set of
discriminative features for the fingerprint information.

The calibration in the offline phase can be tedious and
labor-extensive in practice. For a large area, many locations
need to be surveyed to ensure good spatial coverage and
many fingerprint readings need to be collected at each sam-
ple location to ensure good temporal coverage (the signal
characteristics of the environment are not time invariant). In

this paper, we address the problem of location fingerprint
tracking in which the training fingerprints are not given all
at once, but instead become available sequentially over the
time. At any point in time, the only information we may use
to determine the device’s location is its current fingerprint and
those fingerprints that have been obtained earlier. We do not
make any assumption about how often training fingerprints
arrive nor their timing, but do require a tracking solution that
is fast and efficient so that it can scale with the (possibly
infinite) fingerprint stream.

Potential applications of this problem are plentiful. A GPS-
equipped smartphone, say, when being used in an urban
shopping outlet, does not need to turn GPS on continuously;
instead, it can be set to switch on once in a while and our
algorithm can be used to compute the smartphone location
during the GPS-free gaps. This results in great energy saving.
In an indoor building, we can place location labels (e.g.,
RFID tags) at popular locations such as info desks, which
the phone can read automatically when passing nearby; this
labeled location information can be used to infer location at
any other place. The proposed problem is also applicable to
tracking of autonomous underwater vehicles (AUVs) deployed
in underwater environments. Conventionally, the location of an
AUV while submerged is tracked based on a built-in inertial
navigation system that has to dead reckon with GPS each time
the AUV surfaces. The research in this paper can be utilized to
improve the localization accuracy of the AUV between these
GPS fixes. It is noted that in all of the above applications, the
training data comes sequentially in real time.

There are already numerous research works on mobile
location tracking, but they make additional assumptions such
that those about special sensors built in the device (e.g.,
gyroscope, accelerometer, compass, camera) [6], [7], those
about mobility-specific constraints (e.g, speed, predefined
map) [8] and those that are network-specific (e.g., vehicular
or wireless sensor networks) [9], [10]. In contrast, we are
interested in “fingerprint-based tracking” and aim to devise a
tracking framework with “universal applicability” in the sense
that it can work orthogonally with any type of fingerprint
space; i.e., applicable where fingerprint information can be of
radio signals, acoustic, or geomagnetic, etc and can contain
any other information that is location-discriminative. Also,
since the fingerprint stream can go to infinity, it is extremely
inefficient to store and process all the fingerprints observed in

the past due to storage and computation costs. Therefore, a
constraint for our problem is that we can only use a fix-size
buffer of past fingerprints, not all the fingerprints.

We are not aware of any effort towards the online
fingerprint-based location tracking problem with limited
buffer. To solve this problem, our approach is based on
the following observations about the sequence of fingerprints
obtained as the device is moving: (1) smoothness: trajectory of
a moving device in the real world should exhibit a degree of
smoothness over a continuous interval of time; (2) sparseness:
the location matrix of a mobile device over a time window
exhibits a low-rank structure, as substantiated in [11], and
so we conjecture that the fingerprint matrix over time should
also be sparse (because of the tight correspondence between
a fingerprint and its location).

Consequently, we devise a general solution framework that
exploits these properties. Specifically, we make the following
contributions:
• We propose to model the fingerprint-based location track-

ing problem as a regularized optimization problem with a
regularization term to enforce smoothness in the location
estimation. We substantiate this model by showing in
an evaluation study the effectiveness of the objective
function in order to achieve a good localization accuracy.

• We derive an optimal solution to this problem, whose
computation requires access to all the fingerprints. For
a limited buffer, we propose an online algorithm as
an approximate solution to the optimal solution. The
proposed algorithm computes the location for each fin-
gerprint in real time such that at any point in time we
require knowledge about only a sparse representation of
the previously measured fingerprints. As a result, our
algorithm is fast, efficient, and scalable.

• In the current state of our work, we have not been able
to derive tight theoretical bounds in terms of localization
accuracy, but we provide evaluation results with two
real-world experiments showing that our accuracy gets
incrementally better over the time and quickly converges
to the accuracy of the algorithm that assumes to know all
the fingerprints in the history.

The remainder of the paper is structured as follows. §II dis-
cusses the related work. §III presents the problem formulation
and solution approach. The details of the proposed solution
are given in §IV. Evaluation results are reported in §V. The
paper is concluded in §VI with pointers to our future work.

II. RELATED WORK

Location fingerprinting is a widely used range-free localiza-
tion approach. An early adopter of this approach is Radar [1],
the world’s first Wi-Fi RSS-based indoor positioning system,
which demonstrates the viability of using RSS information
to locate a wireless device. This system works using a radio
map, a lookup table that maps building locations to the
corresponding RSS fingerprints empirically observed at these
locations. The reference points are the Wi-Fi access points
within the user’s Wi-Fi range. The radio map is searched to

find the closest RSS reading and the corresponding location
will be used as the estimate for the user’s location. Radar
represents the fingerprint approach where kNN is used to
determine the location. One can also employ a model-based
learning approach to relate a fingerprint to a location, for
example, probabilistically using Bayesian inference [12], [13]
or non-probabilistically using an Artificial Neural Network
(ANN) [14] or a Support Vector Machine (SVM) [15]–[17].

The above fingerprint techniques require a rich training set
for the learning to be effective. When there are only a small
number of sample fingerprints for training, we can utilize
non-training fingerprints (those available but without known
location), also called “unlabeled” fingerprints as in the area
of machine learning. These unlabeled fingerprints can serve
as a supplement to the labeled fingerprints (those with known
location) to obtain a better leaning model, by solving a semi-
supervised learning problem. A de facto standard method for
semi-supervised learning is via the framework of manifold
regularization originally proposed by Belkin et al. in [18].
Applying this approach to location fingerprinting [19]–[22],
the location labels of the unlabeled fingerprints can be learned
based on their similarity with the labeled in a manifold struc-
ture. For example, Pan et al. [19] apply manifold regularization
with a Laplacian regularization term reflecting the intrinsic
manifold structure of the fingerprints; here the manifold is a
weighted graph of fingerprints in which the weight of an edge
connecting two fingerprints represents their similarity.

Our research is different in several ways. First, we also
apply a regularization framework for learning the locations
of the fingerprints at unknown locations, but our regulariza-
tion term is to enforce temporal smoothness in the location
estimation whereas the conventional manifold regularization
approach takes into account spatial smoothness. Second, we
specifically address the fingerprint-based tracking problem
whereas existing fingerprint techniques are designed for non-
tracking localization. Third, we want an “online” algorithm
with constant-bounded space and time complexities, but we
are not aware of any existing fingerprint technique with this
computational efficiency. Forth, as aforementioned in §I, there
is a large body of research on mobile tracking [6]–[11], but
they are not about fingerprint-based tracking and they make
assumptions not applicable to our problem. It is also noted
that sequential estimation methods such as Particle Filter and
Kalman Filter have been widely used for target tracking [23].
Their purpose is to correct a trajectory given noisily observed
locations, which does not apply to our case because we
observe only fingerprints but not locations and need to estimate
locations from these fingerprints. However, these filters can
easily be integrated into our framework as a way to further
enhance the location of each fingerprint after it is estimated.

III. PROBLEM FORMULATION

Consider a mobile device moving according to an unknown
trajectory. Its fingerprints are obtained over time in a stream
manner, x1,x2, ..., where the time is discretized into time
steps 1, 2, ... Each fingerprint is a m-dimensional point,

xi ∈ X ⊂ Rm, where m is the number of fingerprint features,
e.g., RSSI from different Wi-Fi APs, readings from inertial
measurement units (accelerometer, gyroscope, magnetometer),
and any location-discriminative feature that is available with
the device, etc. Denote by yi ∈ Y ⊂ Rd the location
corresponding to xi, where d is the location dimensionality.
For ease of presentation, let d = 1 and so yi = yi is a real-
valued scalar; the case d > 1 will be discussed later.

A fingerprint is said to be “labeled” if it is accompanied with
a known location and “unlabeled” otherwise. A fingerprint
may be observed with or without a location label, which is
unpredictable. When a labeled fingerprint is available, it will
be a new training fingerprint for our algorithm. Therefore,
although we do not have all the training fingerprints available
at once, they come impromptu during the fingerprint stream.
Notation hi represents whether a fingerprint xi is labeled
(hi = 1) or unlabeled (hi = 0). We want to determine
a real-time location estimator f : X → R so that the
estimated location at time t for the sequence of fingerprints
[x1,x2, ...,xt] will be f(xt) which, ideally, should equal the
ground-truth yt (unknown except for the labeled fingerprints).

A. Assumptions and Constraints

Our assumption regarding the availability of labeled fin-
gerprints during the fingerprint stream is reasonable because
(1) it is necessary: localization is impossible otherwise, and
(2) it is practically doable: these location labels can be made
available, for example, by crowdsourcing over the time or
placing a number of “device-readable” location labels (e.g.,
RFID tags) in different locations in the area so a mobile device
can read when it is traveling nearby. In application scenarios
mentioned in §I, the labeled fingerprints are obtained when the
AUV surfaces to get GPS fixes or when the GPS is enabled
on a smartphone (GPS previously turned off due to energy
saving or lost in harsh environments).

The main constraint we set for the online fingerprint track-
ing problem is that at any positioning time we can afford
only a constant-size budget of fingerprint information, based
on which location computation is performed. In other words,
at any time t, the only new information we receive is the
new fingerprint xt and all the information we can use for
the computation is just a constant-size representation of the
fingerprint history including the new fingerprint. As such at
no time can we assume to know about all the fingerprints
observed in the past.

B. Optimization Approach

We formulate the problem as a regularization problem
assuming to know all the fingerprints and then seek an online
solution with constant-bounded space and time complexities
to best approximate the exact solution to this problem.

Ideally, the estimated location of a labeled fingerprint
should match its given location. Therefore, our first goal is
to minimize the estimation error with respect to the labeled

fingerprints. This is quantified by minimizing

min
f

{
E(f) =

t∑
i=1

hi(f(xi)− yi)2

}
. (1)

Our second goal is to maximize the temporal smoothness in
the fingerprint space. The fingerprints obtained in consecutive
moves of the device should correspond to nearby locations
whose distance should be constant between accelerations.
To exploit this property, we want the location estimator to
minimize the following quadratic functional:

min
f

{
T (f) =

t∑
i=3

(f(xi) + f(xi−2)− 2f(xi−1))2

}
. (2)

In practice, other optimization goals may be introduced to
better satisfy the kinetic properties of the deployed application.
Since we want to devise a general framework, without such
knowledge, we focus only on the two goals above. To optimize
these individual goals, we combine them into a single risk
function. Specifically, the location estimator f we are seeking
is a function that belongs to HK , the reproducing kernel
Hilbert space (RKHS) associated with a positive definite kernel
function K(xi,xj) = exp

(
− |xi−xj |2

2γ2

)
(for some constant

γ), implementing the inner product, and that is the solution
minimizing the following regularized empirical risk:

min
f

{
J(f) = E(f) + λTT (f) + λK‖f‖2K

}
, (3)

where the last term is added to make the minimization problem
well-posed; here, f is preferred to be smooth with respect to
kernel K (the norm in this term is defined using the inner
product associated with the kernel) and coefficient λK > 0
can be set to a small value, sufficiently small to make the
optimization solvable. The regularization coefficient λT ∈
(0,∞) regulates the importance of temporal smoothness in
the optimization of the risk.

It is noted that our problem is similar to the semi-supervised
learning problem in machine learning insofar as we need to
predict labels for unlabeled points given a set of points, labeled
and unlabeled. Therefore, an intuitive approach is to use
manifold regularization [18] as in earlier work on fingerprint-
based (non-tracking) localization [19], [20]. Our evaluation
study will later show this framework less effective than our
regularization framework.

C. Optimality

Theoretically, an optimal solution can be found for f that
minimizes the J(f) in Eq. (3) at any time t if we know all
the fingerprints observed from time 1 to time t. First, we
denote the following matrices: f = [f(x1), f(x2), ..., f(xt)]

ᵀ,
y = [y1, y2, ..., yt]

ᵀ (yi is set to zero by default for un-
labeled xi), H = diag(h1, h2, ..., ht), the identity matrix
I = diag(1, 1, ..., 1︸ ︷︷ ︸

t

), and B = [bij]t×t = DᵀD where D

is the second-order difference matrix

D =

dij =

 1 if (i ≥ 3) ∧ (j = i ∨ j = i− 2)
−2 if (i ≥ 3) ∧ (j = i− 1)
0 otherwise

t×t

Then, we can compute the optimal f as follows.

Proposition III.1. The minimizer of risk J(f) admits the
following solution, in matrix form,

f = (λKI + KH + λTKB)
−1

KHy. (4)

Proof: Express the functionals in Eqs. (1) and (2) in ma-
trix form as follows: E(f) = (f−y)ᵀH(f−y), T (f) = fᵀBf .
In the matrix form, ‖f‖2K = αᵀKα. Thus, the risk J(f) in
Eq. (3) can be expressed in matrix form,

J(f) = (f − y)ᵀH(f − y) + λT f
ᵀBf + λKαᵀKα

= fᵀ(H + λTB)f − 2yᵀHf + yᵀHy + λKαᵀKα

= αᵀQα− 2yᵀHKᵀα + yᵀHy.

where Q = K (λKI + (H + λTB)Kᵀ). To minimize J , set
its derivative with respect to α to zero,

∂J

∂α
= (Q + Qᵀ)α− 2KHy = 0. (5)

Since K, H, B, and L are symmetric matrices, we have Qᵀ =
Q and so Eq. (5) becomes

2 (λKI + K(H + λTB))Kα− 2KHy = 0

(λKI + K(H + λTB))Kα−KHy = 0

⇒ f = (λKI + KH + λTKB)
−1

KHy.

The computation of Eq. (4) runs in O(t3) time because
it involves (t × t)-matrix inverse. This computation requires
access to all the fingerprints in the history. Furthermore, it has
to be re-computed each time t is increased to t + 1, t + 2,
etc. In the next section, we propose an approximate algorithm
using only a fixed budget of information, which can scale as
the fingerprint stream grows ad infinitum.

IV. ONLINE ALGORITHM

As aforementioned in §I, the fingerprint space should be
sparse in both time and space. This suggests that it may be
possible to approximate the growing set of fingerprints with
only a sparse representation which we can use to estimate
location in real time. Below we present our idea first, followed
by further algorithmic details.

Let us represent the set of fingerprints x1,x2, ...,xt com-
pactly as a multi-set {(x̄1,m1), (x̄2,m2), ..., (x̄k,mk)} where
the representative elements are x̄1, x̄2, ..., x̄k and their respec-
tive multiplicities m1,m2, ...,mk (

∑k
i=1mi = t). In other

words, there are m1 fingerprints with value x̄1, m2 fingerprints
with value x̄2, etc. Let f̄ = [f(x̄1), f(x̄2), ..., f(x̄k)]ᵀ and
ȳ = [ȳ1, ȳ2, ..., ȳk]ᵀ be the corresponding compact vectors for
estimated locations and ground-truth locations, respectively.

Our approach is to transform the original optimization problem
to a more compact version using only the knowledge about the
representative fingerprints.

We rewrite the estimation error with respect to the labeled
fingerprints E(f) as

E(f) =

t∑
i=1

hi(f(xi)− yi)2

=

k∑
i=1

h̄i(f(x̄i)− ȳi)2 = (f̄ − ȳ)ᵀH̄(f̄ − ȳ)

where H̄ = diag(h̄1, h̄2, ..., h̄k) and h̄i = mi if fingerprint x̄i
is labeled with corresponding known location ȳi and h̄i = 0
otherwise.

We rewrite the regularization term T (f) as

T (f) = fᵀBf =

t∑
i=1

f(xi)

t∑
j=1

f(xj)bij

=

t∑
i=1

f(xi)

k∑
j=1

f(x̄j)
∑

q|xq=x̄j

biq

=

k∑
j=1

f(x̄j)

t∑
i=1

f(xi)
∑

q|xq=x̄j

biq

=

k∑
j=1

f(x̄j)

k∑
i=1

f(x̄i)

∑

p|xp=x̄i

∑
q|xq=x̄j

bpq︸ ︷︷ ︸
b̄ij

=

k∑
i=1

k∑
j=k

f(x̄i)b̄ijf(x̄j) = f̄ᵀB̄f̄

where B̄ = [b̄ij]k×k. Intuitively, B̄ is a compact version of
B by merging (summing up values of) all the entries in B
whose row/column indices correspond to fingerprints having
identical values.

Consequently, the original minimization problem (3) is
equivalent to an exact same minimization problem except that
the given fingerprints are {x̄i} instead of {xi} and the k × k
matrices H̄, B̄, and K̄ =

[
k̄ij = K(x̄j , x̄i)

]
k×k are used

instead of H, B, and K, respectively. Applying Proposition
III.1 on the latter problem, which is more compact, we obtain
the following result.

Corollary IV.1. The minimizer of risk J(f) admits the solu-
tion, in matrix form, f = [f(x1), f(x2), ..., f(xt)] where its
ith entry is the jth entry of the column vector

f̄ =
(
λK Ī + K̄H̄ + λT K̄B̄

)−1
K̄H̄ȳ, (6)

such that xi = x̄j . (Here, Ī is the identity matrix of size k×k.)

This corollary suggests that instead of using a O(t3)-time
and O(t2)-space algorithm for computing Eq. (4) we can

obtain an exact solution by computing Eq. (6), which involves
manipulation of matrices of size k × k only; hence, O(k3)-
time and O(k2)-space complexities. Therefore, if k is kept
small, we have a much more efficient algorithm. However,
if we use the exact multi-set representation for the set of
fingerprints, we cannot predict the growth of k as t increases.
Therefore, we approximate this set with a fix-sized buffer
of up to k (constant) representative fingerprints and perform
location estimation based on the content of this buffer only.
Algorithmic details are provided below.

A. Representative Buffer

At any time t we maintain a buffer Bt = {(x̃i, m̃i, ỹi)}i
of up to k (constant) representative fingerprints x̃1, x̃2, ..., x̃k
∈ {x1,x2, ...,xt}, where there is a count m̃i for x̃i, counting
the number of fingerprints it represents. In this approximation,
each fingerprint is approximated by its closest representative.
Here, ỹi is the location of x̃i if it is labeled and zero otherwise.
We use the notation (̃) to mean “approximate” to distinguish
from (̄) which means “exact”.

The representative fingerprints in the buffer are the k cen-
ters, as in the well-known metric k-center clustering problem,
of the fingerprint set, i.e.,

[x̃1, x̃2, ..., x̃k] = argmin
[x̃1,x̃2,...,x̃k]

(
max

1≤j≤t

(
min

1≤i≤k
‖xj − x̃i‖

))
.

We use the k-center representatives because this is a good
compact representation of the fingerprint graph in terms of
spatial representativity (unlikely for two fingerprints with
similar values to be both selected centers) and temporal rep-
resentativity (unlikely for two fingerprints observed in similar
times to be both selected centers).

To update these k centers incrementally each time a new
fingerprint is added, we derive an algorithm based on a
modified version of a well-known incremental k-center algo-
rithm, the Doubling Algorithm by Charikar et al. [24], with
one revision that we prefer labeled fingerprints to serve as
centers. Specifically, we enforce two rules: (1) when the new
fingerprint needs to join an existing cluster, it prefers to be
represented by a center that is labeled, and (2) in the re-
clustering process when the number of centers exceeds k,
labeled fingerprints are selected first to serve as center. More
presence of labeled fingerprints in the representative set should
result in more information useful for the location prediction.

B. Location Estimation

Similar to how we denote the matrices H̄ and B̄ for the
exact multi-set, we denote the corresponding matrices H̃ and
B̃ for the set of fingerprints in Bt. Matrix H̃ simply is
diag(h̃1, h̃2, ..., h̃k) where h̃i = m̃i if fingerprint x̃i is labeled
and h̃i = 0 otherwise. To compute the matrix B̃, we update
its entries {b̃ij}k×k incrementally during the same time as
the buffer is being updated. Initially, at time zero, b̃ij is set
to 0 for every i, j ≤ k. Suppose that the current buffer is
{x̃1, x̃2, ..., x̃k} when we receive a new fingerprint xt. As
discussed earlier, the buffer update consists in two steps: (1)

assign a representative to the new fingerprint and (2) re-cluster
the representatives if necessary (when there are more than k
of them).

In the first step, suppose that xt is assigned to some repre-
sentative x̃i. Because of this new assignment, only {b̃ij , b̃ji}
for all j ≤ k need to be updated. This update simply is

b̃ij + =
∑

q|xq 7→x̃j

btq, b̃ji + =
∑

q|xq 7→x̃j

btq.

Here, “ 7→” denotes the assignment of a fingerprint to a repre-
sentative. Note that B = DDᵀ is the following pentadiagonal
matrix

1 −2 1 0 0
−2 5 −4 1 0 0
1 −4 6 −4 1 0 0
0 1 −4 6 −4 1 0 ... 0
0 0 1 −4 6 −4 1 ... 0
...
0 0 1 −4 6 −4 1
0 0 1 −4 5 −2
0 0 1 −2 1

t×t

where all its entries bpq is zero except when |p − q| ≤ 2.
Therefore, b̃ij (and b̃ji) can be efficiently computed as

b̃ij + =

bt−1,t if xt−1 7→ x̃j ∧ xt−2 67→ x̃j
bt−2,t if xt−1 67→ x̃j ∧ xt−2 7→ x̃j
bt−1,t + bt−2,t if xt−1 7→ x̃j ∧ xt−2 7→ x̃j
0 otherwise.

For this computation to be possible, in addition to the buffer
itself, we also always keep track of which fingerprints in the
buffer represent the two latest fingerprints (xt−1, xt−2). It
is also important to note that at each new step t, the entry
bt−1,t−1 changes value from 1 (earlier value at time t− 1) to
5 (value at time t). Similarly, bt−2,t−2 changes value from 5 to
6, and bt−1,t−2 and bt−2,t−1 both from −2 to −4. The values
of the other entries of matrix B are not changed. Consequently,
supposing that xt−1 7→ x̃j1 and xt−2 7→ x̃j2 , we need to make
the following updates:

b̃j1j1+ = 4, b̃j2j2+ = 1, b̃j1j2− = 2, b̃j2j1− = 2.

The total time for updating B̃ in this step is O(k).
In the second step, which takes place only if there are

more than k representative fingerprints in the buffer, we
need to re-cluster them. This step involves merging of the
representatives. Each time a representative x̃l is collapsed into
another representative x̃i (lines 25-26), we make the following
update:

∀ 1 ≤ j ≤ k, j 6= l : b̃ij + = b̃jl, b̃ji + = b̃jl

∀ 1 ≤ j ≤ k : b̃lj = b̃jl = 0

The time complexity for updating B̃ in the re-clustering step,
if it occurs, is also O(k).

After matrix B̃ has been updated the location estimation
is simply an application of Eq. (6) in Corollary IV.1 where

we use H̃, B̃, and K̃ instead of H̄, B̄, and K̄. The total
time complexity for estimate the location of each fingerprint
is dominated by the time to compute inverse matrices; hence,
O(k3). We have so far assumed that the location is 1D. For
2D or 3D localization, we simply apply the same algorithm
separately for each coordinate.

Our algorithm is a parametric algorithm as it assumes given
values of two main parameters, (1) k: the number of k-centers
as a sparse representation of the whole fingerprint set; and
(2) λT : the regularization coefficient for temporal smoothness.
The localization error depends on how we choose values for
these parameters. The choice of k provides a tradeoff between
efficiency and accuracy; a larger value is better for accuracy
but worse for computation. Therefore, this decision should be
made by the application. For example, one could consider
a pay-for-quality policy: additional fee is charged for better
resolution of tracking accuracy. Choosing λT in an automated
way is not trivial, which is the same challenge as often seen
in regularization frameworks. In any case, λT should depend
on the label rate reciprocally; the more often we see a labeled
fingerprint in the stream, the less smoothing is needed.

V. EVALUATION

Our evaluation study is focused on validation of our reg-
ularization framework and with respect to the optimization
goal in this framework how well the proposed online algo-
rithm approximates the batch algorithm. The batch algorithm
assumes an infinite buffer and so at the time of estimating the
location for each fingerprint this algorithm has access to all
the fingerprints previously obtained. The localization time and
error are the metrics for comparison. The localization time
is computed as the average time to compute the location for
each individual unlabeled fingerprint. The location error (up
to time t) is computed as the average “individual” location
error for unlabeled fingerprints over the path traveled from the
beginning (up to time t). The “individual” error corresponding
to a fingerprint xt is the Euclidean distance between its
location estimate at time t and its ground-truth location.

The evaluation was conducted with two different trajecto-
ries, shown in Figure 1, experimented on the floor of the
Computer Science (CS) department and on the upper-level
floor of the Campus Center (CC) at our university. The CS-
trajectory (Figure 1(a)) is a sequence of 185 Wi-Fi RSSI
fingerprints at 185 locations (24 APs heard per location). The
CC-trajectory (Figure 1(b)) is a sequence of 124 Wi-Fi RSSI
fingerprints (39 APs heard per location). In each trajectory,
the labeling status of each point is determined based on a
label rate pl ∈ {0.1 (low), 0.5 (medium), 0.9 (high)}. For
each choice of pl, the results are averaged over five random
runs. The range of values for the regularization coefficient is
λT ∈ {0, 10−8, 10−7, ..., 10−1, 1}, representing ten different
scales. Parameter k varies from 10% to 100% of the sequence
length. Parameter γ in the kernel function is set to 1 and
parameter λK is set to 10−6 which is small enough to make
our minimization problem solvable.

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

Time

L
o

c
a
ti
o
n

 E
rr

o
r

(m
)

185−trajectory

Proposed Regularization

Manifold Regularization

(a) CS-Trajectory

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

14

16

18

Time

L
o

c
a
ti
o
n

 E
rr

o
r

(m
)

124−trajectory

Proposed Regularization

Manifold Regularization

(b) CC-Trajectory

Fig. 2. Comparison to manifold regularization in terms of location error over
time, averaged across all cases of label rate.

A. Validation of the Regularization Framework

As discussed in §III-B, manifold regularization (MR) [18]
is used in earlier work on fingerprint-based localization [19],
[20]. The manifold approach is aimed to minimize the ob-
jective function min

f

{
J(f) = E(f) + λSS(f) + λK‖f‖2K

}
,

where the regularization term S(f) represents the property that
fingerprints of similar values should be located nearby, S(f) =∑t
i=1

∑i
j=1 w(xi,xj)(f(xi)− f(xj))

2; here, w(xi,xj) is a
similarity measure between xi and xj and the coefficient λS
∈ (0,∞) controls the importance of minimizing S(f). Our
regularization approach uses a different regularization term,
T (f) in Eq. (2), to regularize temporal smoothness.

We compare these two regularization frameworks in terms
of how effective they are leading to good localization accuracy,
using their respectively best coefficients λT (our framework)
and λS (MR), found as a result of an offline cross-validation
procedure. Figure 2 provides a summary of the comparison for
both the CS-trajectory and CC-trajectory, showing the location
error over the time, which is averaged across all cases of label
rate. It is observed that throughout the travel path of the de-
vice, our regularization approach results in substantially better
location error. Another observation favoring our framework
is that its error converges to a stable value quickly as more
fingerprints are observed whereas MR’s error keeps increasing
before showing any sign of convergence. These results validate
the use of the temporal smoothing term in our regularization
framework. Next, we turn the focus to the comparison between
the proposed algorithm and the batch algorithm.

B. Localization Time is an Obvious Advantage

The main advantage of the online algorithm is its compu-
tation time. It has O(k3) time complexity, which is constant
with respect to the time t, whereas the batch algorithm’s time
complexity is O(t3). Figure 3 provides an illustration of this
advantage for both trajectories in the study; here the time
information is shown in logarithmic scale for λT = 10−4

and pl = 0.5 but similar results are observed for the other
choices of these parameters. As expected, the localization time
exhibits a cubic growth until the buffer reaches its capacity (k
in the online algorithm and no limit in the batch algorithm).
Regardless of how large the buffer is, as long as its size
is fixed, eventually the computation time will converge to a
stable value that does not increase even when the fingerprint

(a) CS-Trajectory (185 locations) (b) CC-Trajectory (124 locations)

Fig. 1. Two trajectories are shown in red color, obtained in two different areas: (a) on the floor of the CS department (68m × 63m); (b) on the upper-level
floor in the campus center (box dimension 185m × 113m) at UMass Boston.

0 20 40 60 80 100 120 140 160 180 200
10

3

10
4

10
5

10
6

10
7

10
8

Points ID

T
im

e

λ
T
 = 10

−4
, p

l
 = 0.5

k = 10%

k = 20%

k = 30%

k = 40%

k = 50%

k = 60%

k = 70%

k = 80%

k = 90%

k = 100%

(a) CS-Trajectory

0 20 40 60 80 100 120 140
10

3

10
4

10
5

10
6

10
7

10
8

Points ID

T
im

e

λ
T
 = 10

−4
, p

l
 = 0.5

k = 10%

k = 20%

k = 30%

k = 40%

k = 50%

k = 60%

k = 70%

k = 80%

k = 90%

k = 100%

(b) CC-Trajectory

Fig. 3. Localization time (in log scale) to locate each individual fingerprint.

stream gets longer. The cubic growth in time renders the batch
algorithm extremely inefficient in practice where the tracking
is required for an extended period of time.

C. Location Accuracy Can Compete

While the computation time advantage is obvious, the trade-
off, as in any online algorithm, is possible loss in accuracy. In
our study, we have found that in spite of using less information
to make prediction, our algorithm can be as accurate as the
batch algorithm. For example, Figure 4 shows that for CS-
Trajectory when 50% of the fingerprint stream is unlabeled,
using a buffer only 20% of the fingerprint stream length, the
online algorithm results in a trajectory (Figure 4(a)) almost
identical to that of the batch algorithm (Figure 4(b)), and this
trajectory closely resembles the ground-truth trajectory (Figure
4(c)); similar result is obtained for CC-Trajectory. Location
estimates for the first few fingerprints are not good due to
lack of labeled information but the accuracy improves over the
time. Although these results represent only one case of study
where λT is set to 10−4, it is an evidence that it is possible
to achieve comparable tracking quality even when using only
a constant-size buffer of the fingerprint stream. It is noted
that here we plot the location estimated for each sequential
fingerprint instantly at the time it is observed. If we want, we
can use the latest location estimator at any point in time to
obtain even better estimates for all the unlabeled fingerprints
in the past up to this time. These enhanced estimates are useful
if there is a need for a posterior fix of the trajectory.

D. Analysis of Location Error

Numerical analysis of location error with different param-
eter choices is discussed in this section. Figure 5 shows the
location error for both CS-Trajectory and CC-Trajectory as
the buffer size changes, for difference choices of λT and
pl. It is expected that the error should decrease as the label
rate increases, but we want to emphasize the importance of
choosing an appropriate value for λT . It is observed that
temporal smoothness regularization (λT > 0 vs. λT = 0) does
help with the localization accuracy. On the other hand, too
much regularization (λ = 1) does not offer the best result. The
best result is obtained when the right extent of regularization
is enforced. The best choice seems to be λT ∈ (10−5, 10−4)
for either trajectory. With this choice, depending on the label
rate (low/medium/high), we can obtain an error as good
as 15m/5m/3.5m for CS-Trajectory (Figures 5(a, b, c)) and
20m/10m/3m for CC-Trajectory (Figures 5(d, e, f)).

Comparing the online algorithm with the batch algorithm,
Figures 5(g, h, i) show the ratio between the location error
of the online algorithm and that of the batch algorithm for
all choices of λT for both CS-Trajectory and CC-Trajectory.
What is noticeable here is that the online algorithm can be
well-approximative of the batch algorithm. The approximation
factor quickly approaches 1 when the buffer size increases
(k ≥ 30%). Especially, when the label rate is high enough,
e.g., when pl = 0.5, this factor is less than 1.2 for CS-
Trajectory and less than 1.6 for CC-Trajectory, even when the
buffer size is only 10% of the length of the fingerprint stream.

It is noted that while our way to achieve good tracking
accuracy is by minimizing the regularized risk, this approach
is just a heuristic. It is not an absolute guarantee that if this risk
is minimized than the localization accuracy will be optimal.
This explains why in some cases of CS-Trajectory, as seen in
Figures 5(b, c), the online algorithm actually outperforms the
batch algorithm, which makes the former even more favorable.

VI. CONCLUSIONS

We have addressed the problem of real-time fingerprint-
based tracking of mobile devices, assuming that the training
data arrives in a stream manner instead of being available

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

 1 2

 3 4 5 6 7 8 9 10 11 12 13

 14
 15

 16
 17

 18

 19
 20

 21 22
 23
 24
 25
 26
 27

 28

 29

 30 31 32 33 34
 35
 36

 37

 38
 39 40 41

 42

 43

 44

 45

 46
 47

 48
 49

 50

 51

 52

 53
 54 55 56 57 58 59 60

 61
 62

 63

 64 65

 66

 67
 68

 69 70 71

 72

 73

 74

 75

 76

 77

 78 79 80 81 82

 83

 84 85
 86
 87
 88 89

 90
 91
 92
 93

 94
 95

 96

 97
 98

 99

100101102103104105

106
107

108
109

110111112

113

114

115

116

117

118

119

120

121 122 123

124

125

126127128129130131132133134135136137138
139

140

141

142

143

144

145

146

147

148 149 150 151 152 153 154
155

156
157
158
159
160

161

162

163 164165166

167
168

169170
171172173174175176177178179180

181

182

183

184

185

λ
T
 = 10

−4
, p

l
 = 0.5

(a) CS-Trajectory: 20% buffer size

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

 1 2

 3 4 5 6 7 8 9 10 11 12 13

 14
 15

 16
 17

 18

 19
 20

 21 22
 23
 24
 25
 26
 27

 28

 29

 30 31 32 33 34
 35
 36

 37

 38
 39 40 41

 42

 43

 44

 45

 46
 47

 48
 49

 50

 51

 52

 53
 54 55 56 57 58 59 60

 61
 62

 63

 64 65

 66

 67
 68

 69 70 71

 72

 73

 74

 75

 76

 77

 78 79 80 81 82

 83

 84 85
 86
 87
 88 89

 90
 91
 92
 93

 94
 95

 96

 97
 98

 99

100101102103104105

106
107

108
109

110111112

113

114

115

116

117

118

119

120

121 122 123

124

125

126127128129130131132133134135136137138
139

140

141

142

143144

145

146

147

148 149 150 151 152 153
154

155
156
157
158
159
160

161
162

163 164165166

167
168

169170
171172173174175176177178179180

181

182

183

184

185

λ
T
 = 10

−4
, p

l
 = 0.5

(b) CS-Trajectory: infinite buffer

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

 1 2 3 4 5 6 7 8 9 10 11 12 13

 14

 15 16 17 18

 19 20
 21

 22 23
 24
 25

 26 27 28

 29 30
 31 32

 33 34 35
 36

 37

 38
 39 40

 41

 42 43 44

 45

 46
 47

 48

 49
 50

 51

 52
 53 54 55 56 57 58 59 60

 61
 62

 63

 64 65

 66

 67
 68

 69 70

 71

 72

 73

 74

 75
 76 77 78

 79

 80

 81 82

 83

 84 85
 86
 87

 88 89

 90
 91
 92
 93

 94 95

 96 97

 98

 99 100 101 102 103 104

105106
107

108
109

110111112

113

114
115

116

117

118 119 120 121

122

123
124125126127128129130131132133134135136137138139

140

141

142

143

144

145 146 147 148 149 150 151 152 153 154 155

156
157 158 159 160 161

162163164165166

167
168169170171

172
173174175176177178179180

181

182

183

184

185

185−trajectory

(c) CS-Trajectory: ground-truth

300 400 500 600 700 800 900 1000 1100 1200
100

200

300

400

500

600

700

800

900

 1

 2

 3 4

 5 6 7

 8

 9

 10

 11

 12

 13 14 15 16 17 18
 19
 20
 21

 22

 23

 24

 25

 26

 27

 28

 29
 30

 31
 32 33 34

 35

 36

 37

 38

 39

 40

 41

 42
 43

 44
 45 46

 47 48
 49 50

 51

 52

 53
 54

 55

 56
 57

 58
 59

 60 61
 62

 63
 64

 65

 66

 67

 68

 69
 70

 71
 72

 73
 74 75 76 77 78 79 80 81

 82 83 84 85 86 87 88 89 90 91
 92 93 94

 95

 96

 97

 98

 99

100

101

102103

104
105

106

107

108

109

110
111

112113

114

115

116

117

118
119

120

121

122

123

124

λ
T
 = 10

−4
, p

l
 = 0.5

(d) CC-Trajectory: 20% buffer size

300 400 500 600 700 800 900 1000 1100 1200
100

200

300

400

500

600

700

800

900

 1

 2

 3 4

 5 6 7

 8

 9

 10

 11

 12

 13 14 15 16 17 18
 19
 20
 21

 22

 23

 24

 25

 26

 27

 28

 29
 30

 31
 32 33 34

 35

 36

 37

 38

 39

 40

 41

 42
 43

 44
 45 46

 47 48
 49 50

 51

 52

 53
 54

 55

 56
 57

 58
 59

 60 61
 62

 63
 64

 65

 66

 67

 68

 69
 70

 71
 72

 73
 74 75 76 77 78 79 80 81

 82 83 84 85 86 87 88 89 90 91
 92 93 94 95

 96

 97

 98

 99

100

101

102103

104
105

106

107

108

109

110
111112
113

114

115

116

117

118
119

120

121
122

123
124

λ
T
 = 10

−4
, p

l
 = 0.5

(e) CC-Trajectory: infinite buffer

300 400 500 600 700 800 900 1000 1100 1200
200

300

400

500

600

700

800

 1 2 3

 4
 5 6

 7

 8

 9
 10 11 12 13 14 15 16 17 18

 19

 20 21

 22

 23

 24

 25

 26

 27

 28

 29
 30

 31

 32 33

 34

 35 36

 37

 38 39 40

 41 42

 43 44

 45 46
 47 48 49

 50
 51

 52

 53

 54

 55

 56

 57

 58 59
 60

 61

 62

 63
 64

 65
 66

 67

 68
 69

 70

 71

 72

 73

 74
 75

 76 77 78 79 80

 81 82 83 84 85 86 87 88 89 90 91

 92
 93

 94

 95

 96

 97

 98

 99

100

101
102

103

104

105

106

107

108
109

110

111

112

113
114

115

116
117 118

119 120

121

122
123

124

124−trajectory

(f) CC-Trajectory: ground-truth

Fig. 4. Drawing of the estimated trajectory: Red-colored points are location estimates for unlabeled fingerprints and blue-colored points are the ground-truth
locations of the labeled fingerprints. The numbers represent the ID of the fingerprints sorted in time of observation.

all at once and requiring that only a limited buffer may be
used for processing. We have proposed an online algorithm
framework based on two key ideas: formulate the tracking
problem as an optimization problem with a regularization
term to regulate temporal smoothness, a fingerprint property
evident in real-world mobility, and solve this optimization
problem approximately using only a constant-bounded buffer
of information which is a sparse representation of the entire
fingerprint stream. A clear advantage is in the computational
efficiency; our algorithm can scale regardlessly of however
long the fingerprint stream can grow. In terms of localization
error, our evaluation study has shown that the proposed
framework can offer a convincing approximation to the batch
algorithm approach. As the latter has limited use in practice
due to its prohibitive computational costs, our research offers
an alternative solution that is substantially faster and more
efficient. A key challenge remains though; that is, we need a
way to automatically determine the regularization coefficient.
This will be the focus of our immediate future work.

ACKNOWLEDGEMENTS

This work was supported by the NSF award CNS-1116430.

REFERENCES

[1] P. Bahl and V. N. Padmanabhan, “Radar: An in-building rf-based user
location and tracking system,” in INFOCOM, 2000, pp. 775–784.

[2] Y. Chen, D. Lymberopoulos, J. Liu, and B. Priyantha, “Fm-based indoor
localization,” in Proceedings of the 10th international conference on
Mobile systems, applications, and services, ser. MobiSys ’12. New
York, NY, USA: ACM, 2012, pp. 169–182. [Online]. Available:
http://doi.acm.org/10.1145/2307636.2307653

[3] A. Varshavsky, E. de Lara, J. Hightower, A. LaMarca, and
V. Otsason, “Gsm indoor localization,” Pervasive Mob. Comput.,
vol. 3, no. 6, pp. 698–720, Dec. 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.pmcj.2007.07.004

[4] S. P. Tarzia, P. A. Dinda, R. P. Dick, and G. Memik, “Indoor
localization without infrastructure using the acoustic background
spectrum,” in Proceedings of the 9th international conference on
Mobile systems, applications, and services, ser. MobiSys ’11. New
York, NY, USA: ACM, 2011, pp. 155–168. [Online]. Available:
http://doi.acm.org/10.1145/1999995.2000011

[5] J. Chung, M. Donahoe, C. Schmandt, I.-J. Kim, P. Razavai,
and M. Wiseman, “Indoor location sensing using geo-magnetism,”
in Proceedings of the 9th international conference on Mobile
systems, applications, and services, ser. MobiSys ’11. New
York, NY, USA: ACM, 2011, pp. 141–154. [Online]. Available:
http://doi.acm.org/10.1145/1999995.2000010

[6] C. Wu, Z. Yang, Y. Liu, and W. Xi, “Will: Wireless indoor localization
without site survey,” IEEE Transactions on Parallel and Distributed
Systems, vol. 24, no. 4, pp. 839–848, 2013.

[7] O. Woodman and R. Harle, “Pedestrian localisation for indoor
environments,” in Proceedings of the 10th International Conference
on Ubiquitous Computing, ser. UbiComp ’08. New York,
NY, USA: ACM, 2008, pp. 114–123. [Online]. Available:
http://doi.acm.org/10.1145/1409635.1409651

[8] L. Hu and D. Evans, “Localization for mobile sensor networks,”
in Proceedings of the 10th Annual International Conference on
Mobile Computing and Networking, ser. MobiCom ’04. New
York, NY, USA: ACM, 2004, pp. 45–57. [Online]. Available:
http://doi.acm.org/10.1145/1023720.1023726

[9] A. Boukerche, H. A. B. F. Oliveira, E. F. Nakamura, and
A. A. F. Loureiro, “Vehicular ad hoc networks: A new
challenge for localization-based systems,” Comput. Commun.,
vol. 31, no. 12, pp. 2838–2849, Jul. 2008. [Online]. Available:
http://dx.doi.org/10.1016/j.comcom.2007.12.004

[10] I. Amundson and X. D. Koutsoukos, “A survey on localization
for mobile wireless sensor networks,” in Proceedings of the
2Nd International Conference on Mobile Entity Localization
and Tracking in GPS-less Environments, ser. MELT’09. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 235–254. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1813141.1813162

[11] S. Rallapalli, L. Qiu, Y. Zhang, and Y.-C. Chen, “Exploiting temporal
stability and low-rank structure for localization in mobile networks,”
in Proceedings of the sixteenth annual international conference
on Mobile computing and networking, ser. MobiCom ’10. New
York, NY, USA: ACM, 2010, pp. 161–172. [Online]. Available:

10 20 30 40 50 60 70 80 90 100
10

15

20

25

30

35

40

45

50

55

60

k (%)

L
o
c
a
ti
o
n
 E

rr
o
r

(m
)

p
l
 = 0.1

λ
T
 = 0

λ
T
 = 10

−8

λ
T
 = 10

−7

λ
T
 = 10

−6

λ
T
 = 10

−5

λ
T
 = 10

−4

λ
T
 = 10

−3

λ
T
 = 10

−2

λ
T
 = 10

−1

λ
T
 = 1

(a) CS-Trajectory: Error

10 20 30 40 50 60 70 80 90 100
4

5

6

7

8

9

10

11

12

13

k (%)

L
o
c
a
ti
o
n
 E

rr
o
r

(m
)

p
l
 = 0.5

λ
T
 = 0

λ
T
 = 10

−8

λ
T
 = 10

−7

λ
T
 = 10

−6

λ
T
 = 10

−5

λ
T
 = 10

−4

λ
T
 = 10

−3

λ
T
 = 10

−2

λ
T
 = 10

−1

λ
T
 = 1

(b) CS-Trajectory: Error

10 20 30 40 50 60 70 80 90 100
3

3.5

4

4.5

5

5.5

6

6.5

7

k (%)

L
o
c
a
ti
o
n
 E

rr
o
r

(m
)

p
l
 = 0.9

λ
T
 = 0

λ
T
 = 10

−8

λ
T
 = 10

−7

λ
T
 = 10

−6

λ
T
 = 10

−5

λ
T
 = 10

−4

λ
T
 = 10

−3

λ
T
 = 10

−2

λ
T
 = 10

−1

λ
T
 = 1

(c) CS-Trajectory: Error

10 20 30 40 50 60 70 80 90 100
20

40

60

80

100

120

140

k (%)

L
o
c
a
ti
o
n
 E

rr
o
r

(m
)

p
l
 = 0.1

λ
T
 = 0

λ
T
 = 10

−8

λ
T
 = 10

−7

λ
T
 = 10

−6

λ
T
 = 10

−5

λ
T
 = 10

−4

λ
T
 = 10

−3

λ
T
 = 10

−2

λ
T
 = 10

−1

λ
T
 = 1

(d) CC-Trajectory: Error

10 20 30 40 50 60 70 80 90 100
5

10

15

20

25

30

35

40

45

k (%)

L
o
c
a
ti
o
n
 E

rr
o
r

(m
)

p
l
 = 0.5

λ
T
 = 0

λ
T
 = 10

−8

λ
T
 = 10

−7

λ
T
 = 10

−6

λ
T
 = 10

−5

λ
T
 = 10

−4

λ
T
 = 10

−3

λ
T
 = 10

−2

λ
T
 = 10

−1

λ
T
 = 1

(e) CC-Trajectory: Error

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

k (%)

L
o
c
a
ti
o
n
 E

rr
o
r

(m
)

p
l
 = 0.9

λ
T
 = 0

λ
T
 = 10

−8

λ
T
 = 10

−7

λ
T
 = 10

−6

λ
T
 = 10

−5

λ
T
 = 10

−4

λ
T
 = 10

−3

λ
T
 = 10

−2

λ
T
 = 10

−1

λ
T
 = 1

(f) CC-Trajectory: Error

0 10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

k (%)

L
o
c
a
ti
o
n
 E

rr
o
r

(R
a
ti
o
)

p
l
 = 0.1

(g) CS/CC-Trajectory: Ratio

0 10 20 30 40 50 60 70 80 90 100
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

k (%)

L
o
c
a
ti
o
n
 E

rr
o
r

(R
a
ti
o
)

p
l
 = 0.5

(h) CS/CC-Trajectory: Ratio

0 10 20 30 40 50 60 70 80 90 100
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

k (%)
L
o
c
a
ti
o
n
 E

rr
o
r

(R
a
ti
o
)

p
l
 = 0.9

(i) CS/CC-Trajectory: Ratio

Fig. 5. Location error for CS-Trajectory (a, b, c) and CC-Trajectory (d, e, f) as buffer size increases; (g, h, i) Ratio of location error relative to the batch
algorithm’s error as buffer size increases, where each curve corresponds to CS-Trajectory (dashed-line) or CC-Trajectory (solid-line) in each case of λT .

http://doi.acm.org/10.1145/1859995.1860015
[12] T. Roos, P. Myllymäki, H. Tirri, P. Misikangas, and

J. Sievänen, “A probabilistic approach to WLAN user location
estimation,” International Journal of Wireless Information Networks,
vol. 9, no. 3, pp. 155–164, July 2002. [Online]. Available:
http://dx.doi.org/10.1023/A:1016003126882

[13] M. Youssef, A. Agrawala, and A. U. Shankar, “Wlan location determi-
nation via clustering and probability distributions,” in In IEEE PerCom
2003, 2003.

[14] C. Laoudias, D. G. Eliades, P. Kemppi, C. G. Panayiotou, and M. M.
Polycarpou, “Indoor localization using neural networks with location
fingerprints,” in Proceedings of the 19th International Conference on
Artificial Neural Networks: Part II, ser. ICANN ’09. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 954–963.

[15] M. Brunato and R. Battiti, “Statistical learning theory
for location fingerprinting in wireless lans,” Comput. Netw.,
vol. 47, no. 6, pp. 825–845, Apr. 2005. [Online]. Available:
http://dx.doi.org/10.1016/j.comnet.2004.09.004

[16] C.-L. Wu, L.-C. Fu, and F.-L. Lian, “WLAN location determination
in e-home via support vector classification,” in Networking,
Sensing and Control, 2004 IEEE International Conference
on, vol. 2, 2004, pp. 1026–1031 Vol.2. [Online]. Available:
http://dx.doi.org/10.1109/ICNSC.2004.1297088

[17] C. Figuera, J. L. Rojo-Álvarez, M. Wilby, I. Mora-Jiménez, and
A. J. Caamaño, “Advanced support vector machines for 802.11 indoor
location,” Signal Process., vol. 92, no. 9, pp. 2126–2136, Sep. 2012.
[Online]. Available: http://dx.doi.org/10.1016/j.sigpro.2012.01.026

[18] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization:

A geometric framework for learning from labeled and unlabeled
examples,” J. Mach. Learn. Res., vol. 7, pp. 2399–2434, Dec. 2006.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1248547.1248632

[19] J. J. Pan, Q. Yang, H. Chang, and D. Y. Yeung, “A manifold regu-
larization approach to calibration reduction for sensor-network based
tracking,” in Proceedings of the Twenty-First National Conference on
Artificial Intelligence, Boston, United States, 2006, pp. 988–993.

[20] J. J. Pan and Q. Yang, “Co-localization from labeled and unlabeled data
using graph laplacian,” in Proceedings of the Twentieth International
Joint Conference on Artificial Intelligence, Hyderabad, India, 2007, pp.
2166–2171.

[21] D. A. Tran and P. Truong, “Total variation regularization for training of
indoor location fingerprints,” in ACM MOBICOM Workshop on Mission-
Oriented Wireless Sensor Networking (ACM MiseNet 2013), Miami, Sep
2013.

[22] D. A. Tran and T. Zhang, “Fingerprint-based location tracking with
hodrick-prescott filtering,” in 7th IFIP Wireless and Mobile Networking
Conference (WMNC 2014), Algarve, Portugal, May 2014.

[23] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson,
R. Karlsson, and P.-J. Nordlund, “Particle filters for positioning, naviga-
tion, and tracking,” Signal Processing, IEEE Transactions on, vol. 50,
no. 2, pp. 425–437, Feb 2002.

[24] M. Charikar, C. Chekuri, T. Feder, and R. Motwani, “Incremental
clustering and dynamic information retrieval,” in Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing, ser.
STOC ’97. New York, NY, USA: ACM, 1997, pp. 626–635.

